Aspects Moléculaires Des Hélicases De La Famille De Recq Hua Ren

Total Page:16

File Type:pdf, Size:1020Kb

Aspects Moléculaires Des Hélicases De La Famille De Recq Hua Ren Aspects moléculaires des hélicases de la famille de RecQ Hua Ren To cite this version: Hua Ren. Aspects moléculaires des hélicases de la famille de RecQ. Sciences du Vivant [q-bio]. École normale supérieure de Cachan - ENS Cachan, 2009. Français. tel-00448084 HAL Id: tel-00448084 https://tel.archives-ouvertes.fr/tel-00448084 Submitted on 18 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Présentée par Madame Hua REN pour obtenir le grade de DOCTEUR DE L’ECOLE NORMALE SUPERIEURE DE CACHAN Domaine : SCIENCES DE LA VIE ET DE LA SANTE Sujet de la thèse: Aspects moléculaires des hélicases de la famille de RecQ Thèse présentée et soutenue à ECNU Chine le 28 / 09/ 2009 devant le jury composé de : M. Marc BOUDVILLAIN Président/Rapporteur M. Jie-min WENG Rapporteur M. Duan MA Examinateur Mme Min QIAN Co-Directrice de thèse M. Xu-guang XI Co-Directeur de thèse Nom du Laboratoire: LBPA ENS CACHAN/CNRS/UMR 8113 61, avenue du Président Wilson, 94235 CACHAN CEDEX (France) ACKNOWLEDGEMENT This thesis would not have been done possibly without the support of many people. Foremost, I would like to express my gratitude to my two co-supervisors, Prof. Min QIAN and Prof. Xu-guang XI. Thanks to Xu-guang XI for allowing me to join his team, sharing with me a lot of his expertise and research insight. He is extremely helpful and offering me invaluable assistance, support and guidance. I would like to thank Prof. Min QIAN for her expertise, kindness, patience and most of all, for her support. My great appreciation also goes to my thesis committee members: Prof. Marc BOUDVILLAIN, Prof. Jie-min WENG, Prof. Duan MA, Prof. Jia LI and Prof. Xiang-huo HE. Without their knowledgeable and considerable assistances, this thesis would not have been successful. I am greatly indebted to many teachers in the Ecole normale supérieure de Cachan (ENS Cachan), East China Normal University and Institute Curie of Orsay. Especially thanks to Prof. Christian AUCLAIR, the director of the laboratories and institutes of ENS Cachan; Prof. Jean-francois MOUSCADET, the director of Laboratory and Applied Genetic Pharmacology Laboratory (LBPA); Prof. Giuseppe Baldacci, the president of Institute Curie of Orsay; Mesdames Bogdana NEUVILLE and Yu-hua QIAN; Mr. Hai-sheng LI. And I am deeply grateful to the French government, the Chinese Scholarship Council and the Chinese Embassy in France for providing me the financial support during my PhD. Studies. I am tempted to individually thank all of the members in the same team, Mesdames Rong-bing GUO, Min ZHOU, Françoise CHAMINADE, Mounira AMOR-GUERET, Rosine Onclercq-Delic, Emmanuelle Delagoutte; Messieurs Pascal Rigolet, Philippe FOSSE, Nicolas BAZEILLE, Jie-lin LIU, Bo ZHANG, Da-peng ZHANG. It is never been overstated how much thanks I owes to all my friends who studied with me together in France. Thank you for your company which made my lives there enjoyable and beyond my expectation. Last but not least, I want to show how grateful I am with my family: my husband Wei NIU who has been standing beside me and encouraging me as always; my mother Wan- ying ZHANG whose love is boundless and my father Hui-bin REN who is my role model. They have always been supporting and stimulating me to do my best in all matters of life. To them I heartily dedicate this thesis. 2 TABLE OF CONTENTS SUMMARY IN CHINESE (中文摘要)········································································································· 7 SUMMARY IN FRENCH (RESUME) ············································································································ 11 SUMMARY ························································································································································· 13 ABREVIATIONS ··············································································································································· 15 CHAPTER 1 GENERAL INTRODUCTION ························································································· 18 1. DIFFERENT HELICASE FAMILIES ········································································································ 20 SUPERFAMILY 1 ·········································································································································· 21 SUPERFAMILY 2 ·········································································································································· 21 SUPERFAMILY 3 ·········································································································································· 22 SUPERFAMILY 4 ·········································································································································· 24 OTHER SUPERFAMILIES ······························································································································ 26 2. HELICASE-GENERAL PROPERTIES OF HELICASES AND MODE OF ACTION ······················· 27 2.1 BIOCHEMICAL PROPERTIES OF HELICASES ····························································································· 27 2.1.1 NTP binding and hydrolysis of NTP ······························································································· 27 2.1.2 Nucleic Acids binding ····················································································································· 27 2.1.3 Unwinding Activity and Mode of Action ························································································· 28 2.1.4 Annealing Activity ·························································································································· 31 2.2 THE MULTIPLE FUNCTIONS OF HELICASES ····························································································· 32 Helicase and DNA replication ················································································································· 32 Helicase and DNA repair ························································································································ 33 Helicase and RNA metabolism ················································································································ 33 3. THE RECQ FAMILY OF DNA HELICASES ··························································································· 34 3.1 GENERAL FEATURES AND STRUCTURAL ORGANISATION ······································································· 34 3. 2 THE ESCHERICHIA COLI RECQ ·············································································································· 39 3.2.1 Genetic Background ······················································································································· 39 3.2.2 Biochemical and structural Properties of E.coli RecQ ·································································· 39 3.2.3 Role in genomic stability ················································································································ 40 3.2.4 RecQ helicases from other microorganisms ··················································································· 43 3.3 YEAST RECQ FAMILY HELICASES ·········································································································· 43 3.3.1 Saccharomyces cerevisiae Sgs1 ······································································································ 43 3.3.1.1 Sgs1 Cellular Phenotype ············································································································· 43 3.3.1.2 Biochemical Properties of Sgs1 ······························································································· 44 3.3.1.3 Interaction Partners and Models for genome instability ························································· 44 3.3.2 Schizosaccharomyces pombe Rqh1 ································································································ 46 3.3.2.1 Biochemical properites ·························································································································· 46 3.3.2.2 Function in telomere metabolism ··········································································································· 46 3.4 RECQ HELICASES IN HUMAN ················································································································· 47 3.4.1 Human RECQ1 ······························································································································· 47 Human RECQl and genome stability ················································································································· 47 Biochemical properties ······································································································································
Recommended publications
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • AN INVESTIGATION of the ROLE of PAK6 in TUMORIGENESIS By
    AN INVESTIGATION OF THE ROLE OF PAK6 IN TUMORIGENESIS by JoAnn Roberts A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Medicine In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida August 2012 ACKNOWLEDGMENTS This material is based upon work supported by the National Science Foundation under Grant No. DGE: 0638662. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. I would like to thank and acknowledge my thesis advisor, Dr. Michael Lu, for his support and guidance throughout the writing of this thesis and design of experiments in this manuscript. I would also like to thank my colleagues for assistance in various trouble-shooting circumstances. Last, but certainly not least, I would like to thank my family and friends for their support in the pursuit of my graduate studies. iii ABSTRACT Author: JoAnn Roberts Title: An Investigation of the Role of PAK6 in Tumorigenesis Institution: Florida Atlantic University Thesis Advisor: Dr. Michael Lu Degree: Master of Science Year: 2012 The function and role of PAK6, a serine/threonine kinase, in cancer progression has not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Based on the membrane localization of PAK6 in prostate and breast cancer cells, we speculated that PAK6 plays a role in cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation.
    [Show full text]
  • Recq Helicase Translocates Along Single-Stranded DNA with a Moderate Processivity and Tight Mechanochemical Coupling
    RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling Kata Sarlós, Máté Gyimesi, and Mihály Kovács1 Department of Biochemistry, Eötvös Loránd University - Hungarian Academy of Sciences, “Momentum” Motor Enzymology Research Group, Eötvös Loránd University, H-1117, Budapest, Hungary Edited* by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved May 8, 2012 (received for review September 2, 2011) Maintenance of genome integrity is the major biological role of characterized by diffusion along the DNA strand in alternating RecQ-family helicases via their participation in homologous re- weak and strong binding states, was used to describe the trans- combination (HR)-mediated DNA repair processes. RecQ helicases location of hepatitis C virus NS3 helicase (19). Because of the exert their functions by using the free energy of ATP hydrolysis low coupling between the enzymatic (ATPase) and mechanical for mechanical movement along DNA tracks (translocation). In (translocation) cycles, ratchet mechanisms usually lead to the addition to the importance of translocation per se in recombina- consumption of more than one ATP molecule per nucleotide tion processes, knowledge of its mechanism is necessary for the traveled. In contrast to the above enzymes, although the biological understanding of more complex translocation-based activities, in- functions of E. coli RecQ are well described (20–23), mechanistic cluding nucleoprotein displacement, strand separation (unwind- knowledge of the underlying molecular processes is scarce. ing), and branch migration. Here, we report the key properties of DNA activates the ATPase activity of RecQ, and the ATP the ssDNA translocation mechanism of Escherichia coli RecQ heli- hydrolysis cycle is coupled to DNA unwinding (22, 24).
    [Show full text]
  • A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the Dntpase SAMHD1
    A High-Throughput Enzyme-Coupled Activity Assay to Probe Small Molecule Interaction with the dNTPase SAMHD1 Miriam Yagüe-Capilla1, Sean G. Rudd1 1 Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet Corresponding Author Abstract Sean G. Rudd [email protected] Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a pivotal regulator of intracellular deoxynucleoside triphosphate (dNTP) pools, as this Citation enzyme can hydrolyze dNTPs into their corresponding nucleosides and inorganic Yagüe-Capilla, M., Rudd, S.G. A triphosphates. Due to its critical role in nucleotide metabolism, its association to High-Throughput Enzyme-Coupled Activity Assay to Probe Small several pathologies, and its role in therapy resistance, intense research is currently Molecule Interaction with the dNTPase being carried out for a better understanding of both the regulation and cellular SAMHD1. J. Vis. Exp. (170), e62503, doi:10.3791/62503 (2021). function of this enzyme. For this reason, development of simple and inexpensive high- throughput amenable methods to probe small molecule interaction with SAMHD1, Date Published such as allosteric regulators, substrates, or inhibitors, is vital. To this purpose, April 16, 2021 the enzyme-coupled malachite green assay is a simple and robust colorimetric assay that can be deployed in a 384-microwell plate format allowing the indirect DOI measurement of SAMHD1 activity. As SAMHD1 releases the triphosphate group from 10.3791/62503 nucleotide substrates, we can couple a pyrophosphatase activity to this reaction, URL thereby producing inorganic phosphate, which can be quantified by the malachite jove.com/video/62503 green reagent through the formation of a phosphomolybdate malachite green complex.
    [Show full text]
  • Crystal Structure of the Bloom's Syndrome Helicase Indicates a Role
    Nucleic Acids Research Advance Access published April 21, 2015 Nucleic Acids Research, 2015 1 doi: 10.1093/nar/gkv373 Crystal structure of the Bloom’s syndrome helicase indicates a role for the HRDC domain in conformational changes Joseph A. Newman1,†, Pavel Savitsky1,†, Charles K. Allerston1, Anna H. Bizard2, Ozg¨ un¨ Ozer¨ 2, Kata Sarlos´ 2, Ying Liu2, Els Pardon3,4, Jan Steyaert3,4, Ian D. Hickson2 and Opher Gileadi1,* 1Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK, 2Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Building 18.1, Blegdamsvej 3B, 2200 Copenhagen N, Denmark, 3Structural Biology Downloaded from Brussels, Vrije Universiteit Brussel, Pleinlaan 2 , 1050 Brussels, Belgium and 4Structural Biology Research Center, VIB, Brussel, Pleinlaan 2, 1050 Brussels, Belgium Received January 13, 2015; Revised March 27, 2015; Accepted April 03, 2015 http://nar.oxfordjournals.org/ ABSTRACT some instability, including chromatid gaps and breaks (4), various chromosome structural rearrangements (5)andan Bloom’s syndrome helicase (BLM) is a member of the increase in the number of sister chromatid exchange (SCE) RecQ family of DNA helicases, which play key roles in events, the latter serving as a distinguishing feature for the the maintenance of genome integrity in all organism clinical diagnosis of BS (6). groups. We describe crystal structures of the BLM Bloom’s syndrome helicase (BLM), like all RecQ-family helicase domain in complex with DNA and with an an- helicases, acts as a 3 to 5 helicase (7) on a wide variety tibody fragment, as well as SAXS and domain asso- of DNA substrates including forked duplexes, G quadru- at Chadwick & RAL Libraries on April 23, 2015 ciation studies in solution.
    [Show full text]
  • Neurofibromin Controls Macropinocytosis and Phagocytosis
    RESEARCH ARTICLE elifesciences.org Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium Gareth Bloomfield1*, David Traynor1, Sophia P Sander1,2, Douwe M Veltman1, Justin A Pachebat3,4, Robert R Kay1 1MRC Laboratory of Molecular Biology, Cambridge, United Kingdom; 2Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom; 3Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 4Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom Abstract Cells use phagocytosis and macropinocytosis to internalise bulk material, which in phagotrophic organisms supplies the nutrients necessary for growth. Wildtype Dictyostelium amoebae feed on bacteria, but for decades laboratory work has relied on axenic mutants that can also grow on liquid media. We used forward genetics to identify the causative gene underlying this phenotype. This gene encodes the RasGAP Neurofibromin (NF1). Loss of NF1 enables axenic growth by increasing fluid uptake. Mutants form outsized macropinosomes which are promoted by greater Ras and PI3K activity at sites of endocytosis. Relatedly, NF1 mutants can ingest larger-than-normal particles using phagocytosis. An NF1 reporter is recruited to nascent macropinosomes, suggesting that NF1 limits their size by locally inhibiting Ras signalling. Our results link NF1 with macropinocytosis and phagocytosis for the first time, and we propose that NF1 evolved in early phagotrophs to spatially modulate Ras activity, thereby constraining and shaping their feeding structures. DOI: 10.7554/eLife.04940.001 *For correspondence: garethb@ mrc-lmb.cam.ac.uk Introduction Phagotrophic cells feed by performing large-scale endocytosis. A wide range of unicellular Competing interests: The eukaryotes grow in this way, suggesting that it is extremely old in evolutionary terms (Stanier, authors declare that no 1970; Cavalier-Smith, 2002; Yutin et al., 2009).
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Molecular Switch-Like Regulation Enables Global Subunit Coordination in a Viral Ring Atpase
    Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase Sara Tafoyaa,b,c, Shixin Liud, Juan P. Castilloa,b, Rockney Atze,f, Marc C. Moraisg, Shelley Grimese,f,1, Paul J. Jardinee,f, and Carlos Bustamantea,b,c,h,i,j,k,l,2 aJason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, CA 94720; bHoward Hughes Medical Institute, University of California, Berkeley, CA 94720; cBiophysics Graduate Group, University of California, Berkeley, CA 94720; dLaboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065; eInstitute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455; fDepartment of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455; gSealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555; hDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720; iDepartment of Physics, University of California, Berkeley, CA 94720; jDepartment of Chemistry, University of California, Berkeley, CA 94720; kCalifornia Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720; and lKavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720 Edited by Ken A. Dill, Stony Brook University, Stony Brook, NY, and approved June 15, 2018 (received for review February 20, 2018) Subunits in multimeric ring-shaped motors must coordinate their the φ29 ring ATPase can be thought of as five molecular switches activities to ensure correct and efficient performance of their arranged in a closed configuration. Moreover, the enzymatic activity mechanical tasks. Here, we study WT and arginine finger mutants of one of the subunits is up-regulated compared with the other four, of the pentameric bacteriophage φ29 DNA packaging motor.
    [Show full text]
  • Structure of the Dengue Virus Helicase/Nucleoside Triphosphatase Catalytic Domain
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain Xu, Ting 2007 Xu, T. (2007). Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/6575 https://doi.org/10.32657/10356/6575 Nanyang Technological University Downloaded on 07 Oct 2021 10:12:33 SGT ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library STRUCTURE OF THE DENGUE VIRUS HELICASE/NUCLEOSIDE TRIPHOSPHATASE CATALYTIC DOMAIN Xu Ting SCHOOL OF BIOLOGICAL SCIENCES NANYANG TECHNOLOGICAL UNIVERSITY 2007 ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library Acknowledgements ACKNOWLEDGEMENTS First and foremost, I am deeply grateful to my supervisor, Dr. Julien Lescar, for giving me this great opportunity to learn crystallography; encouragement and support he has given me throughout my research and the preparation of this thesis. Next, I wish to express my sincere gratitude to Dr. Subhash G.Vasudevan, head of dengue unit of Novartis Institute of Tropical Diseases (NITD), for his initiation of the project of crystal structure determination of dengue NS3 helicase domain. I would also like to thank Daying Wen, Alex Chao, (NITD) for their sincere help in this research and special thanks to Dr. Aruna Sampath (NITD) for sharing the biochemical data which made our publication more powerful. I owe my sincere thanks to Dr. Max Nanao (European Synchrotron Radiation Facility) for his great help in data collection and valuable suggestions in structure determination.
    [Show full text]
  • The Molecular Coupling Between Substrate Recognition and ATP Turnover in A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.345918; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The molecular coupling between substrate recognition and ATP turnover in a AAA+ hexameric helicase loader Neha Puri1,2, Amy J. Fernandez1, Valerie L. O’Shea Murray1,3, Sarah McMillan4, James L. Keck4, James M. Berger1,* 1Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205 2Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434 3Saul Ewing Arnstein & Lehr, LLP, Centre Square West, 1500 Market Street, 38th Floor, Philadelphia, PA 19102 4Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706 *Corresponding author Email: [email protected] Keywords: DNA replication, AAA+ ATPase, Helicase, Meier-Gorlin Syndrome 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.21.345918; this version posted October 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In many bacteria and in eukaryotes, replication fork establishment requires the controlled loading of hexameric, ring-shaped helicases around DNA by AAA+ ATPases. How loading factors use ATP to control helicase deposition is poorly understood.
    [Show full text]
  • The GAP Arginine Finger Movement Into the Catalytic Site of Ras Increases the Activation Entropy
    The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy Carsten Ko¨ tting†, Angela Kallenbach†, Yan Suveyzdis†, Alfred Wittinghofer‡, and Klaus Gerwert†§ †Lehrstuhl fu¨r Biophysik, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany; and ‡Max-Planck-Institut fu¨r Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany Edited by Robert H. Austin, Princeton University, Princeton, NJ, and approved February 14, 2008 (received for review December 28, 2007) Members of the Ras superfamily of small G proteins play key roles the GAP-mediated catalysis as a prerequisite for a rational drug in signal transduction pathways, which they control by GTP hy- development (8). drolysis. They are regulated by GTPase activating proteins (GAPs). The key residue for GAP-mediated catalysis is the so-called Mutations that prevent hydrolysis cause severe diseases including ‘‘arginine finger’’ (9). In the x-ray structure of the Ras⅐GDP⅐ cancer. A highly conserved ‘‘arginine finger’’ of GAP is a key AlF3⅐RasGAP complex mimicking the transition state, it points residue. Here, we monitor the GTPase reaction of the Ras⅐RasGAP into the GTP binding site of Ras. It stabilizes the position of the complex at high temporal and spatial resolution by time-resolved catalytic Gln-61 and neutralizes negative charge on the phos- FTIR spectroscopy at 260 K. After triggering the reaction, we phates (10). The catalytic arginine finger is a highly conserved observe as the first step a movement of the switch-I region of Ras motive among several GAP proteins for small G proteins (11). from the nonsignaling ‘‘off’’ to the signaling ‘‘on’’ state with a rate The participation of an arginine in phosphoryl transfer as seen of3s؊1.
    [Show full text]