Malignant Transformation of Human Fibroblasts Caused by Expression Of

Total Page:16

File Type:pdf, Size:1020Kb

Malignant Transformation of Human Fibroblasts Caused by Expression Of Proc. Nati. Acad. Sci. USA Vol. 86, pp. 187-191, January 1989 Cell Biology Malignant transformation of human fibroblasts caused by expression of a transfected T24 HRAS oncogene (human cell transformation/infinite life-span human flbroblasts/pHO6T1/T24 HRAS expression/malignant fibrosarcoma) PETER J. HURLIN*, VERONICA M. MAHER, AND J. JUSTIN MCCORMICKt Carcinogenesis Laboratory, Fee Hall, Department of Microbiology and Department of Biochemistry, Michigan State University, East Lansing, MI 48824-1316 Communicated by G. N. Wogan, September 19, 1988 ABSTRACT We showed previously that diploid human passage rodent cells were transfected with an HRAS onco- fibroblasts that express a transfected HRAS oncogene from the gene and any one of a number of genes considered to be human bladder carcinoma cell line T24 exhibit several char- involved in causing cellular immortalization, malignant trans- acteristics of transformed cells but do not acquire an infinite formation resulted (5-7). Not surprisingly, transfection of life-span and are not tumorigenic. To extend these studies ofthe HRAS oncogenes into infinite life-span rodent fibroblast cell T24 HRAS in human cells, we have utilized an infinite life-span, lines resulted in malignant transformation (5, 8) in the but otherwise phenotypically normal, human fibroblast cell majority of the studies (9). strain, MSU-1.1, developed in this laboratory after transfec- To test models proposed for ras transformation generated tion of diploid fibroblasts with a viral v-myc oncogene. Trans- from experiments with rodent fibroblasts for their relevance fection of MSU-1.1 cells with the T24 HRAS flanked by two to human cell transformation, we and our colleagues (10-12) transcriptional enhancer elements (pHO6T1) yielded foci of and several other groups (13-21) have used human fibroblasts morphologically transformed cells. No such transformation as target cells for transfection of HRAS or NRAS oncogenes occurred if the plasmid containing T24 HRAS had only one or for infection with the Harvey or Kirsten murine sarcoma enhancer or none at all or if the normal human HRAS gene was viruses. Two groups (14, 15, 17) reported that early-passage transfected in the pHO6 vector (pHO6N1). Cell strains derived diploid human fibroblasts are resistant to transformation by from such foci expressed high levels ofT24 HRAS product p21, transfected HRAS oncogenes. However, Hurlin et al. (10) formed colonies in soft at showed that if such cells are transfected with the pHO6T1 agar high frequency, proliferated plasmid, which contains the human T24 HRAS oncogene rapidly in serum-free medium that does not support growth of flanked by Moloney murine sarcoma virus long terminal the parental cell line, and formed progressively growing, repeat and simian virus 40 (SV40) transcriptional enhancer invasive fibrosarcomas. These foci-derived T24 HRAS- sequences in order to increase expression of this gene, they transformed cell strains, as well as cells from the tumors become morphologically transformed, develop distinct foci, derived from them, had the same near-diploid karyotype as and form colonies in soft agar. In a similar study, Tubo and that of the parental MSU-1.1 cells. Transfection of pHO6T1 Rheinwald (20) showed that diploid human fibroblasts trans- into two other inflnite life-span human fibroblast cell lines, cells fected with the T24 HRAS oncogene in a plasmid that that had not been transfected with v-myc, also resulted in contains a SV40 transcriptional enhancer sequence become malignant transformation, suggesting that the infinite life-span morphologically transformed and exhibit reduced growth- phenotype of MSU-1.1 cells, and not necessarily expression of factor requirements. As discussed by Hurlin et al. (10), the the v-myc oncogene, was the factor that complemented T24 negative results referred to above (14, 15 17) most probably HRAS expression to cause malignant transformation. reflect lack of expression of the transfected HRAS oncogene or expression at a level too low to cause measurable effects. Oncogenes of the ras family have been detected in numerous In the positive studies (10, 20), where expression of the and diverse human malignancies (1). A growing body of transfected T24 HRAS oncogene was higher than that of the evidence from both in vivo and in vitro studies suggests that normal HRAS gene, the transformants exhibited several the p21 products ofras oncogenes are involved in the genesis characteristics of tumor-derived cells but did not acquire an of such malignancies. For example, transgenic mice harbor- infinite life-span or tumorigenicity. ing the HRAS oncogene of the human bladder carcinoma cell The majority of the studies of the transforming ability of line T24 (2) or the v-Ha-ras oncogene of Harvey murine oncogenes carried out in rodent cells in culture have used sarcoma virus (3), linked to a promoter specific for expres- fibroblasts that have acquired an infinite life-span in culture sion in mammary tissue, developed mammary tumors. How- but are otherwise apparently normal. Until now, no compa- ever, they did so only after a long latency, and the tumors rable human cell lines have been available for use in testing were clonal in origin, suggesting that additional changes at the applicability of the results of such studies to human the cellular level were required to cause tumor formation. fibroblasts. The few infinite life-span, nontumorigenic human Clues to the nature of the steps or events that may comple- fibroblast cell lines that exist have been generated by using ment mutational activation ofras genes in tumorigenesis have SV40 (22) or repeated exposure to carcinogen (23, 24) and come primarily from in vitro experiments utilizing rodent consist of cells that are morphologically transformed and fibroblasts in culture (for a review, see ref. 1). For example, exhibit other transformed characteristics. Recently, a human when primary or early-passage rodent fibroblasts with a finite fibroblast cell strain with an infinite life-span, designated life-span in culture were transfected with an HRAS onco- MSU-1.1, was generated in this laboratory after transfection gene, no transformation was seen, but when cells that had of foreskin-derived, normal diploid human fibroblasts with a acquired an infinite life-span were used, fully transformed plasmid carrying a v-myc oncogene. These cells, which have cells were obtained (4). Similarly, when primary or early- Abbreviation: SV40, simian virus 40. The publication costs of this article were defrayed in part by page charge *Present address: Fred Hutchinson Cancer Research Center, M616, payment. This article must therefore be hereby marked "advertisement" 1124 Columbia Street, Seattle, WA 98104. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 187 Downloaded by guest on October 1, 2021 188 Cell Biology: Hurlin et al. Proc. Natl. Acad. Sci. USA 86 (1989) a normal morphology and have exhibited the same near- were labeled with [35S]methionine (New England Nuclear) at diploid karyotype for more than 200 population doublings 250 uCi (1 uCi = 37 kBq) per ml for 18 hr in McM medium postcrisis, do not form foci or produce colonies in soft agar lacking methionine but supplemented with 1% fetal bovine and are nontumorigenic. (A full description of the generation serum. Cell lysis, immunoprecipitation with the ras (any of this cell strain and its properties will be published else- species) p21-specific antibody Y13-259 (33), NaDodSO4/ where.) Using these cells, we have determined that trans- PAGE, and fluorography were performed as described (10). fection of the T24 HRAS oncogene in the pHO6T1 plasmid For analysis of v-myc-encoded p110, cells were labeled as into human cells with an infinite life-span causes them to above, but for only 1.5 hr. Cells were washed in ice-cold exhibit not only the characteristics previously seen with finite phosphate-buffered saline, lysed in lysis buffer (10 mM life-span cells (10) but also the ability to form rapidly growing, Tris HCl, pH 8.2/150 mM NaCl/1% sodium deoxycholate/ malignant fibrosarcomas in athymic mice. 1% Triton X-100/0.1% NaDodSO4/5 mM EDTA/2 mM phenylmethanosulfonyl fluoride), and clarified by centrifu- METHODS AND MATERIALS gation at 10,000 X g for 20 min. Supernatants containing 7.5 Cells and Culture Conditions. Cell line LG1, from which the x 107 cpm were immunoprecipitated with a sheep antibody MSU-1.1 cell strain arose, was initiated from foreskin mate- (Cambridge Research Biochemicals, Valley Stream, NY; rial of a clinically normal newborn male as described (25). antibody OA-11-801) that reacts broadly with the proteins of The MSU-1.1 cell line, described above, is resistant to G418 the myc family. Protein A-Sepharose (Pharmacia) coated (GIBCO) because the plasmid used to transfect the LG1 cells with goat anti-sheep IgG (Cooper Biomedicals, Malvern, PA) carried the aminoglycoside phosphotransferase gene. The was added, and the mixture was shaken for 30 min at 4°C. The infinite life-span human fibroblast cell lines KMST-6 and Sepharose fraction was washed twice with lysis buffer, once SUSM-1, generated after repeated carcinogen treatment (23, with 10 mM Tris HCI, pH 7.5/1 M MgCl2, and again with lysis 24), were obtained from M. Namba. The SV40-transformed buffer. NaDodSO4/PAGE sample buffer containing 8 M urea infinite-life-span cell line GM0637B was purchased from the was added, and the samples were heated for 5 min at 95°C and National Institute of General Medical Sciences (Human centrifuged. Aliquots of the supernatant, along with pre- Genetic Mutant Cell Repository, Camden, NJ). The human stained molecular weight markers (Bethesda Research Lab- bladder carcinoma cell line T24 was purchased from the oratories) were electrophoresed (34) in NaDodSO4/10% American Type Culture Collection, and the chicken hepa- polyacrylamide gels, and the gels were fixed, treated with toma, MC29 virus-producer cell line LSCC-DU72, was enhancer, dried, and exposed to x-ray film as described.
Recommended publications
  • The Interactions of DNA Repair, Telomere Homeostasis, and P53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction
    cancers Review The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction Pavel Vodicka 1,2,3, Ladislav Andera 4,5, Alena Opattova 1,2,3,† and Ludmila Vodickova 1,2,3,*,† 1 Institute of Experimental Medicine, AS CR, 142 20 Prague, Czech Republic; [email protected] (P.V.); [email protected] (A.O.) 2 First Medical Faculty, Charles University, 121 08 Prague, Czech Republic 3 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic 4 Institute of Biotechnology, AS CR, 252 50 Vestec, Czech Republic; [email protected] 5 Institute of Molecular Genetics, AS CR, 142 20 Prague, Czech Republic * Correspondence: [email protected] † These authors contribured eaqually to this paper. Simple Summary: p53 is a nuclear transcription factor with a pro-apoptotic function. Somatic mutations in this gene represent one of the most critical events in human carcinogenesis. The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and alteration of telomere homeostasis constitute the hallmarks of malignant diseases. The main aim of our review was to accentuate a complex comprehension of the interactions between fundamental players in carcinogenesis of solid malignancies such as DNA damage response, telomere homeostasis and TP53. Abstract: The disruption of genomic integrity due to the accumulation of various kinds of DNA Citation: Vodicka, P.; Andera, L.; Opattova, A.; Vodickova, L. The damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malig- Interactions of DNA Repair, Telomere nant diseases.
    [Show full text]
  • Cadmium Induced Cell Apoptosis, DNA Damage, De
    Int. J. Med. Sci. 2013, Vol. 10 1485 Ivyspring International Publisher International Journal of Medical Sciences 2013; 10(11):1485-1496. doi: 10.7150/ijms.6308 Research Paper Cadmium Induced Cell Apoptosis, DNA Damage, De- creased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells Zhiheng Zhou1*, Caixia Wang2*, Haibai Liu1, Qinhai Huang1, Min Wang1 , Yixiong Lei1 1. School of public health, Guangzhou Medical University, Guangzhou 510182, People’s Republic of China 2. Department of internal medicine of Guangzhou First People’s Hospital affiliated to Guangzhou Medical University, Guangzhou 510180, People’s Republic of China * These authors contributed equally to this work. Corresponding author: Yixiong Lei, School of public health, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People’s Republic of China. Fax: +86-20-81340196. E-mail: [email protected] © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.03.23; Accepted: 2013.08.12; Published: 2013.08.30 Abstract Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mech- anisms of DNA damage in cadmium-induced malignant transformation of human bronchial epi- thelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells.
    [Show full text]
  • Herpes Simplex Virus Type 2: Bystander Or Active Player in Cervical Carcinogenesis?
    Journal of Gynecology and Women’s Health ISSN 2474-7602 Mini Review J Gynecol Women’s Health Volume 12 Issue 2 - October 2018 Copyright © All rights are reserved by Jude Ogechukwu Okoye DOI: 10.19080/JGWH.2018.12.555832 Herpes Simplex Virus Type 2: Bystander or Active Player in Cervical Carcinogenesis? Jude Ogechukwu Okoye* Department of Medical Laboratory Science, Babcock University, Nigeria Submission: September 19, 2018 ; Published: October 05, 2018 *Corresponding author: Jude Ogechukwu Okoye, Department of Medical Laboratory Science, Babcock University, Nigeria, Tel: ; Email: Abstract More emphasis have been placed on producing vaccines that prevent host cell entry by Human Papillomavirus (HPV) while less attention andhas beenits potential given to to Herpes up-modulate Simplex both virus HPV type regulatory 2 (HSV-2) andwhich oncogenic potentially gene promotes and downregulate acquisition hostand co-habitationtumour suppressor of human suggest immunodeficiency that it is not a virus (HIV), HPV and Epstein-Barr virus (EBV). The tendency for HSV-2 to induce ulcerations and chronic inflammation following reactivation, to reduce cervical cancer related mortality. bystander in cervical carcinogenesis. Thus, efforts geared towards finding HSV-2 effective microbicide and vaccine should be intensified so as Keywords: Herpes Simplex virus type 2; Human papillomavirus; Epstein-Barr virus; Cervical cancer Abbreviations: HPV: Human Papillomavirus; HIV: Human Immune virus; SSC: Squamous Cell Carcinoma; LMP1: Latent Membrane Protein 1; EBV: Epstein-Barr virus; CIN: Cervical Intraepithelial Neoplasia Introduction Cervical cancer is the second most common type of cancer in a woman’s lifetime and may also facilitate EBV infection, a (9.8%) affecting women worldwide [1-3].
    [Show full text]
  • The RNA Helicase a in Malignant Transformation
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 19 The RNA helicase A in malignant transformation Marco Fidaleo1,2, Elisa De Paola1,2 and Maria Paola Paronetto1,2 1 Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy 2 Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy Correspondence to: Maria Paola Paronetto, email: [email protected] Keywords: RHA helicase, genomic stability, cancer Received: October 02, 2015 Accepted: January 29, 2016 Published: February 14, 2016 ABSTRACT The RNA helicase A (RHA) is involved in several steps of RNA metabolism, such as RNA processing, cellular transit of viral molecules, ribosome assembly, regulation of transcription and translation of specific mRNAs. RHA is a multifunctional protein whose roles depend on the specific interaction with different molecular partners, which have been extensively characterized in physiological situations. More recently, the functional implication of RHA in human cancer has emerged. Interestingly, RHA was shown to cooperate with both tumor suppressors and oncoproteins in different tumours, indicating that its specific role in cancer is strongly influenced by the cellular context. For instance, silencing of RHA and/or disruption of its interaction with the oncoprotein EWS-FLI1 rendered Ewing sarcoma cells more sensitive to genotoxic stresses and affected tumor growth and maintenance, suggesting possible therapeutic implications. Herein, we review the recent advances in the cellular functions of RHA and discuss its implication in oncogenesis, providing a perspective for future studies and potential translational opportunities in human cancer. INTRODUCTION females, which contain two X chromosomes [8]. The C. elegans RHA-1 displays about 60% of similarity with both RNA helicase A (RHA) is a DNA/RNA helicase human RHA and Drosophila MLE and is involved in gene involved in all the essential steps of RNA metabolism, silencing.
    [Show full text]
  • Origin of Genome Instability and Determinants of Mutational Landscape in Cancer Cells
    G C A T T A C G G C A T genes Review Origin of Genome Instability and Determinants of Mutational Landscape in Cancer Cells Sonam Mehrotra * and Indraneel Mittra Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; [email protected] * Correspondence: [email protected]; Tel.: +91-22-27405143 Received: 15 August 2020; Accepted: 18 September 2020; Published: 21 September 2020 Abstract: Genome instability is a crucial and early event associated with an increased predisposition to tumor formation. In the absence of any exogenous agent, a single human cell is subjected to about 70,000 DNA lesions each day. It has now been shown that physiological cellular processes including DNA transactions during DNA replication and transcription contribute to DNA damage and induce DNA damage responses in the cell. These processes are also influenced by the three dimensional-chromatin architecture and epigenetic regulation which are altered during the malignant transformation of cells. In this review, we have discussed recent insights about how replication stress, oncogene activation, chromatin dynamics, and the illegitimate recombination of cell-free chromatin particles deregulate cellular processes in cancer cells and contribute to their evolution. The characterization of such endogenous sources of genome instability in cancer cells can be exploited for the development of new biomarkers and more effective therapies for cancer treatment. Keywords: genome instability; replication stress; replication-transcription conflict; cell free chromatin; cancer 1. Introduction Genome instability is a characteristic feature observed in most human cancers. The accumulation of genetic alterations ranging from single nucleotide mutations to chromosome rearrangements can predispose cells towards malignancy.
    [Show full text]
  • Hyper Telomere Recombination Accelerates Replicative Senescence and May Promote Premature Aging
    Hyper telomere recombination accelerates replicative senescence and may promote premature aging R. Tanner Hagelstroma,b, Krastan B. Blagoevc,d, Laura J. Niedernhofere, Edwin H. Goodwinf, and Susan M. Baileya,1 aDepartment of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618; bPharmaceutical Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004; cNational Science Foundation, Arlington, VA 22230; dDepartment of Physics Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, United Kingdom; eDepartment of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine and Cancer Institute, Pittsburgh, PA 15261; and fKromaTiD Inc., Fort Collins, CO 80524 Edited* by José N. Onuchic, University of California San Diego, La Jolla, CA, and approved August 3, 2010 (received for review May 7, 2010) Werner syndrome and Bloom syndrome result from defects in the cell-cycle arrest known as senescence (12). Most human tissues lack RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and sufficient telomerase activity to maintain telomere length through- display premature aging phenotypes. Similarly, XFE progeroid out life, limiting cell division potential. The majority of cancers syndrome results from defects in the ERCC1-XPF DNA repair endo- circumvent this tumor-suppressor mechanism by reactivating telo- nuclease. To gain insight into the origin of cellular senescence and merase (13), thus removing telomere shortening as a barrier to human aging, we analyzed the dependence of sister chromatid continuous proliferation. In some situations, a recombination- exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telo- based mechanism known as “alternative lengthening of telomeres” meric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, (ALT) maintains telomere length in the absence of telomerase (14).
    [Show full text]
  • Cancer Patients Have a Higher Risk Regarding COVID-19–And Vice Versa?
    pharmaceuticals Opinion Cancer Patients Have a Higher Risk Regarding COVID-19–and Vice Versa? Franz Geisslinger, Angelika M. Vollmar and Karin Bartel * Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; [email protected] (F.G.); [email protected] (A.M.V.) * Correspondence: [email protected] Received: 29 May 2020; Accepted: 3 July 2020; Published: 6 July 2020 Abstract: The world is currently suffering from a pandemic which has claimed the lives of over 230,000 people to date. The responsible virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causes the coronavirus disease 2019 (COVID-19), which is mainly characterized by fever, cough and shortness of breath. In severe cases, the disease can lead to respiratory distress syndrome and septic shock, which are mostly fatal for the patient. The severity of disease progression was hypothesized to be related to an overshooting immune response and was correlated with age and comorbidities, including cancer. A lot of research has lately been focused on the pathogenesis and acute consequences of COVID-19. However, the possibility of long-term consequences caused by viral infections which has been shown for other viruses are not to be neglected. In this regard, this opinion discusses the interplay of SARS-CoV-2 infection and cancer with special focus on the inflammatory immune response and tissue damage caused by infection. We summarize the available literature on COVID-19 suggesting an increased risk for severe disease progression in cancer patients, and we discuss the possibility that SARS-CoV-2 could contribute to cancer development.
    [Show full text]
  • Genetics, Epigenetics and Cancer. Cancer Therapy
    Cancer Therapy & Oncology International Journal ISSN: 2473-554X Research Article Canc Therapy & Oncol Int J Volume 4 Issue 2 - April 2017 Copyright © All rights are reserved by Alain L. Fymat DOI: 10.19080/CTOIJ.2017.04.555634 Genetics, Epigenetics and Cancer Alain L. Fymat* International Institute of Medicine and Science, USA Submission: March 27, 2017; Published: April 07, 2017 *Correspondence Address: Alain L. Fymat, International Institute of Medicine and Science, USA, Tel: ; Email: Abstract With deeper understanding of cell biology and genetics, it now appears that cancer is less an organ disease and more a disease of the genes that regulate cell growth and differentiation are altered. Most cancers have multiple possible concurring causes, and it is not possiblemolecular to mechanisms prevent all such caused causes. by mutations However, ofonly specific a small genes. minority Cancer of cancersis fundamentally (5-10%) are a disease due to ofinherited tissue growth genetic regulation mutations failurewhereas when the vast majority (90-95%) are non-hereditary epigenetic mutations that are caused by various agents (environmental factors, physical factors, and hormones). Thus, although there are some genetic predispositions in a small fraction of cancers, the major fraction is due to a set of new genetic mutations (called “epigenetic” mutations). After a brief primer on cancer and its genetics, this article focuses on the epigenetics of cancer. Epigenetics is the study of cellular and physiological traits inherited by daughter cells, but not caused by changes in the DNA sequence. imprintingImportant examplesand trans-generational of epigenetic mechanisms inheritance. (DNAEpigenetic methylation, carcinogens histone and modification, cancer treatment chromatin are also remodeling) treated.
    [Show full text]
  • Chronic UVA Irradiation of Human Hacat Keratinocytes Induces Malignant Transformation Associated with Acquired Apoptotic Resistance
    Oncogene (2006) 25, 3680–3688 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Chronic UVA irradiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance Y-Y He1,JPi2, J-L Huang1, BA Diwan3, MP Waalkes2 and CF Chignell1 1Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; 2Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA and 3Basic Research Program, Science Applications International Corporation-Frederick, National Cancer Institute at Frederick, Frederick, MA, USA Ultraviolet A (UVA, 315–400 nm), constituting about Keywords: UVA; transformation; carcinogenesis; AKT; 95% of ultraviolet irradiation in natural sunlight, keratinocyte; PTEN represents a major environmental challenge to the skin and is clearly associated with human skin cancer. It has proven difficult to showdirect actions of UVA as a carcinogen in human cells. Here, we demonstrate that chronic UVA exposures at environmentally relevant doses Introduction in vitro can induce malignant transformation of human keratinocytes associated with acquired apoptotic resis- Ultraviolet (UV) radiation in sunlight is clearly an tance. As evidence of carcinogenic transformation, UVA- important environmental factor in human skin carcino- long-treated (24 J/cm2 once/week for 18 weeks) HaCaT genesis. Each year approximately one million new cases (ULTH) cells showed increased secretion of matrix of skin cancer are diagnosed in the United States alone, metalloproteinase (MMP-9), overexpression of keratin making it the most common type of cancer in this 13, altered morphology and anchorage-independent country.
    [Show full text]
  • Radiotherapy Modulates Expression of EGFR, ERCC1 and P53 in Cervical Cancer
    Brazilian Journal of Medical and Biological Research (2018) 51(1): e6822, http://dx.doi.org/10.1590/1414-431X20176822 ISSN 1414-431X Research Article 1/9 Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer V.H. de Almeida1,2, A.C. de Melo1, D.D. Meira3, A.C. Pires4, A. Nogueira-Rodrigues1, H.K. Pimenta-Inada1, F.G. Alves1, G. Moralez1, L.S. Thiago1, C.G. Ferreira1 and C. Sternberg1 1Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil 2Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 3Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brasil 4Fonte Medicina Diagnóstica, Niterói, RJ, Brasil Abstract Cervical cancer is a public health problem and the molecular mechanisms underlying radioresistance are still poorly understood. Here, we evaluated the modulation of key molecules involved in cell proliferation, cell cycle and DNA repair in cervical cancer cell lines (CASKI and C33A) and in malignant tissues biopsied from 10 patients before and after radiotherapy. The expres- sion patterns of epidermal growth factor receptor (EGFR), excision repair cross-complementation group 1 (ERCC1) and p53 were evaluated in cancer cell lines by quantitative PCR and western blotting, and in human malignant tissues by immuno- histochemistry. The mutation status of TP53 gene was evaluated by direct sequencing. Among cell lines, absent or weak modulations of EGFR, ERCC1 and p53 were observed after exposure to 1.8 Gy. Conversely, increased expressions of p53 (5/10 patients; P=0.0239), ERCC1 (5/10 patients; P=0.0294) and EGFR (4/10 patients; P=0.1773) were observed in malignant tissues after radiotherapy with the same radiation dose.
    [Show full text]
  • Malignant Transformation in Mature Cystic
    ANTICANCER RESEARCH 38 : 3669-3675 (2018) doi:10.21873/anticanres.12644 Malignant Transformation in Mature Cystic Teratomas of the Ovary: Case Reports and Review of the Literature ANGIOLO GADDUCCI 1, SABINA PISTOLESI 2, MARIA ELENA GUERRIERI 1, STEFANIA COSIO 1, FRANCESCO GIUSEPPE CARBONE 2 and ANTONIO GIUSEPPE NACCARATO 2 1Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy; 2Department of New Technologies and Translational Research, Division of Pathology, University of Pisa, Pisa, Italy Abstract. Malignant transformation occurs in 1.5-2% of carcinoma (4-8). Other less frequent malignancies include mature cystic teratomas (MCT)s of the ovary and usually mucinous carcinoma (8-10), adenocarcinoma arising from consists of squamous cell carcinoma, whereas other the respiratory ciliated epithelium (11), melanoma (9), malignancies are less common. Diagnosis and treatment carcinoid (8), thyroid carcinoma (8, 10, 12-15), represent a challenge for gynecologic oncologists. The oligodendroglioma (10) and sarcoma (10). preoperative detection is very difficult and the diagnostic The diameter of a squamous cell carcinoma arising in an accuracy of imaging examinations is uncertain. The tumor ovarian MCT ranges from 9.7-15.6 cm (1, 4-8, 16, 17) and is usually detected post-operatively based on histopathologic median age of patients is approximately 55 years (1, 16), findings. This paper reviewed 206 consecutive patients who whereas the size of thyroid carcinoma in an MCT ranges underwent surgery for a histologically-proven MCT of the from 5 to 20 cm and the median age of patients is about 42- ovary between 2010 and 2017.
    [Show full text]
  • Designer Nucleases to Treat Malignant Cancers Driven by Viral Oncogenes Tristan A
    Scott and Morris Virol J (2021) 18:18 https://doi.org/10.1186/s12985-021-01488-1 REVIEW Open Access Designer nucleases to treat malignant cancers driven by viral oncogenes Tristan A. Scott* and Kevin V. Morris Abstract Viral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a signifcant global health burden. Beyond simply causing cel- lular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that signifcantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and sub- stantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specifc small-molecule drug screens or the broad- acting toxic efects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efcacy in this role. Although many challenges remain for the clinical applica- tion of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specifc and permanent inactivation by nucleases, argues for their develop- ment as next-generation treatments for this aggressive group of cancers.
    [Show full text]