<< 1 jurnal IAFMI 03 Desember 2015

ISSN 2442 8515 jurnal IAFMI 03 Desember 2015 >> 2

Membangun knowledge database yang kedepannya diharapkan dapat menjadi referensi utama ilmu dan teknologi dibidang fasilitas produksi migas di Indonesia, serta referensi kondisi lokal untuk International Codes.

Mendorong para professional dan akademisi dibidang fasilitas produksi migas untuk menerbitkan karya dan pemikirannya sehingga kompetensi dan keahliannya terangkat ke permukaan dunia industri migas.

Menjalin jaringan keilmuan dan teknologi untuk mengembangkan industri nasional dibidang fasilitas produksi migas.

Mengangkat aktifitas sumberdaya Misi JURNAL IAFMI pendukung industri infrastruktur migas ke permukaan. NEXT EDITION << 3 jurnal IAFMI 03 Desember 2015 Tema

Pengajuan makalah: 1 Januari 2016 - 31 Maret 2016 melalui email ke: [email protected]

BERALIH KE ENERGI TERBARUKAN STRATEGI, PELUANG dan TANTANGAN

1. Isi makalah dibuat dengan kategori sebagai berikut: a. Ringkasan Thesis / Skripsi S1/S2/S3, min 500 kata, maks 1500 kata atau maksimum 5 halaman termasuk gambar. b. Paparan / Analisa / Review Teknologi/Metoda/Teori/Aturan yang diterapkan dalam sebuah proyek/program yang sudah atau sedang dilaksanakan di Indonesia, min 1000 kata, maks 2500 kata atau maksimum 8 halaman termasuk gambar c. Paparan / Analisa / Review atas teknologi/Metoda/Teori/Aturan baru yang belum diterapkan di Indonesia (mungkin sudah diterapkan di luar negeri), min 1000 kata, maks 2500 kata atau maksimum 8 halaman termasuk gambar 2. Persyaratan jumlah kata di atas dihitung dalam ukurun kertas A4 dengan margin standar dengan font Calibri ukuran 12 dan spasi exact 17pt. 3. Tema makalah adalah Fasilitas Produksi Migas, Fasilitas Produksi Migas, Beralih ke Energi Terbarukan - Strategi, Peluang dan Tantangan. 4. Makalah dapat dibuat sendiri atau secara berkelompok. 5. Makalah harus asli, bukan plagiat. Jika makalah pernah dipublikasikan dalam media (apapun), maka harus dicantumkan nama media tersebut beserta tanggal dan edisi pemuatan. 6. Aturan dasar penulisan karya ilmiah standar harus diterapkan. Referensi yang dikutip harus disebutkan dengan jelas. 7. Disertakan Pasfoto dan Ringkasan Biografi penulis dengan paparan minimal latar belakang akademis, pekerjaan dan keahlian, dibuat maksimum 100 kata 8. Makalah harus dibuat dalam format Word jurnal IAFMI 03 Desember 2015 >> 4

Dari Redaksi

Jurnal ke-3 IAFMI mengambil tema “Menuju ke Timur Indonesia membangun hingga ke laut dalam”, sejalan dengan tema besar Joint Convention 4 Asosiasi Profesional Industri Migas (HAGI, IAGI, IAFMI dan IAFMI) di Balikpapan 6-8 Oktober 2015. Kegiatan Eksplorasi dan Eksploitasi sumber daya alam migas di Indonesia dalam bentuk Kontrak Kerja Sama sudah berlangsung sejak tahun 1966, dan saat ini, sumber-sumber minyak dan gas bumi dengan tingkat kesulitan eksplorasi terendah praktis telah habis dieksploitasi. Akan tetapi potensi sumber daya minyak dan gas bumi Indonesia masih cukup besar untuk dikembangkan terutama di daerah-daerah terpencil (remote area), laut dalam, dan kawasan Indonesia Timur yang relative belum dieksplorasi secara intensif. Tiga Mega Proyek Migas di Indonesia saat ini merupakan pengembangan di wilayah laut dalam dan berlokasi di wilayah Indonesia Timur. Ketiga proyek itu adalah Indonesia Deepwater Development (IDD) dan Lapangan Jangkrik Blok Muara Bakau di Kutai Kalimantan Timur serta Lapangan Abadi Blok Masela di Laut Arafura. Masih banyak potensi gas yang berada di wilayah Indonesia Timur yang saat ini belum tersentuh dan menunggu untuk dieksplorasi lebih lanjut. Penemuan cadangan-cadangan baru di wilayah laut dalam Indonesia Timur memerlukan teknologi tepat guna untuk memproduksi cadangan tersebut dan mengalirkannya kepada ‘user’ atau ‘klien’ yang mayoritas masih terpusat di Indonesia bagian Barat/Tengah. Makalah-makalah pada edisi ke-3 ini di mengulas konsep-konsep pengembangan proyek migas di Indonesia Timur (FSRU, LNG), dari aspek teknis, project management dan komersial. Selain itu jurnal kali ini mencoba untuk lebih seimbang dalam menerbitkan makalah proyek dan operasi, dengan memuat makalah bertema predictive maintenance melalui penerapan sistem informasi pemeliharaan fasilitas operasi, dan integrity management untuk fasilitas lepas pantai yang sudah mature. Pada edisi ini Jurnal IAFMI juga memuat informasi seputar proyek-proyek Migas yang bersesuaian dengan tema fasilitas produksi laut dalam, dan liputan acara-acara IAFMI pada kwartal III dan IV tahun 2015. Tahun 2015 adalah tahun yang tidak mudah bagi Industri Migas dunia, oleh karena itu di penghujung tahun ini IAFMI menyelenggarakan CEO Talk dan Golf IAFMI yang akan membahas concerns yang dirasakan KKKS, Kontraktor dan Vendor Migas seputar peraturan perpajakan dan keuangan investasi Migas di Indonesia. Diharapkan hasil dari CEO Talk ini dapat menjadi masukan bagi Pemerintah dan menjadi insentif bagi para pelaku industri Migas untuk dapat terus menggerakan roda perekonomian Indonesia melalui investasi Migas.

Akhir kata, tetap semangat demi kemajuan Industri Migas Indonesia !

Salam Redaksi,

Desi A. Mahdi Pimpinan Redaksi << 5 jurnal IAFMI 03 Desember 2015

Kata Pengantar Ketua Umum IAFMI

Oktober 2015 menjadi momentum yang cukup berharga dan mengesankan bagi IAFMI karena dapat ikut serta menyelenggarakan event nasional JCB 2015 (www.jcb2015). Event ini merupakan joint convention IAFMI bersama tiga asosiasi migas dan tambang yang lebih senior HAGI, IAGI dan IATMI di Balikpapan, dan dihadiri oleh lebih dari 600 peserta. Tema JCB2015 adalah Empowering Marine Earth Resources, sedang IAFMI sendiri mengambil Tema Menuju Timur Membangun Hingga Laut Dalam, selaras dengan Tema sentral JCB2015. IAFMI mengirimkan 19 paper untuk dipresentasikan dalam event ini.

Tema IAFMI dalam JCB2015 ini menjadi Tema Jurnal IAFMI edisi ke 3 ini. Bukan sebuah kebetulan, tapi IAFMI bertekad untuk bersinergi dengan seluruh stakeholder migas untuk membangun laut dalam wilayah Indonesia timur. Selain menjadi tantangan, laut dalam Indonesia timur juga memberi peluang luas dalam semua aspek, ilmu, teknologi, pengembangan wilayah, dan tentu saja bisnis bagi pelaku industri migas. IAFMI sebagai asosiasi keahlian bertekad untuk ambil bagian sesuai bidangnya. IAFMI telah juga menunjukkan kontribusinya di Indonesia timur ini dengan memprakarsai program pelatihan dan sertifikasi welder lokal di Luwuk – Binggai, sebuah lokasi kerja Migas yang sedang dibangun dengan potensi yang cukup besar. IAFMI bekerjasama dengan , Rekayasa Industri, Gunanusa dan Titis Sampurna. Tidak saja mengorganisasikan program, tapi juga turut mendanai program ini sebagai hasil dari penggalangan dana melalui IAFMI Golf Charity yang diselenggarakan bulan Juni 2015 yang diikuti 140 peserta.

Kontribusi seluruh pelaku industri migas dalam membangun IAFMI melalui berbagai cara, seperti turut menopang terbitnya Jurnal IAFMI mulai Edisi pertama hingga Edisi ke-3 ini baik melalui tulisan, sponsorship, distribusi maupun persiapan penerbitannya, dan lain-lain akan mempercepat proses peningkatan kontribusi IAFMI bagi kepentingan bersama. Untuk itu, atas nama pengurus kami menyampaikan terimakasih dan penghargaan yang setinggi-tingginya atas partisipasi dan kontribusinya tersebut.

Salam hangat IAFMI

Ir. Rudianto Rimbono, MSc. PRESS RELEASE CEO TALK 2 IAFMI jurnal IAFMI 03 Desember 2015 >> 6

IAFMI SUKSES SELENGGARAKAN CEO TALK II “Peluang dan Tantangan Bisnis Industri Fasilitas Produksi MIGAS”

JAKARTA, 12 NOVEMBER 2015 – Ikatan Ahli mempertanyakan penerapan PBB (Pajak Bumi Fasilitas Produksi Minyak dan Gas Bumi Indonesia dan Bangunan) yang nilainya masih dihitung (IAFMI) kembali menggelar acara CEO Talk II dengan 100% dari nilai produksi meskipun ada production topik “Peluang dan Tantangan Bisnis Industri Fasilitas sharing antara pemerintah dan K3S. Tak hanya itu, Produksi MIGAS dari Segi Moneter, Fiskal, Perpajakan perhitungan PBB pun berdasarkan nilai produksi serta Peningkatan Kapasitas & Kompetensi Nasional”, tahun sebelumnya meskipun setiap tahun produksi pada hari Kamis, 12 November 2015 di Hotel Gran sumur minyak menurun. Hal ini terasa memberatkan Mahakam, Jakarta. Turut hadir sebagai Pembicara terutama untuk lapangan marjinal. Lambok Siahaan (Staf Ahli Dewan Gubernur Bank PPN pun dikategorikan sebagai belanja modal Indonesia), didampingi Agung Gunawan Raharja (capex), bukan bagian dari biaya yang langsung di- (Asisten Direktur Kebijakan dan Pengawasan reimburse (expense). Akibatnya, pengembangan Sistem Pembayaran Bank Indonesia), serta Ronggo lapangan marginal menjadi tidak menarik bagi KKKS Yudha (Manajer Kebijakan dan Pengawasan Sistem akibat tergerusnya nilai keekonomian proyek. Pembayaran Bank Indonesia). Tak hanya itu, topik terkait aturan PBI (Peraturan CEO Talk merupakan salah satu kegiatan Bank Indonesia) No. 17 tahun 2015 yang mengatur IAFMI yang dirancang untuk membangun sinergi penggunaan rupiah di transaksi Migas pun menjadi pemikiran antara elemen pelaku utama industri perhatian dalam CEO Talk IAFMI. “Sebagai fasilitas produksi Migas antara lain SKK Migas dan gambaran, sebelum PBI ini dikeluarkan, sekitar para profesional yang menjadi pimpinan beragam 52% transaksi antar penduduk menggunakan valas perusahaan dan institusi migas di KKKS (Kontraktor dan kecenderungan peningkatan pengunaan valas Kontrak Kerja Sama), Kontraktor EPCI, Vendor, untuk transaksi antar penduduk selalu meningkat di konsultan dan akademisi. IAFMI melihat bahwa Indonesia,” ujar Lambok Siahaan, Staff Ahli Dewan semua elemen pelaku industri ini sesungguhnya Gubernur Bank Indonesia. Lebih lanjut disampaikan memiliki tujuan yang sama yaitu kemandirian Lambok, meningkatnya peredaran valas di nasional yang berdiri di atas kompetensi, kapasitas Indonesia menekan nilai tukar mata uang Rupiah dan kemampuan nasional. dan berdampak kepada stabilitas sistem keuangan. “Kegiatan ini menjadi ajang diskusi bagi para Oleh karena itu, perlu disepakati adanya ‘roadmap’ pelaku industri dan regulator di industri Migas untuk industri migas untuk mendukung kedaulatan membahas peluang dan tantangan di sektor ini guna rupiah tanpa menutup mata terhadap tantangan bersama-sama membangun perekonomian bangsa pada pelaksanaannya sehingga dapat tercipta ‘soft Indonesia,” ujar Rudianto Rimbono selaku ketua landing’ dari penerapan PBI-17 yang dapat diterima IAFMI. oleh para stakeholder di industri migas. “ CEO Talk IAFMI membahas beragam topik, Terkait penerapan PBI-17 ini, para kontraktor salah satunya issue perpajakan (PPN Impor, PBB, Migas memperhatikan beberapa tantangan pada Pajak Impor, tax treaty) di mana 80% masalah di pelaksanaannya. Joseph Pangalila, Presiden industri Migas berkutat di hal tersebut sebagaimana Direktur PT. Tripatra, menyampaikan permasalahan diungkapkan Deputi Pengendalian Keuangan Kontraktor EPC (Engineering, Procurement, SKK Migas, Parulian Sihotang, sebagai pembicara Construction) ketika melakukan pembelian barang pertama pada event ini. dari agen di Indonesia yang kesulitan memberikan Boyke Pardede, Executive VP dan GM Pertamina harga dalam Rupiah dikarenakan fluktuasi nilai Hulu Energi West Madura Offshore (PHE WMO), tukar yang besar. Lambok Siahaan menyarankan << 7 jurnal IAFMI 03 Desember 2015

jalan keluarnya dengan penerapan nilai kontrak “Terkait industri Migas, memang masih banyak dalam rupiah yang dikaitkan kepada suatu formula pekerjaan rumah yang harus kita selesaikan terhadap kurs Jakarta Interbank Spot Dollar Rate bersama untuk memajukan industri lokal ini dan (JISDOR). perekonomian Indonesia pada umumnya. Karena itu, kami berharap hasil diskusi tidak hanya menjadi Dijelaskan, bahwa untuk sektor energi, sesuai sekadar wacana tapi dapat dilaksanakan oleh semua dengan surat dari SKK Migas dan ESDM terkait pihak terkait,” ujar Rudianto Rimbono lagi. pelaksanaan PBI-17 akan dibedakan menjadi tiga kategori: Berikut adalah rangkuman serta rekomendasi dari diskusi CEO Talk 2 IAFMI: • Kategori 1: Transaksi yang bisa langsung • IAFMI mendorong dibuatnya roadmap industri menerapkan ketentuan PBI-17 seperti gaji Migas untuk mendukung kedaulatan rupiah yang pegawai Indonesia yang dipekerjakan di dapat diterima oleh stakeholder industri migas; Indonesia, sewa rumah, kendaraan di Indonesia, • Dalam kaitannya dengan penerapan PBI-17, dan sebagainya. IAFMI merekomendasikan agar dibuat Petunjuk • Kategori 2: Transaksi yang masih memerlukan Pelaksanaan lebih lanjut yang mengatur: penilaian apakah termasuk infrastruktur strategis  Formulasi kontrak dalam rupiah yang dikaitkan atau bisnis dengan karakteristik tertentu yang terhadap kurs JISDOR; memang masih harus menggunakan mata uang  Pelaksanaan Kontrak Multi Currency; asing.  Pelaksanaan kontrak bagi vendor dan kontraktor • Kategori 3: Transaksi yang masih mendapatkan terkait barang impor dan campuran (packaged pengecualian dalam mata uang asing. equipment). Menyikapi kesulitan yang dihadapi industri  Kejelasan kriteria proyek yang dapat masuk migas, Gde Pradnyana, Penasehat Ahli Bidang kategori “Proyek Strategis”dan simplifikasi Peningkatan Kapasitas Kontraktor EPCI Dalam Negeri implementasi pengajuan “exception” oleh KKS/ SKK Migas, menyampaikan usulan solusi lainnya Kontraktor/Vendor. yaitu penerapan multi currency dalam kontrak, yaitu • IAFMI meminta agar besaran pajak PPh Final pemisahan pembayaran dalam beberapa mata uang khususnya untuk perusahaan jasa konsultan dan sesuai lingkup kerja, terutama untuk pekerjaan konstruksi dapat ditinjau ulang karena besaran yang bersifat kompleks mencakup Engineering, saat ini terasa makin berat dengan kondisi Procurement and Construction (EPC). ekonomi yang sulit. Penerapan tariff khusus Gde Pradnyana juga meminta pendapat para dapat diberlakukan selama periode tertentu; hadirin apabila persentasi tingkat komponen dalam • IAFMI meminta agar tagihan Ppn konsultan dan negeri (TKDN) didasarkan atas seluruh transaksi kontraktor EPCI ke KKKS dibayarkan langsung rupiah yang dalam suatu kontrak pekerjaan. Hal ke kontraktor bersamaan dengan pembayaran ini mendapat tanggapan dari Mudhito Prakosa, tagihannya. Presdir PT. Mc Dermott Indonesia, bahwa semangat • IAFMI mendorong pengenaan pajak bumi dan kewajiban pemakaian ‘local content’ adalah untuk bangunan (PBB) yang proporsional dan fair menumbuhkembangkan industri nasional. Menjadi sesuai dengan kapasitas produksi tahunan tidak berarti, apabila transaksi dalam rupiah tapi (bukan flat rate sepanjang umur lapangan); tetap untuk pembelian barang-barang yang diimpor • IAFMI mendorong upaya peningkatan kapabilitas dari luar negeri atau untuk pembayaran jasa tenaga dan kapasitas fabrikan lokal melalui perhitungan kerja asing. TKDN berdasarkan jumlah belanja rupiah pada Meskipun beragam masalah dan solusi fabrikan dalam negeri yang pada akhirnya dipaparkan di CEO Talk IAFMI 2015, semangat untuk mendorong penggunaan material bahan baku berkembang dan maju bersama tetap dirasakan. yang diproduksi di dalam negeri; jurnal IAFMI 03 Desember 2015 >> 8

CEO Talk 2 and Golf << 9 jurnal IAFMI 03 Desember 2015 jurnal IAFMI 03 Desember 2015 >> 10 KILAS IAFMI 2015 Kegiatan IAFMI tahun 2015 diawali dengan Expert antara para professional, pimpinan perusahaan Sharing 21 Februari 2015, menghadirkan Arief Migas, serta regulator yang diwakili SKKMIGAS untuk Riyanto (saat itu Kadiv Komersialisasi Minyak dan Gas membangun kemandirian industri migas Indonesia Bumi SKKMIGAS) dan Abang Daya Wiguna (saat itu yang berdiri diatas kapasitas dan kompetensi Process Engineer BP Tangguh). Topik ExpertSharing nasional yang mandiri. pertama di tahun 2015 ini mengambil topik LNG. Pada tanggal 9 Mei 2015, Expert Sharing IAFMI diselenggarakan sedikit berbeda, kali ini Sebulan kemudian, 11 Maret 2015 IAFMI diselenggarakan di workshop PT Intan Prima menyelenggarakan CEO Talk pertama, dihadiri oleh Kalorindo, sebuah fabrikan lokal Heat Exchanger. para pimpinan perusahaan migas Indonesia baik Selain expert sharing, kunjungan ke workshop K3S, Kontraktor EPCI maupun Vendor. CEO Talk fabrikan lokal ini juga merupakan salah satu bagian dirancang untuk membangun sinergi pemikiran misi IAFMI untuk turut membangun kompetensi industri nasional. Para peserta Expert Sharing sangat antusias meninjau fasilitas workshop yang menggunakan teknologi Jerman dengan tingkat

Kegiatan Expert Sharing di PT. Intan Prima Kalorindo Bapak Syamsu Alam, Direktur Hulu Pertamina pada acara IAFMI Golf Charity << 11 jurnal IAFMI 03 Desember 2015

Presentasi Makalah dan Booth IAFMI pada acara Joint Rapat Redaksi Persiapan Jurnal IAFMI Edisi Convention Balikpapan 2015 dan Distribusi Jurnal IAFMI Edisi 2.jpg akurasi yang sangat tinggi. Pada kesempatan ini Agustus 2015, persiapan penerbitan Jurnal IAFMI kepada peserta ditunjukkan proses dan cara kerja Edisi 3 dimulai lebih awal agar dapat bersinergi beberapa fasilitas mesin tersebut dengan event Joint Convention IAFMI dengan Pada bulan Juni 2015, dengan tujuan membangun HAGI, IAGI dan IATMI. Dengan persiapan ini, selain sinergi dan silaturahim para professional fasilitas berhasil memajukan 19 makalah untuk JCB2015, produksi migas Indonesia, serta menggalang dana pengumpulan makalah untuk Jurnal IAFMI edisi 3 untuk membangun kompetensi welder lokal di juga lebih awal bahkan berhasil melampaui target Luwuk, IAFMI menyelenggarakan IAFMI Charity jumlah makalah yang berhasil dikumpulkan Golf, diikuti oleh sekitar 140 professional Fasilitas Joint Convention Balikpapan 2015 yang Produksi Migas. merupakan kegiatan 4 asosiasi profesi HAGI, IAGI, Jurnal IAFMI Edisi Ke-2 terbit dengan Tema IAFMI dan IAFMI, sukses diselenggarakan tgl 5-8 Marginal Field Development pada bulan Juni Oktober 2015, dihadiri lebih dari 600 peserta. IAFMI 2015. Edisi ke 2 ini dicetak 1500 eksemplar dan mengirimkan 19 makalah dan menghadirkan booth didistribusikan kepada anggota IAFMI, professional IAFMI. Fasilitas Produksi Migas di berbagai perusahaan, School of Project sebagai salah satu sarana para pimpinan perusahaan migas, serta skkmigas. pengembangan kompetensi professional muda jurnal IAFMI 03 Desember 2015 >> 12

Rapat Database Profesi di SKKMIGAS School of Project - Modul PRIMAVERA.

School of Project PRIMAVERA. HR Summit di Jogya, IAFMI Mengirim Utusan. pertama diluncurkan tanggal 22 Oktober dengan Persiapan Welder Training & Sertifikasi sebagai modul Perencanaan Proyek dengan PRIMAVERA. amanat dari program IAFMI Charity Golf telah Program ini diikuti oleh 10 peserta, 2 diantaranya dimulai sejak Agustus 2015 dengan beberapa lulusan baru tahun 2014. pertemuan persiapan dengan team Rekayasa 12 November 2015, CEO Talk IAFMI yang kedua Industri, Gunanusa, Titis Sampurna dan Pertamina diselenggarakan kembali dengan mengusung tema EP. Target pelaksanaan Training akan dimulai bulan Peluang dan Tantangan BIsnis Industri Fasilitas Desember 2015. Produksi Migas dari Segi Moneter, Fiskal, Perpajakan, Selama tahun 2015, beberapa utusan dari serta Kapasitas dan Kompetensi Nasional. Sebagai IAFMI dikirimkan untuk mengikuti beberapa review pembicara hadir Lambok Siahaan Staf Ahli Gubernur maupun peserta convention, diantaranya review Bank Indonesia dan team serta Parulian Sihotang Proyek Blok Masella atas undangan Ditjen Migas, HR Deputi SKKMIGAS bidang Keuangan. Summit di Jogya, Database Profesi oleh SKKMIGAS. << 13 jurnal IAFMI 03 Desember 2015 Beberapa Program Siap Latih

1. Construction Engineering for Heavy Steel Structure. Materi construction engineering dirancang untuk mendukung kebutuhan proyek-proyek heavy steel construction, beberapa diantaranya adalah Platform fabrication, Refinery, , Power Plant, Onshore Pipe-laying, Mining Equipments, Container Crane fabrication/ material handling, Heavy Lifts, dan lain-lain. Construction engineering know-how merupakan applied engineering knowledge dan field experience yang dirangkum dari pengalaman kerja. Disamping itu materi training juga dirancang untuk memberikan arahan (guidance) bagaimana memahami International Standards & Codes yang dipakai di dalam industri konstruksi.

MISI Applied Engineering and Fresh Graduate with Principle and Basic access to International Construction Engineering School of Engineering Standards & Codes Know-how Project IAFMI FreshFresh Engineer Engineer+ + Skill Skill setset from Training Training = = Result Result Meningkatkan kapasitas dan kompetensi Engineer Muda agar dapat secara 2. Basic Oil and Gas Service Contract professional terjun Pelatihan ini dirancang untuk meningkatkan dan membangun di dunia project dan bersaing di komunitas MEA. pengertian, pengetahuan, tentang penerapan hukum pada kontrak, dasar penyusunan format kontrak, dasar format dan istilah kontrak, dan mempelajari keahlian dasar dalam menyusun kontrak. Percepatan penyediaan Isi pelatihan meliput: tenaga professional muda untuk mendukung • Apa dan Bagaimana Kontrak percepatan pembangunan • Struktur Kontrak infrastruktur yang • Terms and Conditions mendukung • Dispute & Dispute Settlement proyek Migas

3. Project Planning With PRIMAVERA PRIMAVERA adalah salah satu tool untuk penjadwalan proyek yang paling banayak digunakan di dunia project bersekala menengah dan besar. Memahami PRIMAVERA tidak hanya membuat jadwal project, tapi memahami struktur project itu sendiri secara terstruktur dan sistematis. Training ini dirancang untuk menguasai PRIMAVERA dengan memahami struktur dan cara kerja PRIMAVERA yang berbasis database. Informasi dan Pendaftaran shofi 0856 8609 867, 0877 4. Basic Project Planning and Control 73550423 Pelatihan ini diberikan untuk membekali pengetahuan Project Planning e-mail [email protected] secara basic kepada para calon Planning Engineer. Tidak saja konsep On-line Registration scheduling, tapi bagaimana memanfaatkannya untuk membangun www.theepm.com sebuah rencana skedul yang komprehensif, dan memanfaatkannya untuk pengendalian proyek. daftar isi Desember 2015 2 Misi Jurnal IAFMI 3 Next Edition 4 Dari Redaksi 5 Kata Pengantar Ketua IAFMI 6-7 Press Release 8-9 Foto Kegiatan CEO Talk 2 dan Golf IAFMI 10-13 Kilas IAFMI 2015 14 Daftar Isi 15 Susunan Redaksi 16-21 LNG in Indonesia, Business and Commercial – Arief Riyanto, SKK Migas 22-27 Konstruksi terintegrasi FPCI dengan FEED Design Competition berdasarkan PTK 007 rev.3 – Alex Iskandar, INPEX 28-35 LNG Offshore Terminal Mooring System – Ecky Yulistiana, BP 36-37 Daftar Proyek Migas Indonesia 2015 38-45 Implementing Risk Based Structural Integrity Management for Life Extension and Decommissioning of Mature Offshore Platforms – Karyadi Junedi, PHE ONWJ 46-55 FSRU Seakeeping during Connection with Tower Yoke Mooring System – Muhammad Nasyih 56-666 Production Facilities Maintenance Information System: A decision support system for maintaining national oil and gas production facilities – Rossupanji Pribadi, SKK Migas 67-70 Mengenal Kontrak Migas Indonesia 71 Floating Storage/Production Yang Dioperasikan Kkks Susunan Redaksi

Pimpinan Redaksi: daftar isi Desi A. Mahdi, S.T.,PMP Chief Editor: Adjie Heryanto, S.T

Team Editor: Risvan Dirza, S.T Dwi Nuraini Siregar, S.T

Sponsorship: Ahmad Diponegoro, ST.,MSc Mokhamad Rifky Soedirdja, S.T., M.T

Mokhamad Nasyih Aminulloh, S.T

Andre Widhiananto Ariono, ST. MT.

Distribusi: Auliya Fahmi Syafri, S.T

Rosiska Alwin, SE

Project Sponsor: Ir. Edwin Badrusomad (Direktur Eksekutif IAFMI) Penanggung Jawab: Ir. Taufik Aditiyawarman, M.M., PMP (Sekjen IAFMI)

Ketua Dewan Pakar: Anggota Dewan Pakar: Ir. Bob Djanegara Ir. Steve Adrianto, Prof. Ir. Ricky L Tawekal, MSE.,PhD. Ahmad Taufik, M.Eng., PhD., Ir. Iwan Jatmika, Ir. Witoyo, Ir. Sandry Pasambuna, Juanto Sitorus, MT, CPM, PMP, CSEP, Adjie Heryanto, ST.

Foto : Koleksi EdwinB dan Haria Hindarwin | Foto Cover oleh Muhasrul Zubir Desain lay out : Dedi The EPM Sekretariat: Gandaria 8 Office Tower, Lt.5, Jalan Sultan Iskandar Muda, Jakarta 12240, Telp. +62 21 2903 6664 e-mail : [email protected], website: www.iafmi.or.id jurnal IAFMI 03 Desember 2015 >> 16

This paper has been presented in Joint Convention HAGI-IAGI-IAFMI-IATMI Balikpapan, October 2015 LNG in Indonesia, Business and Commercial

Arief Riyanto1, Risvan Dirza2, Desi Mahdi3 1. Author, Special Task Force for Upstream Oil and Gas Business Activities Republic of Indonesia 2. Co-writer, Team Editor, IAFMI Journal 3. Co-writer, Team Editor, IAFMI Journal

Abstract

In 2013, Indonesia’s gas reserve is estimated constitute 1.6% of world gas reserves. This reserve is sufficient for 50 years with the current consumption rate. However, domestic gas market is significantly increased within the last decade to satisfy many strategic industry and major gas power plants Figure 1- National Gas Reserves project. The gas production rate which produced by different fields are expected to be increased to The exploitation of reserves fulfill these demands. There are many forms of how materialized in various form of product including but natural gas can be transported and distributed. not limited to: LNG, LPG, gas for vehicle use, feed gas One of form which is efficient is Liquefied Natural for power plant, fertilizer plant and petrochemical Gas (LNG). However, the readiness of the re-gas plant. infrastructures in time to support distribution of the Based on the Ministry of Energy and Mineral supply may determine whether domestic market is Resources Regulation (Permen) No. 3/2010, the gas able to absorb the supply. utilization policy has given priority to the domestic use as follows: Context 1. Oil lifting Total gas resources in Indonesia, including 2. Fertilizer plant proven reserves (P1) and potential resources (P2) 3. Electricity is estimated constitutes 1.6% of world gas reserves. Natural gas is considered as non-renewable 4. Other industry resources, which means if the consumption is bigger Recent data shows that LNG domestic distribution than new resources found than production of the gas increased and almost triple in the last ten years will be decreasing naturally. showing that the implementation of domestic priority gas utilization policy has been in place. Moreover, in the sector of industry, electricity and fertilizer, the << 17 jurnal IAFMI 03 Desember 2015

total contract of natural gas utilization in Indonesia National income growth has been doubled up has been dramatically increased since 2003 to 2010 in the last ten years. About 50% of non-tax national and relatively steady in the last five years. income is obtained from oil and gas sector of industry. In particular, approximately 15% to 17% of this Three government bodies responsible for the oil income is contributed by natural gas resource which and gas industry namely Directorate of Oil and Gas is lower than oil industry contribution. Therefore, of Ministry of Energy and Natural Resources (Ditjen accelerate the exploration and exploitation of new Migas), Special Task Force for Upstream Oil and Gas gas reserves are required to increase its contribution Business Activities Republic of Indonesia (SKKMigas), to national income. and Downstream Regulatory Agency for Oil and Gas (BPH Migas) has different specific tasks as depicted SKK Migas has identify in 2013 that Indonesia has in the schematic below: about 150 TSCF natural gas reserves (both associated and non-associated gas) and about 3 TSCF natural gas productions, indicating that natural gas reserves Ditjen Migas is only sufficient for 50 years if there is no new gas Formulate policies and technical standards reserves found. for Oil and Gas industry To anticipate this situation, the potential of non SKKMIGAS BPH MIGAS conventional gas reserves such as and coal bed methane (CBM) are being assessed and • To monitor To evaluate and regulate: operational aspects progressed further. • Fuel availability and of Production distribution Sharing Contractors Demand (PSC) including • National fuel reserves the exploration, • Fuel transportation exploitation and Domestic Gas Market and storing facilities commercialisation of It is estimated that in 2025, Indonesia gas oil and gas field • Fee for piped gas consumption will be about 20% of National Energy transportation • To evaluate and or about 8249 BBTUD. This demand comes from approve Plan of • Gas transmission and development of strategic industrial area and distribution Development (POD) electricity plant as described below. • To evaluate and • Gas price for domestic approve Work household use By year 2020 Indonesia is expected to develop Program & Budget strategic industrial area spreading around main • To appoint seller of islands of Indonesia as shown in picture below. Java, Government portion Kalimantan and Sumatra strategic industrial area of Oil and Gas will lead the gas demand. A new strategic industrial • To manage Upstream area will be developed in Papua, to distribute energy assets more evenly to eastern part of Indonesia. This • To provide input to strategic industrial area in Papua is estimated to Ministry of Energy and require c.a 535 mmscfd of gas feed for fertilizer plant, Natural Resources during area or block and smelter for ferronickel and stainless steel. It is tender/bidding estimated total of 2.9 bcf/d gas demand will be arose from the development of these industrial area.

Figure 2 - Roles of Ditjen Migas/SKKMIGAS/BPHMIGAS jurnal IAFMI 03 Desember 2015 >> 18

and downstream business per year starting from 2015. This effort also needs to be supported by development of an LNG Hub to supply to gas the remote islands in eastern part of Indonesia.

Supply

LNG Plant In a typical onshore LNG project, natural gas from Figure 3 - Distribution of Industrial Area outside Java an onshore/offshore field is transported via pipeline and Gas Supply demand in year 2020 into an LNG liquefaction plant to be processed into LNG. This LNG can be stored temporarily inside LNG tank prior to be off loaded into LNG carrier in an Recently, the government of the Republic of LNG loading terminal. The LNG carrier ship will then Indonesia has announced 13.5 GW Gas Power Plant the LNG to an LNG receiving terminal. In Project Development which consists of 6 zones and this terminal the LNG carrier will be discharged and more than 50% of its capacity (7,004 MW) is located the LNG will be stored temporarily inside the LNG in Java-Bali. This is part of overall 33.5 GW Power tank before being converted in a regasification unit Plant Project Development. into gas. After that, gas can be distributed by pipeline to power station or other utilities. This chain will be repeated.

LNG business may be considered as upstream and downstream business. It depends on the location of gas/LNG transfer of title. In the downstream LNG business, the transfer of title is in the upstream side before entering the LNG plant (in the form of gas). In the upstream LNG business, the transfer of title is in downstream side of the LNG’s loading arm (in the Figure 4 - 33.5 GW Power Plant Project form of LNG).

LNG plant has several units such as onshore Within 2015 -2024, in order to produce 13.5 GW, receiving facilities (ORF), LNG processing plant, LNG these gas power plants require gas supplied by storage, infrastructure and LNG loading as shown in various entities. It has been identified that 2,034 the diagram below. MW has been supplied by existing pipe gas and LNG, In the last 50 years, LNG train capacity steadily 3,971 MW will be supplied by additional piped gas increased. The first LNG in 1960 was Camel LNG, from various working area of Production Sharing Algeria which was able to process about 0.5 MTPA Contractor (PSC) such as Cepu, Muriah (), (Million Ton per Annum). Qatar LNG train 4 and 5 Madura Offshore (Santos), South Sembakung is the world first LNG Mega Project designed with (Medco), and so forth. The remaining 7.417 MW capacity of 7.8 MTPA per train. In Indonesia we have will be supplied by additional 3 – 47 LNG cargo Tangguh LNG Train 1&2 with capacity of 7.8 mtpa per per year which produced both from upstream train. << 19 jurnal IAFMI 03 Desember 2015

As a major investment, LNG business is sometimes project-financed using trustee borrowing scheme. Basically this arrangement provide loan from lenders who engage a trustee paying agent for disbursement of cash to the Production Sharing Contractor (PSC) through a Trustee and Paying agent agreement.

LNG Price Price for LNG is determined by the sales contract either long term or spot contract. For the long term contract, the price formula is associated with oil price such as (JCC) price. This formula is different for Export and Domestic price. For example: Figure 5 - LNG business – Upstream/Downstream Export: 15.4% JCC + $ 0.34 (FOB)

LNG in Indonesia Domestic: 13% REP + $ 1.0 (DES) Todate Indonesia has executed three world grass Table below shows average gas price for LNG and root LNG project, namely Arun LNG, Badak LNG Pipe Gas in year 2014: and the recent one Tangguh LNG. Bontang LNG has 8 trains (each train capacity is 2.8 MTPA) with total trains capacity about 22.5 mtpa which is highest among other Indonesia LNG Plants. However, Tangguh LNG plant is currently the one with highest single train capacity (3.8 MTPA per train). Figure 7 - Realisation Gas Price in Indonesia In 2015, Arun LNG has been converted into regasification unit. This makes Bontang and Tangguh are the two LNG plant in Indonesia. Since the drop of oil price in Q4 last year, LNG price has been impacted and currently sits in average $5-7/mmbtu, and is not varied differently between long term contract and sport market.

Figure 6 - Indonesia LNG Sales jurnal IAFMI 03 Desember 2015 >> 20

Future LNG Projects As the domestic market demand of gas Indonesia is forecasted increasing, several LNG plant projects are projected to be available to provide to those market. After Donggi Senoro LNG start up in 2015, there will be four natural gas projects completed within 2016 to 2021 such as Jangkrik (2.8 MTPA feed to Badak LNG), BP Tangguh Train 3 (3.8 MTPA), Chevron IDD (7 MTPA feed to Badak LNG) and Inpex Figure 10 - Future LNG supply and distribution across Masela (7.5 MTPA, FLNG). Indonesia

connecting Kalimantan, Java, Sumatera and Riau Islands are also planned to be developed.

Summary

Based on the factual conditions of Indonesia’s LNG in the perspective of business and commercial, the conclusion may converge as follows:

1. Natural gas reserves in Sumatera and Java Figure 8 - Upcoming Indonesian LNG is declining and the prospectus natural gas resources are located in the center and east Having those natural resources and LNG plants part of Indonesia (i.e., Chevron IDD Project, ENI mostly located in the eastern part of Indonesia, we Jangkrik, Inpex Masela LNG, Tangguh Train 3, need infrastructure to re-gas and distribute the gas and Genting Oil) in Java and Sumatra, where most of the energy 2. The main challenge of upstream oil and gas demand comes from. The appropriate concept project is the declining of oil price which impact for this is FSRU (Floating Storage Receiving Unit) to the stability of economic condition. which is currently planned to be installed in Aceh, Lampung, South Sumatra, Lampung, West Java, and 3. Domestic gas market demand has significantly Central Java. In addition, new subsea gas pipeline increased especially in the sector of power generation for industry, household, and smelter. This gas demand could not be fulfilled by upstream gas production since several gas projects are delayed. Therefore, it is estimated that in 2020, Indonesia will import LNG.

4. Natural gas supply through pipeline from upstream business is very limited. So, it will be prioritized for oil lifting, LPG, fertilizer and others industry.

Figure 9 - Infrastructure plan for gas distribution << 21 jurnal IAFMI 03 Desember 2015

5. The gas demand from PLN will be prioritized to About the Author be supplied by LNG as PLN is currently already anchor buyer of LNG domestic. Arief Riyanto 6. The main challenge of LNG distribution is the limited gas or LNG infrastructure such as downstream pipeline in Java and FSRU facilities in several location in Indonesia

7. The gas pipeline price is determined based on the economic value of the development of each gas field. Meanwhile, both domestic and exported LNG prices are defined based on oil price-related formula. Arief Riyanto is currently VP Project and Maintenance at Special Task Force for Upstream Oil and Gas Business Activities Republic of Indonesia (SKK Migas). He began his career at SKK Migas at 2004 as Banyu Urip Development Project Head, then as VP Representative for Pertamina EP, and VP Gas Commercialization. He began his career in Oil and Gas Industry in 1989 in Pertamina and has been assigned for Arun LNG and PT. Badak LNG. jurnal IAFMI 03 Desember 2015 >> 22

Konstruksi terintegrasi FPCI dengan FEED Design Competition berdasarkan PTK 007 rev.3 tahun 2015

Alex Iskandar, PMP, PMI-RMP, Sr. Risk Engineer, Inpex Corp.

Abstraksi

Di awal tahun ini SKKMigas telah mengeluarkan buku Pedoman Tata Kerja 007 revisi ke 3 (PTK) sebagai pedoman pengelolaan Rantai Suplai Kerja pada kegiatan usaha hulu migas, dimana ada beberapa hal yang baru diatur dalam buku PTK ini. Dan menjadi topik pembahasan dalam tulisan ini, yaitu mengenai jenis pekerjaan Konstrusi Terintegrasi FPCI, yang menggabungkan pekerjaan Front End Engineering Design (FEED) dengan pekerjaan detail Engineering, Procurement, Construction and Installation (EPCI). Pekerjaan FPCI ini meliputi seluruh pekerjaan perencanaan (FEED & Detail Engineering), pengadaan, pelaksanaan Pekerjaan Konstruksi dengan pemasangan (EPCI).

Seperti yang telah diketahui pada umumnya, dalam PTK diatur bahwa pelaksana Kontrak jasa pembangunan desain awal (FEED) tidak dapat mengikuti paket Tender pekerjaan EPCI. Namun dalam PTK revisi ketiga tahun 2015 ini, klausul ini mendapat pengecualian dengan bentuk kontrak pekerjaan FPCI, yang diatur dengan beberapa poin kriteria. Pendekatan baru ini pada awalnya diterapkan khususnya pada mega proyek LNG, yang menuntut optimalisasi proses desain dan juga menyangkut pemilihan process technology untuk menghasilkan biaya proyek yang paling efektif, sehingga diharapkan dapat mempersingkat jadwal proyek, dan memungkinkan juga untuk diterapkan pada proyek proyek EPCI lain.

Tulisan ini akan membahas secara garis besar mengenai teknis pelaksanaan proyek dengan konsep konstruksi terintegrasi FPCI, kelebihan dan kekurangannya dengan disertai sedikit analisa resiko dari sudut pandang penyelenggara proyek (Klien).

Kata Kunci; Project Management ; Procurement ; Contract Strategy ; FPCI ; Design Competition ;Project Risk << 23 jurnal IAFMI 03 Desember 2015

Batasan menyangkut permasalahan hak Kekayaan Intelektual (Intellectual Property Right). Desain Kompetisi ini Batasan yang digunakan adalah pekerjaan mendorong peserta untuk menerapkan pengalaman Multiple FEED dengan konsep FPCI menggunakan dan pengetahuannya untuk mengembangkan solusi- pengadaan sesuai dengan proses di PTK. Durasi solusi baru yang inovatif. Namun permasalahan proses pengadaan yang diasumsikan adalah durasi utamanya adalah pada penataan kompetisi desain normal dan bukan percepatan berdasarkan diskresi. yang kompleks, yang membutuhkan berbagai aturan main yang harus dibuat oleh penyelenggara Dalam pembahasan ini melingkupi Lingkup kerja proyek, untuk dapat mengontrol pekerjaan desain Kontraktor SKKMigas sebagai perencana proyek untuk mencapai manfaat yang maksimal dan harus (Klien). Cakupan pembahasan ini terbatas pada dapat memenuhi kebutuhan semua pihak dalam strategi kontrak dan pelaksanaan tender proyek berkompetisi secara adil dan fair. Namun menurut FPCI dan pelaksanaan Multiple FEED. Seluruh data anggapan penulis, strategi kompetisi Desain ini dan informasi yang disampaikan adalah bersifat tidak tepat, bila pemrakarsa proyek telah memiliki umum berdasarkan asumsi dan penilaian penulis licensed process design dan atau telah mempunyai secara pribadi preferred process design yang telah terpilih dari studi yang telah dilakukan sebelumnya. FPCI Model : Multiple FEED / Design Competition before EPCI Fitur kunci dari strategi ini yaitu beberapa kontraktor akan bersaing dengan kontraktor yang Kompetisi desain (FEED) merupakan hal yang lain atas dasar “kompetisi desain” atau “beauty relatif baru dalam dunia industri Migas, dan pada contest”, sehingga setelah menyelesaikan pekerjaan mulanya di laksanakan oleh proyek-proyek LNG, FEED, penyelenggara proyek akan memilih karena biasanya menyangkut investasi yang sangat pemenang tunggal untuk fase EPCI dan kontrak besar (mega project) yang disertai juga melakukan lainnya berdasarkan proposal teknis dan komersial pemilihan LNG Process Design (Process License) yang perusahaan yang dikembangkan selama fase FEED. jurnal IAFMI 03 Desember 2015 >> 24

Gambar 1: Perbandingan Proses Tender FEED Conventional dan FPCI

Kompetisi Desain juga dapat memberikan kepada tahapan Evaluasi Administrasi dan Teknis, sebelum Klien, kesempatan untuk secara aktif terlibat dengan FEED ini selesai secara keseluruhan. tim kontraktor selama tahap pengembangan desain Aspek penawaran harga dari kontraktor FPCI di dan oleh karenanya Klien akan memiliki pemahaman kompetisikan sebagai bagian dari kompetisi desain yang lebih baik pada tahapan penawaran EPC oleh FEED, sehingga penentuan pemenang dengan kontraktor, sehingga diharapkan tahapan evaluasi harga terendah dapat diterapkan dalam penentuan administrasi dan teknis pun dapat lebih dipersingkat. pemenang kompetisi ini, termasuk dengan preferensi Sebenarnya ada dua metode pemilihan pemenang Tingkat Kandungan Dalam Negeri/ TKDN seperti hal yang memungkinkan dalam desain kompetisi ini. yang dipersyaratkan dalam PTK. Penerapan strategi Opsi yang pertama adalah penyelenggara proyek ini secara umum dapat memberikan percepatan menentukan kriteria pemilihan berdasarkan evaluasi jadwal pelaksanaan proyek dan diharapkan dapat teknis, misalnya: biaya operasi terendah dan termasuk menghasilkan desain dan eksekusi lebih optimal kriteria-kriteria teknis lainnya. Kemudian setelah serta biaya yang lebih efektif dibandingkan dengan dilakukan evaluasi, kontraktor terpilih akan diminta strategi konvensional Single FEED. memasukkan harga penawaran untuk melaksanakan Seperti yang disebutkan, dikarenakan nature pekerjaan eksekusi EPCI. pekerjaan yang bersifat mega project, biaya yang Dan Opsi kedua adalah, seperti halnya proses sangat besar dan desain yang kompleks, yang konvensional tender EPCI, namun sedikit berbeda meliputi semua aspek jasa, baik engineering dengan tidak perlunya melalui fase Pra-Kualifikasi design, konsultansi engineering khusus (speciality (PQ) lagi, karena telah dilakukan sebelumnya pada engineering), Technology Licensor, specialty Fase tender FPCI. Dan seperti yang disebutkan construction dan instalasi dan lain sebagainya, diatas, dengan pemahaman yang baik mengenai maka pekerjaan multi FEED ini, biasanya diikuti tender EPCI ini, tender ini pun dapat dilakukan oleh konsorsium (gabungan dari dua atau lebih secara paralel, dengan dimulai dilakukannya orang perorangan, perusahaan, organisasi atau << 25 jurnal IAFMI 03 Desember 2015

kombinasi dari elemen-elemen tersebut, dengan sumber daya bagi penyelenggara proyek (Klien) kompetensinya masing masing) dengan kualifikasi untuk dapat mengelola berbagai tim engineering sesuai dengan persyaratan pada PTK, dimana sebagai tim pengawas proyek. Perusahaan Dalam Negeri atau Perusahaan Nasional Hal yang juga perlu menjadi catatan mengenai yang harus bertindak sebagai Pemuka Konsorsium Multiple FEED ini, adalah sangat rentan terhadap (Leadfirm). Secara garis besar, kelemahan yang tuduhan terkait monopoli dan persaingan ada pada bentuk konsorsium ini adalah, hubungan usaha yang tidak sehat, khususnya pada proses antara para pihak dalam konsorsium sangat pengadaannya, mulai dari proses tender sampai beragam dan terkadang menyulitkan sebagai dengan pemilihan pemenang tender EPCI, terkait penyelenggara proyek untuk memastikan bahwa persaingan usaha seperti yang diatur dalam UU Lead Firm mempunyai wewenang penuh terhadap No.5 / 1999 tentang Larangan Praktek Monopoli dan anggota konsorsium. Persaingan Usaha Tidak Sehat. Diperlukan proses Permasalahan yang sering timbul adalah pada tender yang transparan untuk Multiple FEED ini, tingkat koordinasi dan interface internal konsorsium dan harus dilakukan dan dikelola secara hati-hati. termasuk juga eksternal konsorsium. Sehingga Diperlukan azas kepercayaan dan berkeadilan untuk diperlukan interface baik dari sisi Kontraktor sebagai memastikan bahwa semua pihak dapat bekerja Lead Firm dan juga dari masing masing firm yang sesuai dengan tujuan proyek. Kontraktor FEED akan tergabung dalam konsorsium untuk dapat menjamin efektif bekerja pada proyek di bawah pengawasan interface dan komunikasi dapat berjalan dengan dari pelaksana proyek, namun pada saat yang baik. bersamaan mereka akan bersaing satu sama lain untuk dilakukan seleksi pada tahap akhir menjadi Dan disisi lain, sesuai dengan namanya multiple kontraktor EPCI. Oleh karenanya selain tender FEED, memiliki biaya awal yang lebih tinggi proses yang transparan, juga diperlukan sebuah dibandingkan metode konvensional, dikarenakan “Aturan main” atau “Protokol” terhadap mekanisme lebih dari satu team engineering yang bekerja pelaksanaan multi FEED ini. sehingga juga memerlukan relatif lebih banyak Tujuan dari protokol ini akan memastikan bahwa ada prosedur rinci dan merupakan dokumen yang dirancang untuk memastikan bahwa proses tender dengan Multiple FEED termasuk pekerjaannya sendiri dilakukan secara transparan, adil dan kompetitif, tanpa menyokong konsorsium tertentu. Termasuk kepastian bahwa informasi yang sama harus diberikan untuk semua peserta (prinsip keadilan), terutama dalam kaitannya dengan tanggapan terhadap pertanyaan yang bersifat penjelasan (clarificatory), sekaligus juga menyediakan mekanisme bagi Gambar 2: Simplify Contractor Consortium (Example) peserta untuk melindungi informasi jurnal IAFMI 03 Desember 2015 >> 26

rahasia dan kepemilikan, rahasia dagang dan ‘ide’ pengalaman proyek, sering menjadi sumber desain (yang mana tidak dapat dibagi dengan permasalahan didalam proyek. Terlebih dengan konsorsium lainnya), dan dengan demikian juga dibatasi oleh aturan dan protokol tertentu, jika tidak mendorong peserta untuk terlibat dalam kompetisi. dikelola dengan bijaksana, hal ini sangat berpotensi Salah satu opsi untuk meningkatkan kemandirian menghambat lancarnya alur komunikasi sehingga administrasi dan azas keadilan adalah menunjuk meningkatkan probabiiltas resiko kenaikan biaya auditor independen yang disetujui oleh para pihak dan keterlambatan penyelesaian FEED. untuk memantau interaksi selama proses tersebut, termasuk memberikan saran mengenai pelaksanaan Bagi sebuah penyelenggara proyek yang telah protokol selama proses tersebut. mempunyai Culture beserta aturan Code of Conduct dan mekanisme pengawasan internal yang baik, Di sisi yang lain, dikarenakan adanya protocol akan sangat mudah mengadopsi aturan main / dan peraturan yang diperlukan untuk menjamin protokol kerahasiaan ini, namun untuk perusahaan fairness kompetisi ini maka menimbulkan juga yang belum memiliki protokol kerahasiaan informasi beberapa masalah / resiko yang baru seperti: Adanya atau baru mulai menerapkan protokol tersebut, akan tambahan interface antara kontraktor satu dengan menjadi resiko tersendiri dalam implementasinya, kontraktor yang lain, sehinga akhirnya menjadi dan akan menimbulkan resiko baru yaitu sulit tugas penyelenggara proyek yang harus berperan untuk melakukan survei pasar, dikarenakan sebagai interface atau sebagai mediator terhadap adanya kekhawatiran dapat membocorkan rahasia jalinan komunikasi antara kontraktor. Yang mungkin desain ketika akan melakukan survei pasar dengan seperti umum diketahui, tanpa dengan protokol memberikan data kepada vendor. Sehingga hal pun, jalur koordinasi dan komunikasi pada kontrak ini berpotensi pada estimasi biaya cenderung yang melibatkan banyak pihak, persoalan interface meningkat karena hanya bisa menggunakan data dan komunikasi ini pada banyak pengalaman base internal, berdasarkan data proyek sebelumnya dan eskalasi.

Gambar 3: Simplified Interface Management – Multiple FEED << 27 jurnal IAFMI 03 Desember 2015

Termasuk juga jadwal dan pekerjaan secara Referensi keseluruhan sulit untuk dapat terintegrasi, karena terdapat disparitas estimasi dan juga desain yang • Pankaj Shah, Technology Manager LNG berbeda antara kontraktor satu dengan yang lain - PROJECT DESIGN COMPETITION - A yang mana termasuk kerahasiaan yang harus dijaga. CONTRACTOR’S VIEWPOINT. http://www.ivt. Strategi komunikasi yang baik diperlukan oleh ntnu.no/ept/fag/tep4215/innhold/LNG%20 penyelenggara proyek agar tidak mengakibatkan Conferences/2004/Data/Papers-PDF/PS4-7- kehilangan fokus dan arah dari team proyek secara Durr.pdf keseluruhan • Diego Braghi - Design Competition Strategy http://diegobraghi.blogspot.co.id/2011/12/ Kesimpulan diego-braghi-design-competition.html

Strategi Multiple FEED / Beauty Contest / Desain • Proses Beauty Contest Proyek Donggi Kompetisi adalah suatu pilihan yang baik apabila -Senoro http://www.kppu.go.id/docs/ pemrakarsa proyek (Klien) merasakan perlu adanya Putusan/putusan_35_2010_Donggi%20 pemilihan dari beberapa jenis proses / teknologi senoro.pdf yang diinginkan untuk dikompetisikan dalam suatu proyek, dengan jadwal yang relatif lebih Tentang Penulis cepat dibandingkan dengan metode konvensional, termasuk juga akan mendapatkan biaya Capital Alex Iskandar, PMP, PMI-RMP Expenditure yang lebih optimal. Namun strategi Alex Iskandar Desain kompetisi ini, menurut pandangan penulis, memiliki pengalaman dipandang tidak tepat bila pemrakarsa proyek selama lebih dari 15 (Klien) telah memiliki licensed process design dan/ (lima belas) tahun di atau telah mempunyai preferred process design bidang manajemen yang telah terpilih dari studi yang telah dilakukan proyek pada industri sebelumnya. Minyak dan Gas. Mengingat besarnya biaya investasi di awal Setelah menyelesaikan program sarjana proyek, termasuk juga memerlukan banyak resources teknik mesin di Institut Teknologi Sepuluh yang perlu mengawasi jalannya proses FEED, November, Alex memulai karirnya bersama dirasakan perlu menjadi bahan pertimbangan oleh PT Truba Jaya Engineering sebagai Project penyelenggara proyek, sehingga tidak mengganggu Control Engineer. Kemudian sempat berkarir ke ekonomian proyek. Sehingga ekspektasi penulis, di beberapa perusahaan seperti Surveyor pekerjaan Multiple FEED ini hanya dilakukan untuk Indonesia, Pauwels Trafo Asia, 10 tahun pekerjaan Mega Project. berkarir di ConocoPhillips Indonesia dan Aturan detail serta protokol kerahasiaan, termasuk sekarang bertugas sebagai Sr. Risk Engineer perlunya auditor independen merupakan salah untuk Inpex Corporation. satu opsi untuk memastikan pelaksanaan metode Alex adalah anggota aktif dan memiliki ini dilakukan dengan azas berkeadilan. Walaupun sertifikat Project Management Professional disisi yang lain, dengan adanya protokol ini, akan (PMP) & Risk Management Professional (RMP) menambah resiko keterlambatan jadwal proyek dan dari Project Management Institute (PMI). juga resiko naiknya estimasi total biaya proyek. jurnal IAFMI 03 Desember 2015 >> 28

MMOORINGooring SYSTEM SELECTION Syst FORem OFFSHORE Selec LNGt RECEIVINGion for TERMINAL ECKYO YffsULISTIANA hore LNG Receiving PROJECT ENGINEER, BP TANGGUH Terminal

I. EIntroductioncky Yulistiana, Project Engineer, BP Tangguh

Natural Gas (NG) is used as one of the major sources of energy. However, many cities and Inindustriestroduc in titheon world which require that energy are located far away from the gas field. Since the transportation of natural gas may not always be feasible through pipelines, Liquefied Natural Natural Gas (NG) is used as one of the major sources of energy. However, many cities and industries Gas (LNG) is produced which can be transported safely and economically by sea. LNG is thus in the world which require that energy are located far away from the gas field. Since the transportation of natural gas gas, may predominantly not always be feasible methane, through which pipelines, has Liquefied been converted Natural Gas (LNG)to a isliquid produced state which for ease of canstorage be transported and transport. safely andWhile economically the supply by chain sea. LNG of LNis thusG can natural be simplified gas, predominantly in four (4) methane, steps as shown whichin Figure has been 1, thisconverted paper to focusesa liquid state on for the ease final of storage step o andf LNG transport. supply While chain the whichsupply chain is storage of and LNGregasification, can be simplified in particular in four (4) steps on theas shown selection in Figure of 1, m thisooring paper system focuses on for the Offshore final step LNGof LNG Receiving supplyTerminal. chain which is storage and regasification, in particular on the selection of mooring system for Offshore LNG Receiving Terminal.

Exploration Storage and Storage and and Transportation Liquefaction Regasification Extraction

Figure 1 – Simplified LNG SupplyFigure Chain 1 – Simplified LNG Supply Chain

II.W hWhyy Offsh Offshoreor LNGe LN TerminalG Termi nal negative sideconventional of conventional LNGLNG terminals terminals onshore. onshore. Furthermore,Furthermore, in many countries, in manygovernmental countries, Conventional LNG terminals are land based issues like permits, environmental impact studies, whetherConventional located within LNG ports terminals or as a stand-alone are land governmental issues like permits, etc may significantly slow down the progress of new terminal.based Everywhether terminal located would within be constructed ports or asin environmental impact studies, etc may onshore LNG terminal projects. combinationa stand-alone with a quay terminal. or jetty structure Every to terminal support significantly slow down the progress of thewould mooring be of constructed LNG carriers, storage in combination facilities for with LNG Thereforenew the onshore alternative LNG terminalof offshore projects. LNG anda a quayregasification or jetty process structure unit onshore. to support Due to thethe terminal has been proposed. Such facilities should hazardousmooring nature of LNG of gas, carriers, the development storage facilities of such fulfill someTherefore important constraints: the alternative of offshore LNG conventional LNG terminals encountered growing for LNG and a regasification process unit terminal has been proposed. Such public resistance especially those located close to • They should be located practically out-of-sight populatedonshore. areas Due as to an the unacceptable hazardous high nature risk ofto from thefacilities coastline, should in order fulfill to prevent some public important publicgas, safety the and/or developmentvisual pollution of surroundings of such concernconstraints: regarding safety and visual pollution of wasconventional perceived. In many LNG cases, terminals difficulties encountered and costs horizon for growingland acquisition public processresistance is also especially consider asthose the • They should be located practically located close to populated areas as an out-of-sight from the coastline, in unacceptable high risk to public safety order to prevent public concern and/or visual pollution of surroundings regarding safety and visual pollution was perceived. In many cases, difficulties of horizon and costs for land acquisition process is • They should have a high operability also consider as the negative side of with regard to: << 29 jurnal IAFMI 03 Desember 2015

• They should have a high operability with regard mooring system for the first fundamental concept of to: Offshore LNG Terminals, i.e. FSRU. - Berthing and offloading operations of LNG Carriers, which is dependent on environmental Options for FSRU Mooring System conditions In general there are various mooring concepts - Processing of stored LNG to NG, (for Offshore developed for ship-shaped offshore vessels LNG Receiving Terminal) which may be (including FPSOs or FSRUs), such as: impacted by environmental conditions like - Fixed orientation mooring, i.e. jetty mooring seawater temperature of wave-induced vessel (shallow water) or spread mooring (deeper water) motions - Single point mooring, i.e. mooring tower (shallow - Redundancy of systems (enabling maintenance water) or mooring turret (deeper water) and repair without decreased performance) - Dynamic Positioning (DP), where no mooring There are basically two fundamental concepts for lines involved. This type is mainly for temporary Offshore LNG Receiving Terminals: mooring only, i.e. for drill ships (will not be covered in this paper) • Floating : Floating Storage and Regasification Unit (FSRU) FSRU terminals operations worldwide are mostly • On seabed : Gravity Based Structure (GBS) located relatively close to the shoreline at shallow water (typically 18 – 40m water depth) to limit the Focus of this paper is given on the selection of length of required subsea gas pipeline to supply jurnal IAFMI 03 Desember 2015 >> 30

Figure 2 – Guanabara Bay, Brazil, Golar Winter FSRU

Figure 3 – Pecem, Brazil, Golar Spirit FSRU the NG gas onshore. Therefore the options for FSRU on one side of the jetty and the LNGC is berthed mooring system which will be discussed in this paper on the other side. The jetty includes mooring/ are limited to fixed platform/jetty mooring and fendering structures for both the FSRU and LNGC, mooring tower system. loading arms for LNG transfers from LNGC to the FSRU as well as high pressure loading arm(s) to a. Fixed platform/jetty mooring transfer natural gas from the regasification unit on the FSRU to the jetty. The gas then flows in a riser • Dual Berth Jetty down the jetty substructure to a subsea Pipeline In this concept the configuration comprises a dual End Manifold (PLEM) and via subsea pipeline to berth jetty arrangement. The FSRU is berthed shore. << 31 jurnal IAFMI 03 Desember 2015

Figure 4 – DUSUP, Jebel Ali Port, Dubai, Golar Freeze FSRU

Figure 5 – Jakarta, Indonesia, Golar FSRU Jawa Barat

The dual berth jetty arrangement is currently in then flows by a riser down the jetty substructure to operation at the following locations: a subsea PLEM, and via subsea pipeline to shore.

- Guanabara Bay, Brazil, Golar Winter FSRU The LNG transferred onto the FSRU using side- (Figure 2) by-side transfer; in the scenario the LNGC berths alongside the FSRU and LNG transfer is carried out - Pecem, Brazil, Golar Spirit FSRU (Figure 3) using loading arms on the FSRU.

• Single Berth Jetty The single berth jetty arrangement is currently in operation at following locations: In this concept the configuration comprises a single berth jetty arrangement. The jetty includes - DUSUP, Jebel Ali Port Dubai, Golar Freeze FSRU mooring/fendering structures to moor the FSRU. (Figure 4) The FSRU contains loading arms for LNG transfers from the LNGC to FSRU through a Ship to Ship - Jakarta, Indonesia, Golar FSRU Jawa Barat (STS) transfer mechanism. High pressure loading (Figure 5) arm(s), also on the FSRU, transfer the NG from the regasification unit on the FSRU to the jetty. The gas jurnal IAFMI 03 Desember 2015 >> 32

Figure 6 – Lampung, Indonesia, Hoegh PGN FSRU Lampung

Figure 7 – LNG Ship to Ship (STS) Transfer at PGN FSRU Lampung b. Mooring Tower of waves, wind and current. This reduces the environmental loading on the vessel. The LNGC • Regular Soft Yoke Mooring System (SYMS) berths alongside the FSRU and LNG transfer is carried out via Loading Arms installed on the In this concept, the FSRU is permanently moored FSRU. High pressure gas is exported via a swivel on by means of a soft yoke to a mooring tower. The the mooring tower to the subsea pipeline. Further FSRU weathervanes around the tower so that transportation or NG to the Onshore Receiving the FSRU bow always faces into the vector sum Facility will be similar to those described for fixed << 33 jurnal IAFMI 03 Desember 2015

platform/jetty mooring concept. • Hawser system

The tower may be located in approximately 18 This system is also similar with the regular yoke to 40m of water depth (typical range used in system; however the yoke is replaced by a simple industry) with benign environmental conditions. hawser system. This makes the system much less complicated and thus cheaper. This system can be The SYMS arrangement is currently on operation at easily disconnected and therefore it is often used the following locations: for the mooring of shuttle tankers. For permanent mooring, there is a need to address a possible - Lampung, Indonesia, Hoegh PGN FSRU collision between the floating vessel and the rigid Lampung (Figure 6 and Figure 7) tower. Even minimum impact from the vessel • Submerged Yoke System (SYS) can cause damage to the fixed tower. Another disadvantage is that the fluid transfer between the This system is similar to the regular yoke system. vessel and the tower cannot take place through However the yoke is completely submerged to jumper hoses. Thus, floating or submarine hoses minimize the effect of waves or ice forces. Also are required. since the yoke connection is not at the top of the jacket structure but close to the bottom, there is a As a consequence, this hawser system is not large reduction of the overturning moment. This really suitable for the FSRU mooring because of allows a much simpler solution for the foundation the collision risks and the lack of floating HP gas and tower design. Disadvantage of this system is flexible lines. that there is no easy access from the vessel to the Typical concept illustration of a tower hawser tower structure. mooring system is presented in Figure 9. Typical concept illustration of SYS is presented in Figure 8.

Figure 8 – Typical concept illustration Submerged Yoke System jurnal IAFMI 03 Desember 2015 >> 34

Figure 9 – Typical Tower Hawser Mooring System

Mooring System Selection Criteria the loading/offloading equipment shall be disconnected, and the vessel may have to leave a. Sensitivity to prevailing environmental the berth if damage to the vessel and/or the berth conditions becomes a concern. The ability of the FSRU to meet safety, c. Duration for construction & installation environmental, and performance targets during the range of weather and sea conditions that may Duration for construction and installation of affect requires planning and modelling based on mooring system is one of the major components reliable metocean data. Weather, sea conditions, for overall development schedule of an FSRU as well as subsoil conditions at the site affect the terminal. This will also play a role in determining type and strength of the mooring system to assure the “first gas to customer”. Different types of that the FSRO remains safely moored under all mooring system will have different duration for expected environmental conditions. construction and installation which needs to be rigorously assessed in the selection phase. Differences in duration of construction and b. Relative probability of downtime due to installation may have impact on the start-up date high mooring forces and deferred revenues.

Downtime, in this case related to mooring forces, d. CAPEX (Capital Expenditure) will occur when excessive vessel motions result In order to determine the CAPEX (Capital in the safe working load of mooring lines been Expenditure), design basis and conceptual design exceeded, the rated reaction force of fenders being of various types of mooring system needs to exceeded or in case the offloading equipment be prepared. CAPEX of mooring system shall having to accommodate larger motions than its include engineering, management, construction maximum operation criteria. If the vessel motions and installation costs of all mooring system start to approach the maximum operating limit, components, such as mooring structures (e.g. product transfer operations shall be halted, << 35 jurnal IAFMI 03 Desember 2015

breasting/mooring dolphins, loading platform, or REFERENCES: mooring tower), mooring bollards or quick release hooks, fenders, and also associated loading/ Wim van Wijngaarden, Hein Oomen, Jos van offloading equipment and topsides required for der Hoorn, 2004, Offshore LNG Terminals: Sunk different types of mooring system. or Floated?, Offshore Technology Conference Houston, Texas - 2004 e. OPEX (Operational Expenditure) Lloyd’s Register, 2013, Indonesia GAS: FSRU Similar with CAPEX, OPEX (Operational and Small LNG Seminar Presentation Pack, Hotel Expenditure) for different types of mooring system Borobudur Jakarta also needs to be assessed as another selection Royal Haskoning Indonesia, 2012, Concept criterion. This includes all maintenance and Selection Mooring System and Tower Yoke inspection requirements for the mooring system Mooring System, Labuhan Maringgai LNG specific components. Periodic replacement of Floating Storage and Regasification Facilities mooring equipment and fenders (depending on Project their lifetime) shall also be included in the OPEX estimates. About the Author For the last two and a Summary half years, Ecky Yulistiana Mooring Type Selection for an Offshore LNG has been working as Terminal shall be addressed earlier in the feasibility Project Engineer for BP study/conceptual engineering phase of the planned Indonesia, and has been facility to ensure all applicable concepts have been involved in Tangguh evaluated comprehensively and the best applicable Expansion Project. Prior concept is selected for the detailed design and to join BP Indonesia, Ecky construction/installation. Technical criteria (i.e. had several professional environmental/met ocean condition, probability roles in Engineering of downtime, and schedule for construction/ Consultancy Companies, mainly in Project installation) and financial criteria (i.e. CAPEX and Management, Coastal and Marine Infrastructure OPEX) shall be pre-determined and assessed during Projects in various phases, including Feasibility feasibility study/conceptual engineering phase to Studies, Conceptual and Detailed Engineering determine the mooring type which is technically Design. and financially feasible and meet the operational He had worked previously for Royal requirements of the facility. HaskoningDHV, DHV Indonesia, Witteveen+Bos, and Tripatra Engineers & Constructors. Ecky completed his Bachelor Degree in Ocean Engineering, Civil and Planning Faculty, ITB in 2002. jurnal IAFMI 03 Desember 2015 >> 36 2016 2017 2015 2018 2017 2019 2020 2015 2019 2018 2015 2017 2019 2019 Tahun Q1 Q4 Q2 Q4 Q3 Q1 Q2 Q1 Q3 Q4 Q3 Q2 Q4 Q4 Target Onstream Kuartal - - - 70 17 55 108 310 780 100 330 145 Gas 18.5 18.5 25.5 MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd Capacity - - - - - Oil Oil / 3300 5200 4200 4605 3420 3100 BOPD BOPD BOPD BOPD BOPD BOPD BOPD BOPD BOPD 17000 20000 25000 Condensate EPC EPC EPC FEED FEED Selesai EPC Selesai EPC Selesai Selesai EPC Selesai Tender EPC Tender EPC Tender EPC Tender EPC Tender EPC Tender EPC Project Stage Onshore Onshore Onshore Onshore Onshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Onshore/ Riau Aceh Aceh Timur Cepu- Madura Location Laut Jawa Laut Jawa Laut Jawa Laut Palembang Palembang Laut Natuna Laut Natuna Jawa Tengah Jawa Jawa Tengah Jawa Gressik-Jawa Gressik-Jawa Operator PHE ONWJ PHE ONWJ PHE ONWJ Eni Krueng Mane Medco E&PMedco Malaka Chevron Pacific Indonesia Pertamina EP Cepu & MCL EP Cepu Pertamina Santos North West Natuna Premier Oil Natuna Sea B.V Premier Oil Natuna Sea B.V ConocoPhillips (Grissik) Ltd. ConocoPhillips (Grissik) Ltd. Petronas Carigali Muriah Ltd. (PCML) Ltd. Carigali Muriah Petronas Petronas Carigali Ketapang 2 Ltd (PCK2L) 2 Ltd Carigali Ketapang Petronas Scope Pengadaan dan Instalasi Kompressor - Automatic WellStations (AWT) Test Automatic - - Jaringan pipa pengumpul, pipa distribusi, steamflood - Flowlines Pembangunan- Central Processing Plant (CPP) - Flowline Trunkline- Storage Sulphur - - Custody Meter Platform Wellhead 1 (satu) - - Pengadaan FPSO Wellhead- Platform - FPSO Rental - Subsea Pipeline Gas Pipeline - Export - ORF - Central Processing Platform Wellhead- Tower C Infield- Flowline Wellhead- Platform - FPSO (Lease) KB Reactivation & KC - Platform pipeline existing dan facilities existing Modification - - Instalasi new pipeline (OOA) kaki empat anjungan 1 (satu) Pemasangan - (OCA) kaki tiga anjungan 1 (satu) Pemasangan - Pemasangan- pipadari anjungan ke fasilitas pemrosesan darat di Balongan Pemboran- sumur pengembangan dan sumur step out Wellhead- Platform CPP Baru Gajah - WHP Pelikan Pipeline - Pipeline- dari WNTS SSTI-B ke Pulau Pemping ORF- di Pulau Pemping Pemasangan- 1 (satu)unmanned platform tigakaki Pipeline- dari platform YYA ke platform KLB KLB di Brownfield Modifikasi - KKKS PEP Cepu Gas - Plant Wellpad- Pipeline - KKKS MCL Flowline- Wellpad- Pengadaan dan Instalasi Kompressor Field Name > 100 MM USD N ilai d e ngan b e rjalan ye k MIGAS Sumpal Compression YY Field Development Kepodang Gas Development KILO Field Further Development Suban Compression Block GasA Field Development Bukit Tua Development Pemping Development Pelikan Development Pelikan North Duri Development Area 13 Ande Ande Lumut Ande Ande Jambu Aye Utara (JAU) OO-OC-OX Field Development JTB-C Jambaran, Tiung Biru dan Cendana 2 7 9 3 4 6 1 8 5 13 12 11 10 14 No. Proyek Berjalan dengan nilah diatas 100 MMUS$diatas nilah dengan Proyek Berjalan * Mohon pertimbangan Bagian Hubungan Masyarakat SKK Migas terkait sifat kerahasiaan data tersebut diatas sebelum menginformasikannya ke pihak luar SKK Migas. luar pihak ke menginformasikannya sebelum diatas tersebut data kerahasiaan sifat terkait SKK Migas Masyarakat Hubungan Bagian pertimbangan Mohon * P ro << 37 jurnal IAFMI 03 Desember 2015 2017 2016 2015 2016 2016 2016 2016 2015 2017 2015 2017 2014 2018 2020 Tahun Q3 Q4 Q2 Q3 Q2 Q1 Q4 Q3 Q4 Q4 Q1 Q2 Q1 Q4 Target Onstream Kuartal - 80 65 60 75 110 310 175 210 Gas 27.4 BSCF 1330.5 1330.5 109.25 109.25 MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMscfd MMSCFD 3.8 mtpa Capacity - - - 738 250 600 Oil Oil / 6600 3750 1800 BCPD BOPD BOPD BOPD BOPD BOPD BOPD BOPD MBBL 11000 12650 185,000 185,000 Condensate EPC EPC EPC EPC EPC EPC EPC EPCI EPCI EPCI FEED Onshore: Offshore: Tender EPC Tender EPC Tender EPC Tender EPC Project Stage Onshore Onshore Onshore Onshore Onshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Offshore Onshore/ Selat Selat Cepu- Cepu- Papua Madura Makasar Makasar Location Sulawesi Sulawesi Sulawesi Kalimantan Jawa Tengah Jawa Jawa Tengah Jawa Selat Madura Selat Madura Selat Madura Operator BP Berau Ltd Ltd BP Berau Pertamina EP Pertamina Pertamina EP Pertamina EP Pertamina Mobil Cepu Ltd. Total E&P Indonesie ENI Muara Bakau B. V. B. Bakau Muara ENI Husky CNOOC Madura Ltd Husky CNOOC Madura Ltd Kangean Energy Indonesia PHE West Madura Offshore Chevron Indonesia Co. (Rapak) Indonesia Chevron JOB PertaminaMedco E&P Tomori Scope X-tree, Subsea Control, Manifold, Subsea X-tree, Control, ) EPCI 2 (WHP PHE 48, WHP PHE 7, WHP PHE 29) WHP PHE 7, WHP PHE 48, EPCI 2 (WHP EPCI 1 (WHP PHE 12, WHP PHE 24, dan CPP) dan PHE 24, WHP PHE 12, EPCI 1 (WHP - Flowline Gas - Plant - Flowline- Gas - Plant Flowline- Gas - Plant Gas - Plant - Pipeline - Jetty Wellhead- Platform FPSO - Subsea- Pipeline - GMS Platform Wellhead 2 (dua) - - FPU EJGP ke in tie Pipeline - Pemboran- sumur Flowlines- from wells Manifold - Main- Gathering Pipeline, Rigid pipeline Subsea- Control Module Pembangunan- Unmanned Platform tigakaki Interconnections- Pipeline to East Mandu Processing Facilities Central - Onshore- Pipeline Mooring- Tower Offshore + Pipeline Facilities Offloading (FSO) and Floating Storage - Infrastructure- 4- (empat)buah Platform Pemboran- sumur Well- Pads Pipeline - LNG Train 1 (satu) - - Compressor (future) Seismik- & Pemboran Appraisal ( laut bawah Peralatan - Umbilical (FPU) Unit Production Floating - Pipa- Gasuntuk dan PipaKondensatuntuk dari FPU titik menuju tie-in FPU ke sumur Pipadari Jaringan - Onshore- Pipeline - Onshore Receiving Facility Modifikasi - Topside Facilities Subsea - Well- Completion Field Name IDD Bangka IDD MDA - MBH Development MBH - MDA Madura BD Development Pengembangan Gas Jawa (PPGJ)-Gundih Gas Jawa Pengembangan Pengembangan Gas Matindok (PPGM) - - (PPGM) Gas Matindok Pengembangan GasDonggi Plant Gas Matindok Pengembangan Proyek Gas Plant Matindok - (PPGM) 3 Dev. Mahakam South (Jempang Metulang 1) Pengembangan Lapangan Jangkrik North East Senoro Gas Development Pengembangan Lapangan Banyu Urip Terang Sirasun Batur Phase 2 Tangguh Expansion (Train 3) PHE - 6/12, 7, 24, 29, 44 dan 48 44 dan 29, 24, 7, 6/12, PHE - 26 20 19 15 17 18 23 21 24 27 16 22 25 No. * Mohon pertimbangan Bagian Hubungan Masyarakat SKK Migas terkait sifat kerahasiaan data tersebut diatas sebelum menginformasikannya ke pihak luar SKK Migas. luar pihak ke menginformasikannya sebelum diatas tersebut data kerahasiaan sifat terkait SKK Migas Masyarakat Hubungan Bagian pertimbangan Mohon * jurnal IAFMI 03 Desember 2015 >> 38

Implementing Risk Based Structural Integrity Management for Life Extension and Decommissioning of Mature Offshore Platforms

By: Karyadi Junedi, PT Pertamina Hulu Energi Offshore North-West Java

Abstract

PT Pertamina Hulu Energi Offshore North-West Java (PHE ONWJ) presently has a fleet of 223 offshore platforms, with about 188 platforms are active in the production of oil and gas. The platforms in this fleet have installation dates ranging from 1970 to the present; however the majority of the platforms were installed in the 1970s and 80s. Recognizing the challenge to maintain this mature offshore facilities and the importance of structural integrity to ensure safe and reliable operation, PHE ONWJ has developed Risk-Based Structural Integrity Management (RBSIM) to optimize the underwater inspection, maintenance, and repair (IMR) strategy. By means of RBSIM approach, the valuable resources will be focused on the platforms “most at risk”. These most-at-risk platforms will have higher priority to be included in the IMR program than platforms with lower risk. Higher risk platforms will be inspected more frequently, using more detailed inspection surveys; whereas those platforms with lower risk ranking will have less frequent and less stringent inspections. Apart from optimization of underwater IMR strategy, RBSIM also provides means to justify and prioritize structural inspections and studies as part of life extension requirement and initiative for asset decommissioning. RBSIM process captures and review potential threats to the structural integrity which is posed by life extension such as: corrosion, overloading, operational changes, incidents, and fatigue. All of these steps are necessary to lengthen the life of an asset or demonstrate larger structural capacity beyond the original design values. The change management in the RBSIM along with the database system provides a better understanding of the current condition of the offshore platforms and enables PHE ONWJ as the asset owner to properly plan the decommissioning activities. Implementation of RBSIM provides PHE ONWJ a means to optimize the underwater IMR activities whilst maintaining and not sacrificing structural integrity.

Keywords: Structural Integrity; Risk Based; Life Extension; Decommissioning << 39 jurnal IAFMI 03 Desember 2015

Figure 1: Structural Integrity Management (SIM) Process (Ref.: ISO 19902)

Introduction platforms’ fitness-for-purpose over their entire life, from installation through to decommissioning. Structural integrity of an offshore platform is SIM process provides a framework for inspection defined as the ability of this structure to perform its planning, maintenance, and repair of an offshore required function effectively and efficiently over a platform or group of platforms. A diagram of the defined time period whilst protecting health, safety, SIM process (from ISO 19902, Section 23) is shown in and environment. Compare to onshore facilities, Figure 1. operating environment of the offshore platforms is harsher. They are exposed to more uncertainties As shown in this figure, there are four elements in term of environmental loading and also more in SIM: Data, Evaluation, Inspection Strategy, and difficult to inspect and maintain. The integrity of a Inspection Program. The first step is to collect and fixed offshore platform was initiated by designing review all available data associated with the offshore it to the design code, traditionally API RP2A platforms in the fleet. The next step is to evaluate and standard. This structure is designed to have ability assess the structure to confirm its integrity status and to survive all loads expected during fabrication, to obtain fitness-for-service. Based on the structural transportation, and installation. Once installed at assessment for all offshore structures in the fleet, the its location, a fixed offshore platform is required to overall inspection philosophy, strategy, and plan can meet two basic requirements: 1) to withstand loads be defined. After the plan has been determined, the resulting from severe storm and earthquakes and 2) scope of the inspection will be implemented and the to function safely as combined drilling, production, inspection program will be executed. Finally, when and accommodation facility. The corrosive nature the data are updated, the SIM process cycle begins of offshore environment also became a critical again. importance in maintaining the integrity. For ensuring the integrity of these offshore platforms, underwater structure inspection is Acknowledging the importance of structural recognized as one of the crucial activities. Though integrity, PHE ONWJ implemented structural integrity underwater inspection technologies have evolved management (SIM) system to ensure offshore jurnal IAFMI 03 Desember 2015 >> 40

a long way ago from first inception, however this Risk Based Structural Integrity activity still poses a significant risk, especially when Management (RBSIM) it involves diving. Time based underwater inspection strategy is widely practiced approach in the industry The PHE ONWJ RBSIM framework is constructed and well documented in codes of practice such API from three main building blocks. These building blocks and ISO. However, in recent years, there is a shift to are illustrated in Figure 2. The process starts with the move away from the traditional approach to optimize identification of key offshore platform attributes that underwater inspection based on risk. contribute to overall risk of platform failure.

In April 2013, Indonesian Oil and Gas Regulatory The attributes affect either the likelihood of Body (MIGAS) issued a circular letter regarding failure or the consequences of that failure. Risk Based Inspection (RBI) for oil and gas facilities Derived from the risk assessment process, including offshore platform structures. This circular inspection strategy will be developed accordingly. letter provides a provision for Production Sharing

Figure 2: RBSIM Building Blocks

Contractor (PSC) to adopt the risk based approach in-lieu of the time-based provided the risk-based methodology selected by PSC must be able to reduce the residual risk associated with the structures to an acceptable level.

Responding to MIGAS’s circular letter on RBI, PHE ONWJ initiated the development of a Risk Based SIM approach in 2013 to develop a high level prioritization tool which could provide guidance in developing an Inspection, Maintenance, and Repair (IMR) strategy for a large fleet of PHE ONWJ offshore platforms. This paper describes the Risk Based SIM framework and its impact on underwater inspection strategy, life extension program, and decommissioning activities in PHE ONWJ. Figure 3: RBSIM Qualitative Workflow << 41 jurnal IAFMI 03 Desember 2015

This relative risk level of an individual platform will likelihood. For example, a 1960’s vintage 6-leg, K-braced be compared to those for other platforms in the fleet platform has a higher likelihood of failure than a 1980’s to evaluate where resources should be dedicated to vintage 8-leg, X-braced platform. The newer platform most effectively reduce or maintain the overall risk is designed to more modern standards, and has an for a given platform fleet inherently more redundant structural configuration since it has 8 legs and is X braced. As many of PHE ONWJ offshore platforms However, through deterioration or damage, the are considered old facilities with limited base likelihood of the new 8-leg platform may be documentations, the risk based approach is highly

Figure 4: RBSIM Risk Matrix

reduced to a level below that of a better maintained, qualitative methodology, with scoring mechanism, though older, 6-leg platform. and does not require detailed structural assessment The consequence of failure is based on the safety, data. The process flow for the RBSIM qualitative environmental, and business/financial factors that methodology is illustrated in Figure 3. would arise should the platform fail or collapse. For The score for the likelihood of failure is analogous example, a manned drilling and production platform to the probability that the platform will experience would have a higher consequence of failure than an catastrophic failure. However, it does not explicitly unmanned wellhead platform. establish a quantitative probability of failure. Failure Risk is defined as a product of Probability or is defined as collapse of the platform caused by Likelihood of Failure and the Consequence if such deterioration, extreme loading, or a combination of failure occurs to the safety of people, environment, both. Failure due to fire, blast, and other accidental and business. In mathematical terms, risk is conditions are not considered expressed as:

The likelihood score is based on a platform’s structural configuration (to determine its baseline Risk = Likelihood of Failure × onsequence of Failure likelihood) as well as its current condition, based on inspection results, which may influence the baseline jurnal IAFMI 03 Desember 2015 >> 42

Risk can be expressed in the form of a risk matrix. to be included in the IMR program than platforms A 3 x 5 risk matrix, as shown in Figure 4, is used for risk with a low relative risk. Higher risk platforms will categorization. In accordance with the risk matrix, five be inspected more frequently, using more detailed likelihood and three consequence bins are created. inspection surveys; whereas those platforms with The likelihood bins range from A to E with E being the lower risk ranking will have less frequent and less lowest and A being the highest likelihood of failure, stringent inspections. while in the consequence bins L being the lowest and H being the highest consequence of failure. RBSIM Implementation These bins represent specific ranges of likelihood The time-based inspection schedule for all and consequence values. By combining the likelihood offshore platforms located in Indonesian waters is and consequence, a risk category is determined. prescribed by MIGAS. The MIGAS prescription calls As shown in the figure below, a platform with a for a Minor inspections (Above Water Inspection), likelihood bin of E and a consequence bin of L would followed by a Major inspection (Underwater have a Low risk category. Another platform with a Inspection), then another Minor inspection, likelihood of A and a consequence of M would have a and finally a Complete inspection (Underwater High risk category. These bins are not indications of Inspection) to round off the four-year cycle. good or bad levels of risk but are merely a means of Annually, on average, PHE ONWJ has to perform distinguishing risk of one platform relative to other underwater platform inspection on around 50 platforms in the fleet. platforms to partially comply with the MIGAS Once the relative risk of each platform is defined requirement for time-based inspection as mentioned (in accordance with the methodology described above. Partially comply with the MIGAS requirement above), the next step is to compare and rank these means that PHE ONWJ can only perform the Complete platforms according to relative “risk” posed by each underwater inspection of one platform every 4 years platform. By “risk” we mean consideration of the due to the limited resources. likelihood of a platform failure (due to environmental When MIGAS endorsed Risk-Based Inspection overload) and the consequence of such a failure. approach, PHE ONWJ initiated the implementation Following SIM cycle, a ranking process must be of Risk-Based Underwater Inspection in 2013. Being updateable to account for inspection results. For compared to the time-based underwater inspection example, platforms that are found through further approach over a period of 10 years (from 2013 inspection to be in good condition, with no signs until 2022), the risk-based underwater inspection of damage or other degradation, would receive strategy would provide optimization of underwater either a lower risk ranking or maintain its intrinsic inspection interval and scope. As shown in Figure value. Between inspections, a platform would move 5, it is projected that by implementing risk based towards the top of the list again, where its relative inspection strategy, the average number of offshore risk level would trigger an underwater inspection. platforms inspected every year will be rationalized Depending on inspection findings, a platform’s considerably. The saving in inspection cost is very ranking would stay the same or increase should also significant without sizeable increase in the significant deterioration have occurred. overall risk level of the fleet. The resources which In developing an inspection strategy, the valuable were previously used solely for inspection will now resources will be focused on the higher risk platforms. be available for performing maintenance and repair These higher risk platforms will have higher priority works to reduce the fleet risks. << 43 jurnal IAFMI 03 Desember 2015

Figure 5: PHE ONWJ Underwater Inspection Activities Projection

RBSIM implementation also delivers upside gas production eminent, PHE ONWJ is required for improving safety performance by reducing to extend the life of its offshore platforms without diver exposure. RBSIM provides a means to allow compromising structural integrity and safety. application of well-tested Remotely Operated Demonstrating the structural integrity of mature Underwater Vehicles commonly referred to as an ROV. assets is of utmost importance when considering life This ROV based underwater inspection technologies extension. The challenges commonly presented by would replace the traditional diving exercise, while life extension include: Degradation due to corrosion; maintaining the same level of structural integrity Overloading (severe environmental loads, additional assurance. topsides loads); Operational changes (platform In short, the risk-based approach provides a modifications); Unprecedented incidents (ship means to rationalize the underwater inspection collision, explosion); and Structural Fatigue. activities whilst maintaining and not sacrificing Implementation of RBSIM in PHE ONWJ delivers structural integrity. structural integrity assurance for offshore platforms to overcome the above challenges to meet life RBSIM for Life Extension extension requirements by integrating effective and Decommissioning Activities inspection, change management, data/information There are 223 offshore platforms operated by management, and advanced integrity assessment. PHE ONWJ and more than 75% of them have been RBSIM covers the development of such in operation for more than 20 years. Many of these inspection strategies, work scopes, inspection structures are operating beyond their original results reviews, and the maintenance of inspection design life; however, as the need to sustain oil and record databases. By having access to asset integrity jurnal IAFMI 03 Desember 2015 >> 44

database, the assigned engineer can easily identify Additionally, the Change management in the structural defect/anomaly, perform assessments, RBSIM along with the intensive database system and then develop repair solutions, both for topsides provides a better understanding of the current and subsea. condition of the offshore platforms. Validity of the as- built information (drawings, reports) and all historical Change management is required when records associated with an offshore platform are modifications are made to an installation. Brownfield essential in its decommissioning phase. In preparing developments (to existing facilities) normally the decommissioning of an offshore platform, the involve changes in the physical and operational assigned engineer is required to secure accurate parameters of a platform. Meanwhile, greenfield information on the structural weight of this platform, (new) developments often require operational structural configuration, changes to structure, and changes as well as updated procedures. The capacity current condition. Once this info is available, the of the existing structure to support modifications is removal options screening for both the topside and key to this process. RBSIM specifies a weight control the jacket (Substructure) can be evaluated. With procedure that is implemented as part of good change RBSIM is up and running in PHE ONWJ, the bulk of management for any offshore structure. Structural information required for decommissioning phase analysis computer model of each offshore platform in has been collected, communicated, and stored in an the fleet also need to be maintained and updated to efficient and accessible manner. This circumstance quantify the effect of any change on the structure. does enable PHE ONWJ, as the asset owner, to This risk based SIM approach is a data intensive properly plan the decommissioning activities for its exercise and highly dependent upon the quality offshore platform asset. of the evidence (data) of the structural condition, apart from the competence and skill of the structural Summary and Conclusion engineer. The primary activities include: producing The following summary and conclusions are put key SIM documentations and annual integrity together with regard to the implementation of the summary reports; managing the platform inspection Risk-Based Structural Integrity Management (RBSIM) philosophy (topsides and subsea); reviewing in PHE ONWJ: inspection results; maintaining an anomaly database; • Structural integrity management (SIM) system is engineering of anomaly repairs, emergency response essential to ensure offshore platforms’ fitness- services; and providing structural analysis models for-purpose over their entire life, from installation and a weight control database. through to decommissioning. All of the above activities are essential to ensure • The risk-based approach on SIM helps PHE ONWJ the structural critical elements are acceptable and to identify the potential structural threats and that performance standards are being fulfilled. evaluate the risk structurally. RBSIM provides Furthermore, advanced structural integrity an organized process to capture and review the assessment is to be performed to demonstrate structural integrity risk. A better understanding enhanced structural capacity beyond the original of the risk of potential structural integrity threats design values. The outcomes from this assessment leads to more effective rationalization of work provide valuable input for the decision-making and enables PHE ONWJ to have its radar screen process surrounding platform life extension. on critical structural integrity issues. << 45 jurnal IAFMI 03 Desember 2015

• RBSIM provides a structured auditable process to optimize underwater inspection interval construction, and maintenance works of Fixed and scope based on condition of the platform Offshore Platforms, Floating Production System structure, whilst maintaining and not sacrificing (FPSO/FSO), and Marine facilities (Loading/ structural integrity. Offloading facilities, Jetty, Mooring system, SBM). • RBSIM delivers structural integrity assurance for offshore platforms to meet the requirements References from life extension and decommissioning by integrating effective inspection, change 1. DeFranco, S., O’Connor, P., Tallin, A., Roy, R., management, data/information management, and Puskar, F., 1999, Development of Risk and advanced integrity assessment. Based Underwater Inspection (RBUI) Process for Prioritizing Inspection of Large Number of Platforms, OTC 10846, Houston, Texas, 3-6 Acknowledgement May 1999. 2. Nabavian, M., 2012, Developing a Robust SIM The author would like to thank Management of Program, Structural Integrity Management PT. PHE ONWJ for their permission and support in Conference North Sea, 27-28 November 2012. developing this paper. 3. El-Reedy, M.A., 2012, Offshore Structures Design, Construction, and Maintenance, Gulf About the Author Professional Publishing, New York. 4. Director General of Oil and Natural Gas Karyadi Junedi is Decision No. 21K/38/DJM/1999 dated 16 April Structural Integrity Lead 1999 concerning Guidelines and Procedures at PERTAMINA Hulu Energi on Technical Inspections of Platform – Offshore North West Constructions Utilized in the Mining of Oil Java (PHE ONWJ) who is in and Natural Gas. charge running Structural 5. ISO 19902-2007, and Natural Gas Integrity Management Industry – Fixed Steel Offshore Structures (1st System for over 200 fixed platforms in Edition). PERTAMINA’s Offshore North West Java Block, 6. Structural Integrity Management Framework Indonesia. Previously, he was a Senior Structural for Fixed Jacket Structures, Published by Integrity Engineer with Shell Malaysia E&P Health and Safety Executive UK, RR684, 2009. and ConocoPhillips Indonesia. He received his 7. API RP 2SIM, Structural Integrity Management MSc. degree in Naval Architecture and Marine of Fixed Offshore Structures, November 2014. Engineering from University of Michigan (1996) and BSc. degree in Marine Engineering from Texas A&M University (1994). His knowledge and skills are molded by over 20 (twenty) years of experience in oil-and-gas-related works, including technical integrity management, project management, engineering design & jurnal IAFMI 03 Desember 2015 >> 46

FSRU SEAKEEPING DURING CONNECTION WITH TOWER YOKE MOORING SYSTEM A LESSON LEARNED FROM TYMS LAMPUNG PROJECT

By Nasyih Aminulloh, Installation Project Engineering, PT. Rekayasa Industri

Abstract

PGN FSRU Lampung was the first FSRU permanently moored with Tower Yoke Mooring System (TYMS), Innovative mooring solution for shallow water. TYMS is a four legged jacket in 23 meters of water with 4 through leg piles. The Upper TYMS, which sits on top of the jacket, consist of a fixed deck with turntable and a hose deck. The mooring yoke will be the structural connection between the mooring tower and the FSRU. It is connected to the FSRU through the yoke head bearing and an MSS mounted on the bow of the FSRU. The most critical phase during the installation stage is to connect the FSRU and the Mooring Yoke. During all the phase afore mentioned, FSRU station keeping hold the most critical activity since all of the phase required FSRU to be steady with minimum motion allowed. This short paper highlighted the Station Keeping activity performed during the Installation phase, started from the study and field execution that successfully performed as a lesson learn.

Seakeeping Study performed to understand the required Capacity of Anchor Handling Tug (AHT) to station keep the FSRU including Line tension weather limitation of seakeeping activity. From The study it is concluded that 4 ea AHT with bollard pull capacity minimum 45 MT are required to undertake the job. Weather limitation applied with wave height 1.6 m, Wind speed 25 Knot and Current speed 1 m/s. Weather limitation applied with refer weather analysis that already performed before to understand the environmental characteristic during specific windows. The seakeeping study performed became input to develop Seakeeping procedure to be applied during field execution. Led by mooring master, Seakeeping campaign require extensive and detail planning, risk analysis and mitigation to avoid any accident may occur during the campaign. Miss coordination could lead into terrific disaster such as collision between FSRU and TYMS. Highlight of the detail planning and procedure are discussed in this paper.

Keywords: FSRU; TYMS; Seakeeping; AHT << 47 jurnal IAFMI 03 Desember 2015

Overview complete with briddle cable and Hose hook up.

The TYMS Lampung considered as pioneer Highlight of FSRU specification described below: project where a Tower Yoke Mooring System for the first time is used for an LNG import terminal. This • Type : FSRU project consist of development LNG import terminal • Year Built : 2014 in a type of Floating Storage and Regasification Unit • Builder : Hyundai H. Industries Co., Ltd (FSRU), a flexible, cost-effective way to receive and • process shipments of liquefied natural gas (LNG). Containment : Mark III - Membrane FSRU is increasingly being used to meet natural • Cargo capacity : 170 132 m3 gas demand in smaller markets, or as a temporary • Regas capacity : 360 mmscf/d solution until onshore regasification facilities are • Classification : DNV-GL built. FSRU act, in all aspects, similar to a land-based • Speed : 10 knots terminal. In addition to transporting LNG, FSRUs • LOA : 302,66 m have the capability to vaporize LNG and deliver natural gas through specially designed offshore and • Breadth moulded : 46 m near-shore receiving facilities. • Summer draught : 12,6 m • Gross Tonnage : 109.671 This Project owned by PT. PGN LNG INDONESIA and executed by HOEGH LNG and PT Rekayasa • Summer DWT : 92.951 mt Industri Consortium. PT. REKAYASA INDUSTRI is LNG delivered by LNG carriers is received by the responsible for the scope of Subsea Pipeline and ORF FSRU offloading system, LNG Gas Carrier guided by also overall TYMS Offshore Installation that will take Pilot Tug to rest side bi-side with Permanently Moored place in two phases. The 1st phase mainly consist of: FSRU. The LNG then stored in tanks, pumped, re- Installation of Jacket, Piles, Upper Mooring Tower, gasified into natural gas and delivered to consumers and Mooring Yoke Arm, and 2nd Phase mainly consist through a flexible hose to Mooring tower, continued of Connection between FSRU and Yoke System to rigid riser, connected to the subsea pipeline. Prior to its delivery, the natural gas flow rate is measured by an ultrasonic flow meter and the gas is odorized, therefore mentioned process took place on Onshore Receiving Facility (ORF).

The FSRU Tower Yoke Mooring System is a four legged jacket in 23 meters of water with 4 through leg piles. The Upper Deck, which sits on top of the jacket consist of a fixed deck with turntable and a hose deck. A turntable is fastened to the tower with a roller bearing to allow the FSRU, and any LNG shuttle tanker delivering LNG to it, to freely weathervane 360 degree about the tower to follow metocean direction. The mooring yoke assembly connecting the platform with the tower and utilizes a heavy weight hanging Figure 1: Facility Overview from the top of the vessel, The mooring has pitch jurnal IAFMI 03 Desember 2015 >> 48

and roll joints and includes a large ballast tank filled of FSRU. FSRU is self-propelled Vessel, after its arrival, with water to provide the necessary restoring force the engine shuts down in safe area and firstly 1 to minimize vessel motions. Two mooring links kilometer approaching the Mooring Tower the FSRU suspend the tank from a support structure mounted will be towed by 4 AHT vessels, 2 AHT on bow position on the vessel. Power and control systems are all and the other two on stern position. Assuming there managed from the FSRU. are 4 load cases before FSRU installation as following;

CASE DESCRIPTION 1 FSRU during towing condition 2 FSRU approaching mooring tower, maintain position 30 m from mooring tower 3 FSRU softline connected to Yoke, 4 AHT to hold FSRU motion 4 FSRU have connected to Yoke, 2 AHTS at stern to hold FSRU motion Table-1 : Load Case Condition

Detailed the project second phase after TYMS FSRU Seakeeping study performed in the early Installation will include the following installation stage of project, the purpose covered under this activities after the arrival of FSRU to the anchorage scope is to carry out the dynamic analysis on FSRU area. installation. The dynamic behavior and soft line tension during installation is stimulated in time • Breasting of the mooring assist vessels, domain simulation. • Tow- in approach, • Connection to the Mooring Yoke Arm, and FSRU have very big wind induced area causing • Electrical Cable (Bridle 2 numbers) FSRU motion very sensitive to Metocean condition. • Hose Installations (Natural Gas Jumper 12”x3, Air Using of mooring and forward winch not allowed Hose, Fire Water Hose). by client thus this required extensive seakeeping study to keep the vessel safe during approaching During all the phase afore mentioned, FSRU and connection phase, 4 AHT will functioning as life station keeping hold the most critical activity anchor to station keep the FSRU. In detail the scope since all of the phase required FSRU to be steady of this seakeeping study will be described as follows: with minimum motion allowed. The seakeeping study shall be performed to provide input during 1) Calculate the maximum dynamic behavior Seakeeping procedure development to be applied during field execution. This Short paper discussing The analysis to calculate maximum dynamic the FSRU seakeeping work performed in TYMS behavior was performed in two phases. Phase one Lampung Project from the Seakeeping study until relates to analysis performed with 3D diffraction general seakeeping execution highlight. analysis software MOSES to obtain the motion responses of the vessels. Phase two relates to the FSRU Seakeeping Study coupled time domain analysis performed with marine dynamic software Visual OrcaFlex, with Seakeeping Study performed to understand the the motion responses obtained from phase one. required Capacity of Anchor Handling Tug (AHT) to station keep the FSRU including Line tension weather The main software used in this seakeeping study limitation of seakeeping activity during the installation is listed below; << 49 jurnal IAFMI 03 Desember 2015

Figure 2: FSRU Model in ORCAFLEX

MOSES the program to include additional force terms and constraints on the system in response to new In this Project MOSES Version 7.01 were utilized, engineering requirements. Other applications MOSES is an acronym for Multi Operational include oceanographic systems, aquaculture Structural Engineering Simulator, is a simulation and non-marine systems. OrcaFlex is fully 3D and modelling language. The program accepts and can handle multi-line systems, floating a description of a model (vessel) to perform lines, line dynamics after release, etc. Inputs either static, frequency domain or time domain include ship motions, regular and random waves. simulations. MOSES programs have been Results output includes animated replay plus full utilized to generate hydrostatic, equilibrium and graphical and numerical presentation. stability of the vessel and generation of standard sea keeping result in irregular seas. MOSES 2) Determine the maximum allowable sea state developed by Ultramarine and now MOSES was with the defined criteria and operability a part of Bentley. The following table present the effective tension ORCAFLEX for FSRU connection during installation to OrcaFlex is a fully 3D non-linear time domain mooring tower Vessel will come with 11.6 m Draft. finite element program capable of dealing with For sensitifity study additional draft 12.6m to be arbitrarily large deflections of the flexible from added while the environmental condition still the initial configuration developed by Orcina. In remain the same. this Project Orcaflex version 9.7 were utilized. A simple lumped mass element is used which greatly simplifies the mathematical formulation and allows quick and efficient development of jurnal IAFMI 03 Desember 2015 >> 50

Effective Tension Case 1 Case 2 Case 3 Case 4 Draft (m) 11.60 12.60 11.60 12.60 11.60 12.60 11.60 12.60 Tow Line Bow_PS (mT) 18.22 18.99 18.22 18.99 21.27 37.22 - - Tow Line Bow_SB (mT) 18.23 18.99 18.23 18.99 21.27 37.23 - - Tow Line Stern_PS (mT) 10.33 10.53 10.26 10.53 15.09 29.00 15.49 15.53 Tow Line Stern_SB (mT) 10.32 10.53 10.27 10.53 15.09 28.97 15.48 15.54 Soft Line (mT) - - - - 32.92 39.91 35.41 39.04

Table 2: Effective Tension Result Sig. Wave Peak Period (Tp) Total height <1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 >2.4 0 2.2-2.4 0.00 0.00 2.0-2.2 0.00 0.00 1.8-2.0 0.00 0.00 1.6-1.8 0.00 0.00 1.4-1.6 0.00 0.01 0.01 1.2-1.4 0.00 0.03 0.02 0.05 1.0-1.2 0.00 0.10 0.00 0.10 0.8-1.0 0.00 0.01 0.08 0.10 0.6-0.8 0.01 0.08 0.02 0.12 0.4-0.6 0.00 0.08 0.09 0.01 0.00 0.19 0.2-0.4 0.08 0.12 0.06 0.01 0.00 0.00 0.00 0.27 0.0-0.2 0.00 0.05 0.04 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 Total - 0.00 0.13 0.25 0.27 0.28 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 3: All Year Wave Scatter Diagram

The following criteria are considered Allowable FSRU Seakeeping Procedure Sea State and Operability: The towing and positioning operation may be • Maximum softline tension on AHT vessel commenced upon the Mooring Master, FSRU authority bollard is 45 MT and four station keeping vessel masters were ready and satisfy that the FSRU can be controlled safely. • Maximum softline tension on bow FSRU is 40 The necessary drill scenario may be conducted to MT. convince the operation the positioning activity shall With the above two criterias, the allowable sea consider the weather heading; the TYMS and FSRU state for the installation operation is determined. shall in line with head seas direction to avoid any rotation of TYMS and FSRU once connected. The following tables provide a summary of the maximum sea states for installation operation of Weather Forecast and Field actual condition shall FSRU (cells “Y” highlighted in green correspond to be checked before commencing the operation. allowable sea state whereas cells “N” highlighted FSRU Self Propelled upon its arrival to Worksite in red correspond to sea states where at least one will be assisted by 4 AHT to anchorage area, set the criteria has not been met). ballast to reach designated draft, do the seakeeping << 51 jurnal IAFMI 03 Desember 2015

drill then approach to Mooring Tower. Some of the start towing operation things to be considered prior to start towing and  Ensure the soft line was prepared and standby positioning the FSRU toward yoke TYMS platform are at yoke tank with one end has been connected as follows: to pad eye. This soft line installation will include  Prior to arrival at the anchorage area the FSRU in the preparation work prior to start towing will be in the prescribed draft condition and operation. made ready for approach. Communication Line have very important aspect  Four suitably powered and equipped Tugs or for the campaign, the radio communication shall AHT type vessels shall be standby and in ready be kept restricted to the key person responsible condition for tow operation of the FSRU Vessel. for the operation. Position of FSRU will be determined by the Mooring master On-board  Upon the whole AHT ready on towing FSRU. Mooring master shall inform intended configuration, MWS shall verify and check the heading of FSRU to the Construction manager towing line as well as the ringing arrangement on board supporting barge. The FSRU shall be to the respective towing point e.i. bollard, assisted approach to TYMS by4 (four) anchor towing hook and winches. MWS shall ensure handling tugs. The brief data of AHT that further the configuration has made in accordance to used to assist FSRU positioning against the Yoke regulation, procedure and safety aspect. On of TYMS as follows:

AHT Name Bollard Pull LoA Breadth Depth Draft SMS Pargo 50 Ton 41.80 m 10.00 m 4.60 m 3.20 m Lanpan 11 52 Ton 38.10 m 10.60 m 4.90 m 4.10 m IderMandiri 55 Ton 61.30 m 13.10 m 5.20 m 4.50 m Trijaya 1 52 Ton 60.35 m 12.19 m 4.57 m 2.74 m Table- 4 : Brief particular of Supporting AHT Post review, the MWS party shall provide towing Ensure the above four supporting vessel approval prior to start approaching operation have passed suitability survey and obtain the suitability certificate from MWS. The whole  Mooring master, FSRU authority and the vessel deviation note against the vessel shall be closed captain as well as the whole construction team by the vessel owner prior to release to work site shall be sitting together to ensure the towing to avoid out standing on the Construction of and connection sequences has well socialized Approval certificate from such independent MWS and understand to each person to avoid failure company. operation. All below deck crews of the AHT’s shall possess the  Ensure the positioning equipment are working valid Medical check-up and complete necessary well in the respective vessels certificate according to respective grade onboard  To oversee and monitor the weather condition the vessel. and to acknowledge the suitable direction of the weather, yoke position and FSRU heading prior jurnal IAFMI 03 Desember 2015 >> 52

Positioning system must be fitted on board Towing configuration of the FSRU during the FSRU and minimum 2 (two) of the assist approach to TYMS shall be treated as below tug that is positioned at the fore side shall be arrangement: installed on board to monitor and control the  The FSRU engine will be locked since at clear area. vessel movement. Equipment used shall be Ensure no power of the FSRU main engine during tested, calibrated and possess valid certificate. approach to yoke of TYMS to avoid excessive Also, personnel of the survey positioning must thrust that potentially FSRU hitting the TYMS. be sufficient experience to assist positioning operation of the FSRU. They have to hold valid  The 1stAHT is SMS Pargo. She will be positioned at medical certificate. fore starboard with side by side position to FSRU heading. The towing line will be tied to shoulder

bollard of FSRU fore starboard with 50 m length Towing line must be well provided including of towing line. but not limited to Poly ester rope, Wire rope and  The 2ndAHT is Lanpan 11. She will be positioned shackle. Ensure the whole tow gear complete at fore port side with side by side position to FSRU with valid certificate for MWS verification during heading. The towing line will be tied to shoulder offshore installation. bollard of FSRU fore portside with 50 m length of towing line. This AHT will be tasked also to tow

Figure 3 : Preliminary Towing Configuration << 53 jurnal IAFMI 03 Desember 2015

Figure-4 : FSRU Seakeeping during approaching

the FSRU move approach close to TYMS together uncontrolled movement of the FSRU during with 1st AHT SMS Pargo approach to TYMS.

 The 3rdAHT is Ider Mandiri. She will be positioned  The draft will be applied during FSRU positioning at stern starboard side with 135 degreed slanting is 9.36 m its mean that the bollard pull required to FSRU heading. The towing line will be tied is 36.8 T. By this configuration, the bollard pull to butt bollard of FSRU stern starboard side applied at respective towing vessel will equally with 200 m length of towing line. This AHT will be applied to each. According to this condition, function as hold back vessel to hold and balance the power (MCR) applied on the respective vessel if any uncontrolled movement of the FSRU during during towing could be predicted to be as follows: approach to TYMS.  The 1st AHT  the MCR applied may be around  The 4th AHT is Trijaya 1.She will be positioned 65 % of total main engine RPM capacity to obtain at stern port side with 225 degreed slanting to around 3 knot speeds during towing from clear FSRU heading. The towing line will be tied to area approach to 300 m distance to TYMS location. butt bollard of FSRU stern portside with 200 m The RPM may be decrease to 40 % and slowly length of towing line. This AHT also will function until 0 % during approach to 100 m distance to as hold back vessel to hold and balance if any P/F in respect to prepare soft line installation. jurnal IAFMI 03 Desember 2015 >> 54

 The 2nd AHT the MCR applied may be around After FSRU on stable condition then Connection work 66 % of total main engine RPM capacity to shall be commenced with following steps: obtain around 3 knot speeds during towing from • Release Link Arm sea-fastening and bring Link clear area approach to 300 m distance to TYMS Arms into the Vertical Position. location. For same, the RPM may be decrease to 40 % and slowly until 0 % during approach to 100 • Test Installation Chain Jacks. m distance to TYMS in respect to prepare soft line • Connect Mooring Line from FSRU to Mooring installation Tower • Connect Lifting Jacks and Grommet to Yoke Once the soft line has been well connected to padeye, the both towing vessel will continue tow • Lift Yoke the FSRU with very slow RPM to bring the FSRU • Stab Lower U-Joint to link-arm close to TYMS to avoid excessive load occur on • Install Pin Bore the pad eye at yoke head due to pulling force of • Disconnect lifting Jack and Grommet the soft line. The softline will take up the tension upon indicated the line in slack condition. This Ballasting Yoke Tanks commenced once the yoke activity will be fully under single command of structure has been connected to the FSRU. After mooring master. Positioning of the vessel will be Ballasting the Yoke Tanks, TYMS will function fully well monitored by the competent surveyor and as mooring system because it has restoring force inform the mooring master regularly to update and damping to prevent any extreme movement the current distance and the mooring master of the FSRU. 2 AHT will remain to continue shall manage the vessel master to reduce its seakeep the FSRU during Electrical Bridle Cables vessel power accordingly. and hose installation operation.

Figure-5: FSRU Connection Process << 55 jurnal IAFMI 03 Desember 2015

Conclusion Reference This paper Presented FSRU motion characteristic was different with other vessel such as FPSO or FSO, MWS Noble Denton General with her big wind area combined with relatively light Guidelines for Marine DWT and Empty condition FSRU motion became very Transportation – ND 030 sensitive with motion induced by environmental Rev.5. loading. During connection FSRU shall be kept steady API RP 2SK RP for Design and Analysis of on safe area then approach the TYMS, Secured with Station keeping System for mooring line and Connect FSRU’s MSS with TYMS’s Floating Structures Mooring Yoke via mechanical connection. TYMS-V-PRC-004 FSRU Connection Procedure

Seakeeping Study performed to understand the TYMS-PM-PRC-008 FSRU Bollard Pull Calculation required Capacity of Anchor Handling Tug (AHT) TYMS-V-CAL-012 FSRU Sea Keeping Study to station keep the FSRU including Line tension weather limitation of seakeeping activity. From The study it is concluded that 4 ea. AHT with bollard About the Author pull capacity minimum 45 MT are required to Mokhamad Nasyih undertake the job. Weather limitation applied with Aminnulloh shortly called wave height 1.6 m, Wind speed 25 Knot and Current “Nasyih” is Installation speed 1 m/s. Weather limitation applied with refer Project Engineer with weather analysis that already performed before to more than 7 years’ understand the environmental characteristic during Experience including specific windows. The seakeeping study performed overseas experience in became input to develop Seakeeping procedure to PT. Rekayasa Industri be applied during field execution. Led by mooring (Rekind). He graduated in 2008 from Sepuluh master, Seakeeping campaign require extensive and Nopember Institute of Technology (ITS) detail planning, risk analysis and mitigation to avoid Surabaya majoring in Offshore Engineering. any accident may occur during the campaign. Specialized in Offshore Installation Project both Engineering and Field Construction stage.

Nasyih has been working and studying Mooring Tower since in the college because he have an impression that this as challenging subject since it is combining Structural and hydrodynamic Subject. He then during his late career in Rekind assigned to work under SOFEC inc, in Houston to design the First Mooring Tower in Indonesia that is EPC3 Banyu Urip Project. Then continuing to involve on the installation of The First time in the world TYMS System for FSRU on FSRU Lampung project. jurnal IAFMI 03 Desember 2015 >> 56

PRODUCTION FACILITIES MAINTENANCE INFORMATION SYSTEM: A DECISION SUPPORT SYSTEM FOR MAINTAINING NATIONAL OIL AND GAS PRODUCTION FACILITIES

Rossupanji Pribadi1, Mohamad Fauzan Amir1, Tomy W. Poerwanto1 1. Author, Special Task Force for Upstream Oil and Gas Business Activities Republic of Indonesia

Abstract As mandated by the government, the Special Task Force for Upstream Oil and Gas Business Activities in the Republic of Indonesia (known as SKK Migas) has responsibility for maintaining the national oil and gas production facilities as part of its main function in terms of maximizing national oil and gas production. Currently, SKK Migas is managing more than 60 oil and gas production companies (PSC Companies) under Production Sharing Contracts (PSC), operating all over Indonesia. These PSC Companies operate a very large number of production facilities, but ownership remains with the nation, including data related to the facilities. The legacy manual system cannot manage the information and the many issues related to maintenance activities of all these facilities. Therefore, a computer-based information system is needed to become the core in supporting the business or organizational decision-making activities related to the main responsibility of controlling and supervising the operators of the production facilities. This paper highlights the national-scale maintenance database management system built by the authors to support business and organizational decision-making activities. This system has been built in an efficient and customizable manner, by using common software such as Microsoft Excel and Microsoft Access Database, and empowering the existing human resources. The system has fulfilled expectations, with customable features, and avoided the purchase of commercially available specialized software, which offers limited features and expensive pricing. Although this software tool offers convenience, a lot of work is still required to improve the prototype. However, by developing this system, at least a short-term powerful solution has been provided that lays the foundation for the future development of a more established system. In other words, there is no need to wait for the optimum software tools to manage the job. One can start from simple tools and improve continuously. Keywords; National scale production facilities; maintenance decision support system; simple tools; efficient and customable manner; current software tools << 57 jurnal IAFMI 03 Desember 2015

Introduction • Unplanned shutdown monitoring. Unplanned shutdown are one key performance indicator Nowadays, database systems play a crucial role for how the operators (PSC companies) manage in modern industry, enabling large quantities of the production facilities. By monitoring these information to be managed and automatically fed to events daily, we can observe the reliability of supporting processes to guide decision-making. In the operated production facilities and together academia and industrial applications, various tools with oil/gas companies, decide what actions are and research have been developed for such purposes, required to increase the reliability of the plants. for instance, as reported in [1-4]. Nevertheless, tools developed for managing maintenance data on a • Maintenance asset monitoring of major national scale are sparse, and may be unavailable for production facilities, such as turbo machinery, benchmarking of PSC operations. rotating equipments, pipelines, vessels, and tanks, including their conditions (active, standby, Given the demands for efficiency and spare or idle engines) gives us a snap-shot of the organizational transformation with a limited budget, status of the national equipment. If necessary, building a computerized maintenance information we can facilitate equipment loans, transfers and system becomes a big challenge. The team was sharing of facilities among the PSC’s. challenged to empower its existing resources, without relying on a third party consultants and • Key Performance Indicators. By monitoring software. The solution involved using common maintenance indicators, such as production software; Microsoft Excel integrated with Microsoft achievement, plant availability, plant reliability, Access Database. The software was selected based the maintenance/inspection realization, and on the consideration of user-friendliness and the maintenance cost, we can measure how the simplicity to be customized to meet the desired operator companies achieve their performance specifications. goals. We regularly announce the company that has shown the best maintenance performance. The team built a working prototype of a national- scale maintenance database management system, • Document database and internal report which is useful for supporting decision-making. generation. Important documents, such as Work Although the system has been built from simple Program and Budget (WP&B), Authorization tools, its contributions has been significant, as seen For Expenditure (AFE), Place Into Service from the following functionality: (PIS), Minutes of Meeting (MOM), are stored in a computerized system and can be recalled • Calendar of maintenance and planned anytime. Besides, this system also enables us shutdowns, which allows proposed shutdowns to generate the data automatically for internal to be scheduled to avoid big drops in national reports or for the other evaluation purposes. daily oil and gas national production. System Description • Maintenance notifications on upcoming planned shutdown activities, so SKK Migas can prepare The Production Facilities Maintenance effective supervising activities, including Information System, or so-called SIPFO (in Bahasa encouraging the oil and gas companies to abbr. Sistem Informasi Pemeliharaan Fasilitas optimize shutdown duration, resources, and Operasi) started with the development of a database, expenses in safe and effective ways. which only serves as storage of the simple data, such jurnal IAFMI 03 Desember 2015 >> 58

as planned maintenance shutdowns, unplanned from oil and gas companies (PSC companies) covering shutdowns, and process equipment. As time goes shutdown lost-production opportunities (LPO’s), by, we are required to store and process a greater maintenance assets, maintenance costs, and the variety and larger quantity of data and documents. results of maintenance assessments (strategy level). Therefore the original database concept needs to Raw data is inputted and verified by the Person- be developed further, by adopting more structured in-Charge (PIC) in SKK Migas using standardized and systematic approaches, i.e., document and templates. In addition, external data such as rig information management systems. With a document move schedules and the daily production rates is management system, SIPFO is simply expected input for the aim of maintenance synchronization in to be able to store and to manage electronic terms of LPO reduction. Important documents, such documents i.e., all those documents or files created as monthly maintenance reports, shutdown reports, on computers, so that whenever needed, those can Root Cause Failure Analysis (RCFA), AFE, WP&B, PIS, be traced and recalled easily. Moreover, with the MOM, presentations and so forth, need to be kept in information management system, it enables SIPFO the database in a server in SKK Migas to be recalled to extract processed data that are useful for analysis whenever needed. The graphical user interfaces and decision-making. The data are displayed by summarizing the processed data and the important means of user interfaces—one of the more important documents are expected to be able to help the features of the system, created to assist decision users in making decisions as organization outputs. makers in making more efficient and effective use Practically, the system is applied in Figure 2. of the system. The graphical dashboard designed In Figure 2, the database, namely Microsoft Access, in the Windows environment allows the users to serves as data storage designed for the data and the interact with the system easily, through processes of documents. The database is connected to Microsoft inputting, updating, analysis and decision-making. Excel, and automatically and periodically sends Lastly, to be effective in supporting management a backup file to another document management decision, the decision maker must have the skills system called Alfresco. The application is visualized and knowledge on how to use the system correctly trough the graphical user interfaces summarizing to address the unique problems handled. the main data that can be opened concurrently and Figure 1 shows the application of the concept online by multiple users in accordance with the underlying SIPFO. Some information will be collected hierarchy level. This application is also equipped by a notification system that reminds the PICs about upcoming maintenance activities that need supervision. The notifications are sent through emails generated by a scheduled task, a system-side automatic task that can be configured to run for an infinite number of times at a given interval.

To achieve the goal of optimization, SIPFO has implemented an integrated system approach. For instance, to calculate lost production opportunities, the maintenance database needs to connect with

Figure 1 - The General Concept of SIPFO the production database that generates the daily << 59 jurnal IAFMI 03 Desember 2015

it easier for the user to use and access data and information, and to move data from one application to another or to link applications. In general, the GUI developed in SIPFO works as follows:

• Receiving inputs from the user through option buttons, check boxes, and input text boxes

• Communicating the inputs to an underlying Excel spreadsheet model

• Running the model/calculation in the background

• Displaying results in the form of tables in another Excel output file, graphics, flags, icons and running texts.

The design of the displays is described as follows. When opening SIPFO for the first time, users will be launched into a front page, shown in Figure 3 that Figure 2 - System Application of SIPFO summarizes all general data of the PSC companies, with the following features: production data. On the other hand, rig-moving activities that can potentially cause shutdowns are • Flag-based notifications representing planned recorded in the drilling database, and in some cases, maintenance activities and unplanned can be synchronized with the maintenance shutdown shutdowns. schedules. The synchronizing scheduler allows • Icon-based information symbolizing turbo retrieval of the data automatically and regularly machinery population and maintenance from the production database and the drilling management assessment. database in certain periods and stores them in the • Running text notifications informing of the latest maintenance database. SIPFO will then synthesize unplanned shutdowns and current maintenance the processed data automatically on the dashboard. activities Processed data can be displayed, for example LPO, • Report summary and analysis, including lost notifications of maintenance activities, monthly production graphics, failure frequency graphics, key performance indicators, maintenance calendar, and many others. unplanned shutdowns, national turbo machinery, pipeline data, internal reports and many others. By clicking on each company symbol, the user will The following section will show some displays of be brought to a popup menu that presents individual Graphical User Interface (GUI) used for data inputs, information of the associated PSC Company, as analysis purposes and/or making decisions. displayed in Figure 3 (lower part). Some buttons available on the window describe further details of Software Features the maintenance data. The following describes each sub-window containing the company’s maintenance The user interface has been developed using a profile. Windows environment. This environment makes jurnal IAFMI 03 Desember 2015 >> 60

Data from planned shutdowns from all PSC’s in Indonesia can be consolidated into a single LPO graph that shows if shutdowns should be rearranged to avoid a peak in LPO.

Unplanned Shutdown Window

The unplanned shutdown feature serves as a tool to monitor production disruptions. As shown in Figure 5, the window records unplanned shutdown data, including date, location, LPO, down time, suspected cause(s), and a major description of the event. Each event is then categorized in Level 1 and Figure 3 - SIPFO Front Page Level 2. Level 1 relates to the high-level cause of the shutdown; commercial, security, wells and reservoir, Maintenance Activity Window operation, facilities, marine, and others (third Figure 4 shows the major maintenance calendar, party). Level 2 related to the problematic equipment as approved in the WP&B, with attached data on category; electrical, compressor, heat exchanger, maintenance duration, execution dates, LPO, and pump, vessel, platform/structure, piping and valves, costs. The PIC loads this maintenance calendar and pipelines. This classification allows unplanned into SIPFO and checks which activities need more shutdown causes to be mapped either in general or attention, particularly the big LPO contributors, and down to the equipment level. The reliability of the mark them as major activities. Each week, the PIC production facility is measurable and the effort of contacts the PSC Company to verify each activity. If preventing or mitigation of any negative impact to any change has been approved, the PIC will update it the goals can be determined. in SIPFO by editing the original data. To ensure that the data are updated regularly, SIPFO records the Asset Maintenance Window activity of the users in a data logger system, which Data from the production facility is essential allows the supervisor to confirm that each PIC is to support the analysis and decision-making of performing his or her job. maintenance issues. PSC companies that own similar

Figure 4 - Planned Maintenance Activity Window Figure 5 - Unplanned Shutdown Window << 61 jurnal IAFMI 03 Desember 2015

equipment have the potential to support each other link between the documents is available in SIPFO. with troubleshooting, equipment loans, spare-parts For example, the user can connect a MOM with an and transfer of idle units. SKK Migas, in some cases, associated presentation or an AFE document, so can facilitate such exchanges. Asset management that when opened, the window not only shows the data from the PSC Company is organized in SIPFO main document but also the referenced documents as shown in Figure 6. In the example, the user is related to it. provided a list of engines, including the data of generators, auxiliary generators, gas turbines and Placed Into Service (PIS) Window so on, obtained from the Turbo machinery menu. By choosing one of the engines, one can see a The PIS window is one feature that helps more detailed information; type, manufacturer, tag SKK Migas in processing a proposal (from a PSC number, model, serial number, capacity, last status, company) for operational approval of an equipment/ operating load, running hours, and so forth. The system that is newly installed. This feature is used to same goes for other equipment like transfer pumps, save the evaluated documents and to monitor the pipelines, vessels, and platforms. progress on the technical evaluation following the regulation PTK-033 about PIS. As shown in Figure 8, Document Management Window the PIC must fill in data from the proposal, such as AFE number, the name of the PSC company, subject (PIS title), the date of received documents, the AFE

Figure 6 - Equipment Window

Many different types of documents are produced in SKK Migas, including faxes, memos, MOM, spreadsheets, analysis charts, letters, slide shows, Figure 7 - Document Management Window monthly reports, WP&B, AFE, and many more. They all have different purposes and uses. Therefore, Value (in USD), status, remarks, the finishing date the documents need to be organized to be easily of PIS evaluation, the referenced documents, and accessed and reused when necessary. By means of a follow-up. The system will then provide notifications menu shown in Figure 7, one can see how documents to the user and his supervisor regarding the finishing are organized by classification. Additionally, of the PIS’s technical and document evaluation some documents are interrelated and require within the target of a maximum of 20 working days references to each other. A feature functioning as a after the documents were received. jurnal IAFMI 03 Desember 2015 >> 62

SIPFO For Supporting maintenance calendar, including the LPO, the Decision-Making associated budgets, and the planned duration. We pay more attention when proposed shutdowns As already mentioned before, SIPFO serves overlap and cause big LPO’s. By tracing the as the central database in supporting business or maintenance dates with the minimum LPO, the start organizational decision-making activities related date of shutdowns can be shifted. Figure 10 shows to maintenance. In general, SIPFO supports certain an example where a few alternative dates around types of task: the original shutdown schedules are proposed. The 1. Planned shutdown management, particularly as AREA Z TAR KKKS D planned shutdown is negotiated a reminder system for maintenance execution to start earlier (Alternative 1), whereas the AREA Q and the schedule for big shutdowns. TAR KKKS E planned shutdown is proposed to start later (Alternative 2) thus avoiding the big LPO at the 2. Monitoring unplanned shutdowns to verify the same time. After discussion with the PSC’s, the exact response time and handling were appropriate. dates of the shutdown execution are decided.

In some cases, based on equipment inspection reports, equipment requires quick reparation or replacement, which needs a shutdown. Such a shutdown is called a “controllable shutdown”, and the approval process of the execution follows the same mechanism as for planned shutdowns.

The execution of planned shutdowns requires supervision. Due to the many activities that must be

Figure 8 - Document Management Window monitored at the same time, there is a need to have the reminder system of planned maintenances prior 3. Performance management, to evaluate to execution. For this purpose, SIPFO will release maintenance performance such as reliability. maintenance notifications by means of emails (see 4. Asset Maintenance management for identifying Figure 11) or running text displayed on the dashboard idle or spare capacity. (see Figure 3), to remind the corresponding PIC (in 5. Report generation and analysis. SKK Migas) to evaluate immediately and prepare the supervision. If necessary, the associated oil company Furthermore, the functionalities are described in the following section.

Planned Shutdown Management

In implementation of PSC’s, every year, oil and gas companies propose programs to be approved by SKK Migas, including planned shutdowns. The mechanism of supervision of those activities is seen in Figure 9. After all the approved shutdown data are received, SIPFO maps them into the national Figure 9 - Shutdown Supervision Mechanism << 63 jurnal IAFMI 03 Desember 2015

can be invited to attend a coordination meeting unplanned shutdowns. The pie chart in Figure 13 regarding the evaluation of the preparation in terms of shows an example where electrical problems have optimal resource and time duration. In such meeting, become an important issue that the PSC Company concerns discussed typically include preparation of must solve immediately. Lessons learned from such shutdown execution (work identification, manpower & detail duration, and spare part requirement), PM Optimization, lessons learned, personnel competence, and so on. Synchronization with other projects or drilling activities (rig moves) causing shutdowns in the same facilities is now coming to our attention. The data exists in SIPFO, and the PSC Figure 11 - Email Notification before the Maintenance Company is challenged to optimise the shutdown so Execution that LPO is limited to a one-time activity. If required, SKK Migas will then assign personnel to the field during the execution process. After the shutdown is executed, the realization is reported. The execution time duration, actual LPO and lessons learned will be noted in SIPFO for the upcoming evaluation.

Unplanned Shutdown Monitoring

One of the most important issues in managing Figure 12 - Unplanned Shutdown Monitoring production facilities is unplanned shutdowns. These unexpected events will be supervised following the scheme plotted in Figure 12. One day after the shutdown occurs, SKK Migas will verify the data events must become preventive measures discussed obtained from daily reports from the PSC Company. during the WP&B monitoring to decide what actions Within three days, a coordination meeting is held to are required to prevent or at least to reduce the evaluate the preliminary root cause. All unplanned similar events in the future. shutdown events will be daily recorded by SIPFO, including the mapping of the contributor of the Performance Management

Figure 14 presents a window used to monitor the general maintenance performance of a PSC Company associated with operational management of the production facilities. It is represented by four charts: the achievement of production, the unplanned shutdowns, availability, planned maintenance activities, and cost realization. Production data is captured from the production database automatically. Besides that, the unplanned shutdown chart is also displayed. Comparing the Figure 10 - Shutdown Management LPO and boundary representing the acceptable jurnal IAFMI 03 Desember 2015 >> 64

criterion allows one to evaluate how the operator SKK Migas encourages collaboration among PSC handles unplanned shutdown issues. In addition, the companies in handling such issues. It is expected that the collaborative approach will be beneficial in managing the maintenance issues.

Figure 13 - Unplanned Shutdown LPO Generated by SIPFO Figure 14 - Management Performance Window performance of the planned maintenance activities In addition, this feature enables us to monitor is becoming a key indicator. The planned LPO is the ageing facilities nationally. The age distribution compared to the actual LPO, to ensure the planning of each major component in the production facilities has been conducted well. Lastly, the availability of of PSC companies can be known, as one can see the production facility is monitored continuously. an example in Figure 15. Although our production Availability is calculated by the actual time of the facilities are generally in good operational condition, machine or system capable of production as a percent and the national availability is above 95%, the ageing of total planned production time. The four criteria issue needs to be managed in a strategic and long- are evaluated together with other aspects, such term planning. as compliance reporting, maintenance/inspection work completion, backlogs, maintenance costs, Report Generation and maintenance management strategy obtained from the monthly reports saved in SIPFO. The PSC Reporting is an important feature. Reports Company that has shown the best performance will generated by SIPFO are very customable. Various be given a reward, which is usually announced in the data and analysis can easily be pulled from the certain period. database and processed directly or indirectly into

Maintenance Asset Monitoring

Application of the maintenance asset monitoring is illustrated as follows. SKK Migas can monitor the user status of the turbo machinery nationally, as shown in Figure 15. If there is an unused or idle engine that is suitable for the needs of another PSC Company, SKK Migas can facilitate asset transfer or asset borrowing after coordinating with the Figure 15 - Management Performance Window related units. The same goes for other spare parts. << 65 jurnal IAFMI 03 Desember 2015

the forms of MS Excel, MS PowerPoint, and MS Word. equipment data and other important notes. The Figure 16 is an example of a monthly internal report report template is connected automatically to in the form of a Word document that summarizes SIPFO, so that the required data can be generated the performance of a PSC Company, including quickly by updating the template. Besides that, more information of availability and equipment reliability, than 3000 charts or graphics (and even more can be maintenance cost, planned maintenance/ shutdown, customized) are provided by SIPFO automatically for supporting further analysis and decision-making.

Conclusions And Future Work

In conclusion, this project has made some contributions. First, is the creation of a national-scale maintenance information system that is powerful in supporting business or organizational decision- making activities. Such a system is important to Figure 16 - Internal Report Connected to SIPFO jurnal IAFMI 03 Desember 2015 >> 66

assist SKK Migas to perform its main function, which Jardine, A. K. S., D. Banjevic, and V. Makis. 1997 is to control and supervise all oil and gas production Optimal replacement policy and the structure of facilities in Indonesia. software for condition-based maintenance. Journal of Quality in Maintenance Engineering, 3, 2, 109-119. Second, the system has been developed successfully in an efficient and customable Kun-Yung LuChun-Chin Sy. 2009. A real-time manner. By using common, current software and decision-making of maintenance using fuzzy agent. by empowering the existing human resources, the International Journal Expert Systems with proposed system has fulfilled the given expectations. Applications, 36, 2, 2, 2691-2698. It has more flexibility to customize features compared to commercially available specialist software, and is much cheaper. About the Author

Although this software tool offers convenience, a Mohamad Fauzan Amir is lot of work is still required to improve the prototype. currently working in Division However, by developing this system, at least a short- of Project Management and term powerful solution has been provided, which Facility Maintenance SKK Migas. lays the foundation for future development of a more He has Ph.D in Process Control established system. In the future, SIPFO will become from Martin-Luther University, part of an Integrated Operation System that unifies all Germany and has twelve years experiences the data, not only from the surface facilities but also in international academia, multinational oil/ from the subsurface ones, online and in real-time. gas, petrochemical industries, especially in process control research and development, Acknowledgements control design applications, control and instrumentation system and automation The authors gratefully acknowledge the support projects, maintenance management, and of the management of SKK Migas, particularly trainings. the Head of Division of Project Management and Facilities Maintenance, the former head of division of Rossupanji Pribadi is currently maintenance, senior managers of the Maintenance working in Division of Project Department, as well as other parties (who could not Management and Facility be unfortunately mentioned one by one) in creation Maintenance SKK Migas. He of the system and realisation of this paper. Joined SKK Migas at 2011 and developed data management references and information system for the national operation facility maintenance Fernandez, O. A. W., Labib, R. Walmsley, and management. D. J. Petty. 2003. A decision support maintenance management system: Development and He started his career in data management implementation. International Journal of Quality & system in Oil and Gas Company since 2003. He Reliability Management, 20 8, 965-979. has bachelor degree in Computer Science and Master degree in Information Technology from University of Indonesia. << 67 jurnal IAFMI 03 Desember 2015

Mengenal Kontrak Migas Indonesia

Wiwin Lukman Febrianto Disadur dari Buku Ekonomi Migas karya Benny Lubiantara

Pola pengusahaan migas secara umum dapat di Wilayah Telaga Said, Langkat. Rezim Konsesi dibagi menjadi: Konsesi(Royalty/Tax), PSC dan mempunyai kakteristikl, semua hasil produksi dalam Service Contract. wilayah konsesi dimiliki oleh perusahaan. Negara dalam sistem ini hanya menerima royalti yang secara Kegiatan Usaha Hulu Minyak dan Gas Bumi umum berupa persentase dari pendapatan bruto (Migas) Indonesia dijalankan berdasarkan Kontrak dan pajak. Keterlibatan negara sangat terbatas. Bagi Hasil atau Production Sharing Contract (PSC). Skema ini mengoptimalkan penerimaan negara Rezim Kontrak Karya berlaku saat Indonesia sekaligus melindungi dari paparan risiko tinggi menerapkan Undang-undang No. 40 tahun 1960 terutama pada fase eksplorasi. tentang Pertambangan Minyak dan Gas Bumi.

Gambar 1. Mekanisme Pembagian Kontrak Hulu Migas

Regulasi ini mengatur bahwa sumber daya migas Sebelum PSC, Indonesia sempat menganut dua adalah milik negara. Status perusahaan diturunkan rezim kontrak, yaitu konsesi dan kontrak karya. Rezim dari pemegang konsesi menjadi kontraktor negara. konsesi dianut Indonesia pada era kolonial Belanda Pada sistem ini, negara dan perusahaan berbagi sampai awal kemerdekaan. Era ini ditandai oleh hasil penjualan migas. Meskipun perusahaan tidak penemuan minyak pertama secara komersial pada lagi menjadi pemegang konsesi, kendali manajemen bulan Juni 1885 oleh A. J. Ziljker yang sebelumnya masih berada di tangan mereka. Peran pemerintah memperoleh hak konsesi dari Sultan Langkat terbatas pada kapasitas pengawasan. jurnal IAFMI 03 Desember 2015 >> 68

Gambar 2. Alur Perhitungan PSC Indonesia Sektor Minyak

Skema PSC pertama kali berlaku tahun 1966 saat dikontrol. Sistem audit di sini adalah pre, current, PERMINA menandatangani kontrak bagi hasil dengan dan post audit. Independence Indonesian American Oil Company Salah satu keunikan kontrak PSC di Indonesia (IIAPCO). Kontrak ini tercatat sebagai PSC pertama dibandingkan dengan negara lain adalah adanya FTP dalam sejarah industri migas dunia. Penerapan PSC (First Tranche Petroleum). FTP merupakan sejumlah di Indonesia dilatarbelakangi oleh keinginan supaya tertentu minyak mentah dan/atau gas bumi (berkisar negara berperan lebih besar dengan mempunyai 15% - 20%) yang diproduksi dari suatu wilayah kerja kewenangan manajemen kegiatan usaha hulu migas. dalam satu tahun kalender, yang dapat diambil Perbedaan Kontrak Karya (konsesi) dan Kontrak dan diterima oleh Pemerintah dan atau kontraktor Production Sharing (bagi hasil) adalah pada dalam tiap tahun kalender, sebelum dikurangi manajemennya. Pada Kontrak Karya, manajemen pengembalian atau pemulihan Biaya Operasional ada di tangan kontraktor, yang penting adalah dia (cost recovery) (PP No.79/2010). Besarnya masing membayar pajak. Sistem audit disini adalah post masing bagian FTP Pemerintah dan Kontraktor audit saja. Pada Kontrak Production Sharing (KPS), sesuai dengan kesepakatan bagi hasil (profit split). manajemen ada di tangan pemerintah. Setiap kali Tujuan adanya FTP adalah memastikan adanya kontraktor mau mengembangkan lapangan dia jaminan pendapatan bagi negara di awal proyek. harus menyerahkan POD (Plan of Development) Besarnya pengembalian biaya (cost recovery) atau perencanaan pengembangan, WP&B (Work tergantung kepada perjanjian waktu ditandatangani Program and Budget) atau program kerja dan kontrak. Pada kontrak bagi hasil kontraktor berhak pendanaan serta AFE (Authorization fo Expenditure) menerima pengembalian biaya selama tidak melebihi atau otorisasi pengeluaran supaya pengeluaran bisa << 69 jurnal IAFMI 03 Desember 2015

persentase tertentu dari produksi tahunan pada produksi dimulai, volume untuk DMO ini dihargai daerah kontrak. Proporsi ini dikenal sebagai cost oil. dengan harga pasar minyak mentah tersebut, yang Kekurangan yang belum diperoleh di carried forward dikenal dengan istilah DMO holiday. Setelah periode (bawa ke depan) untuk recovery pada tahun. Tahun DMO holiday, harga minyak DMO akan didiskon berikutnya dengan prinsip yang sama cost oil diberi nilai sesuai dengan yang tertera pada kontrak, 10%, 15% dengan menggunakan harga pasar dari minyak mentah atau 25% dari harga pasar minyak mentah tersebut. sebelum dibandingkan dengan recoverable cost. Kewajiban untuk pemenuhan kebutuhan Batas maksimum dari cost oil dikenal sebagai cost domestic (DMO) telah ada sejak generasi awal PSC stop (cost recovery ceiling), bervariasi tergantung Indonesia. Besarnya DMO fee yang harus dibayar kepada negara dan kontraknya, tapi biasanya pemerintah juga meningkat, bermula 0,2 US$/barel berkisar antara 30 dan 60%, walaupun dapat 100%. pada PSC Generasi I dan Generasi II, 10% dari harga Harga cost stop mempengaruhi keekonomian, minyak pada PSC Generasi III, 15% dari harga minyak makin besar makin bagus return on investment (paket Insentif 3/1992) dan 25% dari harga minyak (pengembalian investasi) nya. (paket insentif 4/1993).

DMO pada dasarnya adalah kewajiban kontraktor Penentuan DMO untuk lapangan gas sedikit untuk memasok kebutuhan domestic sejumlah lebih kompleks dibanding minyak. Perbedaan volume tertentu. Untuk 60 bulan pertama pada saat lainnya adalah bahwa lapangan gas baru akan

Gambar 3. Alur Perhitungan PSC Indonesia Sektor Gas jurnal IAFMI 03 Desember 2015 >> 70

dikembangkan apabila telah ada nota kesepakatan Referensi jual beli Antara perusahaan migas sebagai produsen gas dengan para konsumen baik domestik maupun Ekonomi Migas, Benny Lubiantara, PT. Grasindo, konsumen di mancanegara. Kesepakatan jual beli 2012 ini, pada prakteknya dapat berlangsung sangat lama, khususnya negosiasi mengenai harga. Tentang Penulis

pengaturan DMO untuk lapangan gas dimulai Wiwin Lukman Febrianto is ketika terjadi temuan akumulasi gas. Tahap currently Process Engineer berikutnya adalah memperkirakan seberapa besar at PT Pertamina EP Asset cadangan terbukti (proven reserves), perkiraan 5. He received his Bachelor besarnya cadangan terbukti ini harus disepakati degree in Chemical antara kontraktor dan pemerintah. Selanjutnya diatur Engineering from Institut mekanisme untuk DMO, pada dasarnya kontraktor Teknologi Bandung (ITB). He dapat bernegosiasi lagsung dengan pembeli gas joined PT Pertamina EP since 2012. domestik yang potensial. Besarnya kuantitas gas yang menjadi kewajiban kontraktor untuk konsumsi pasar domestik dihitung sebagai berikut:

1) Dua puluh lima persen (25%) dari volume cadangan terbukti pada reservoir yang ditemukan di wilayah kerja kontraktor. 2) 25% dikalikan dengan bagian kontraktor sebelum pajak (untuk gas). << 71 jurnal IAFMI 03 Desember 2015 jurnal IAFMI 03 Desember 2015 >> 72