Identification of Conserved Genes Triggering Puberty in European Sea Bass Males ( Dicentrarchus Labrax ) by Microarray Expression Profiling

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Conserved Genes Triggering Puberty in European Sea Bass Males ( Dicentrarchus Labrax ) by Microarray Expression Profiling Retinoic acid signaling pathway: gene regulation during the onset of puberty in the European sea bass Ruta de señalización del ácido retinoico: regulación génica durante el inicio de la pubertad en la lubina Europea Paula Javiera Medina Henríquez Thesis presented to obtain the Ph.D. degree at the Polytechnic University of Catalonia (UPC) Ph. D. Program in Marine Sciences 2019 Thesis supervisor: Dra. Mercedes Blázquez Peinado (ICM-CSIC) Barcelona, 2019 Esta Tesis ha sido realizada en el Departamento de Recursos Marinos Renovables del Instituto de Ciencias del Mar de Barcelona (ICM-CSIC). Parte de la experimentación también se ha llevado a cabo en el Instituto de Acuicultura Torre de la sal (IATS-CSIC), a través de una estrecha colaboración con el grupo de Fisiología de la Reproducción de Peces. La financiación económica para la e xperimentación se ha recibido a través de los siguientes Proyectos de Investigación: Mejora de la producción en acuicultura mediante el uso de herramientas biotecnológicas CSD2007-00002 (AQUAGENOMICS). Bases moleculares, celulares y endocrinas de la pubertad y del desarrollo gonadal en lubina ( Dicentrarchus labrax ). Desarrollo de tecnologías ambientales, hormonales, y de manipulación genética para su control PROMETEO/2010/003 (REPROBASS). Regulación Hormonal y desarrollo del eje hipotalámico-hipofisario-gonadal durante la diferenciación sexual y la pubertad en peces teleósteos PIE 200930I037(TERMOBASS). Regulación endocrina y paracrina de la diferenciación sexual y el desarrollo gonadal en la lubina AGL2011-28890 (REPROSEX). Acción complementaria al proyecto: regulación endocrina y paracrina de la diferenciación sexual y desarrollo gonadal en la lubina (REPROSEX). Avances en el control de la pubertad y ciclo reproductor de la lubina y su aplicación tecnológica a otras especies de peces PROMETEO II/2014/051 (REPOBASS II). Mecanismos endocrinos y paracrinos en el control de la diferenciación y desarrollo de las células germinales de peces AGL2015-67 477-C2-2-R (PUBERGAMETE). Paula Medina fue auspiciada por la beca de doctorado para académicos en el extranjero, proyecto ANT0806 de la Universidad de Antofagasta, Chile. Los resultados de esta tesis han sido presentados en los siguientes congresos: 10º Congreso de la Asociación Ibérica de Endocrinología Comparada. Castellón, España. 23-25 de Septiembre, 2015. “Characterization of aldehyde dehydrogenase family 1a in Dicentrarchus labrax ”. Presentación poster. 27th Conference of European Comparative Endocrinologists, Rennes, France, 25-29th August, 2014. “Retinoic acid signaling pathway during sex differentiation and puberty in the European sea bass ( Dicentrarchus labrax )”. Presentación Oral. 11th International Congress on the Biology of Fish. Edinburgh, Scotland. August 3- 7th, 2014. “Drospirenone effects in steroid levels in blood and hepatic metabolism in European sea bass ( Dicentrarchus labrax )”. Presentación Poster. 17th International Congress of Comparative Endocrinology, Barcelona, Spain. July 15- 19th, 2013. “Transcriptomic changes during the onset of spermatogenesis in the European sea bass”. Presentación Oral. Barcelona, 2019 9th Congreso de la Asociación Ibérica de Endocrinología Comparada, Barcelona, Spain. July 13-14th, 2013. “Testicular organ culture for the study of sea bass spermatogenesis”. Presentación poster. Premio a la mejor presentación. Los resultados de esta tesis forman parte de las siguientes publicaciones: Medina, P., Gómez, A., Zanuy, S., and Blázquez, M. (2019). Involvement of the retinoic acid signaling pathway in sex differentiation and pubertal development in the European sea bass Dicentrarchus labrax . Heliyon 5, e01201. Blázquez, M., Medina, P., Crespo, B., Gómez, A., and Zanuy, S. (2017). Identification of conserved genes triggering puberty in European sea bass males ( Dicentrarchus labrax ) by microarray expression profiling. BMC Genomics 18, 441. Blázquez, M., Crespo, B., Medina, P., Gómez, A. y Zanuy, S. (2011). Bases moleculares del inicio de la pubertad en machos de lubina. Libro de Actas del XIII Congreso Nacional de Acuicultura. El equilibrio con el Medio Ambiente. (M. Villaroel, L. Reig, C. Almansa, eds.) ISBN 978-84-937611-9-6, pp. 57-58. Medina, P., Gómez, A., Zanuy, S., Bláquez, M. (2014). Testicular organ culture for the study of sea bass spermatogenesis. Advances in Comparative Endocrinology, vol VII. Public. Univ. Barcelona (I. Navarro, J. Gutiérrez y E. Capilla, eds.) ISBN: 974-84-475- 3851-5, pp. 145-148. Otras publicaciones con metodologías empleadas en esta tesis y realizadas durante el periodo de formación doctoral pero que no forman parte directa de los resultados de la misma: Blanco, M., Fernandes, D., Medina, P., Blázquez, M., and Porte, C. (2016). Drospirenone intake alters plasmatic steroid levels and cyp17a1 expression in gonads of juvenile sea bass. Environmental Pollution 213, 541-548. Barcelona, 2019 A mi hijo, Vicente Antai Padilla Medina If not stated otherwise all illustrations and photographs from the author´s. Cover artwork by Alfonso Medina Bacarrezza. Graphic design: Tanya Riquelme ([email protected]). Barcelona, 2019 Agradecimientos. En un viaje largo no podemos decidir lo que nos va a suceder, pero si podemos decidir qué hacer con el tiempo que se nos ha concedido. Primero quisiera agradecer a mi maestro ya fallecido, mi profesor de zoología y colega don Ismael Kong Urbina él siempre dijo que si hay alguien que pueda terminar una tesis doctoral, esa eres tú. No solo el creyó en mi, sino también una pareja de grandes científicos de Torre de la Sal. Sin conocerme Silvia Zanuy y Manuel Carrillo tomaron un voto de confianza y me brindaron todo su apoyo para ser parte de su equipo de investigación. Este gesto cambió mi vida, por eso siempre los recordaré y les estaré eternamente agradecida. A mí querida directora de tesis Mercedes Blázquez. Gracias por ser una de mis maestras de vida, gracias por tener oído, paciencia y empatía con todas las historias del mundo y siempre, siempre, siempre, esa palabra sanadora que te empuja hacia adelante para entregar lo mejor de ti y crecer, tal y como lo hace ella. Han sido años de trabajo y amistad, gracias por esperarme en la orilla, al fin llegué!!!. Simplemente gracias para siempre. A mis compañeros de viaje, confidentes, aliados y amigos del IATS. No podría haber completado ni la mitad de mis propósitos sin Berta, Majo, mi archienemigo Olivier, Vicky, Felipe, Vanesa y Raúl Cortés, por mi parte nuestra amistad trasciende la distancia y el tiempo, siempre los llevaré en mi corazón. Especialmente a mi compatriota el Sebas, su ayuda fue fundamental en muchos momentos, incluso antes de conocernos y lo sigue siendo, gracias chango. Gracias a Silvia, Gemma y Elvira. Gracias por su trabajo diario en el laboratorio y la ZAE, por su paciencia conmigo y las lubinas. Gracias chicas por un trabajo impecable!!!. Gracias a todas las lubinas del mundo por ser como son. Agradecer también la ayuda, apoyo y amistad incondicional de mis queridos amigos Clara, Javier, María José, Irene, y Azahar. Su amistad fue fundamental a mi llegada a Valencia y en la distancia durante todo el tiempo que estuve en Castellón y en Barcelona. Representan a mi familia en España. Siempre tendrán un cariño inmenso y un lugar especial en mi corazón. Gracias a las maravillosas voces de la Coral del mar, los Ovnisingers y, mis amigos B&R: Paco, Joan y Angels, y a mis compañeros del ICM: Natalia, Sara y Fran. Gracias a ustedes mi viaje transcurrió como un sueño hermoso. Barcelona, 2019 A mí querida guía y alma amiga, Elena. Gracias amiguín por ayudarme a levantarme cuando estaba en el suelo, por ser brutalmente honesta conmigo y sobre todo gracias por seguir compartiendo la vida conmigo. Nos convertimos en hermanas del alma y nuestras vidas estarán ligadas a pesar del tiempo y la distancia, gracias amiga para siempre. Gracias a mis padres Marta y Alfonso por entregarme siempre la mejor versión de ustedes mismos, por enseñarme a luchar con la cabeza en alto, por amarme y cuidarme incondicionalmente a pesar de mi y de ustedes. Gracias por ser y estar. Gracias a mi hermano, Diego y a su hermosa familia, Francia, Antonella y Alfonsito, por tanto amor y refugio incondicional. Gracias a mi abuelita Kika, por cuidarme siempre en el más acá y en el más allá (bien habilosita). Gracias a mis amigas Denisse, Karla, Viviana y Cynthia por siempre estar ahí, creer en mí y darme ánimos. Gracias a mi compañero Rodrigo. Gracias por la ternura de tu fuerza, por todo tu apoyo y amor. Gracias por no permitir que me olvide quién soy y acompañarme en esta aventura. Finalmente gracias también a Vicente. La vida cantó y dijo tu nombre, eres la luz de mi vida, mi mejor tesis doctoral y por ti soy capaz de todo. La fortaleza de cada uno de ustedes me acompaña día a día, su energía es mi energía y mi continuidad. Así es, fui capaz de completar esta tarea para lograr ver en mi lo que siempre estuvo allí, para permitir que me ayuden y que me amen, para explotar mis talentos y ser reflejo de los que me rodean. Ahora que esta tesis está terminada el verdadero viaje comienza, no sé donde me llevará, pero seguro será épico. Barcelona, 2019 Abbreviation list. 11-KT: 11-Ketotestosterone 4-OH-RA: 4-Hydroxy retinoic acid 4-oxo-RA 4-oxo-Retinoic acid 9cis-RA: 9cis retinoic acid ADH: Alcohol- dehydrogenase AGN193109: Retinoid analog ALDH: Aldehyde-dehydrogenase APROMAR: Asociación Empresarial de Acuicultura de España atRA: All-trans retinoic acid BCMO1: Beta-Carotene 15,15'-MonoOxygenase BMS-204493:
Recommended publications
  • Multiple Activities of Arl1 Gtpase in the Trans-Golgi Network Chia-Jung Yu1,2 and Fang-Jen S
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1691-1699 doi:10.1242/jcs.201319 COMMENTARY Multiple activities of Arl1 GTPase in the trans-Golgi network Chia-Jung Yu1,2 and Fang-Jen S. Lee3,4,* ABSTRACT typical features of an Arf-family GTPase, including an amphipathic ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like N-terminal helix and a consensus site for N-myristoylation (Lu et al., proteins (Arls) are highly conserved small GTPases that function 2001; Price et al., 2005). In yeast, recruitment of Arl1 to the Golgi as main regulators of vesicular trafficking and cytoskeletal complex requires a second Arf-like GTPase, Arl3 (Behnia et al., reorganization. Arl1, the first identified member of the large Arl family, 2004; Setty et al., 2003). Yeast Arl3 lacks a myristoylation site and is an important regulator of Golgi complex structure and function in is, instead, N-terminally acetylated; this modification is required for organisms ranging from yeast to mammals. Together with its effectors, its recruitment to the Golgi complex by Sys1. In mammalian cells, Arl1 has been shown to be involved in several cellular processes, ADP-ribosylation-factor-related protein 1 (Arfrp1), a mammalian including endosomal trans-Golgi network and secretory trafficking, lipid ortholog of yeast Arl3, plays a pivotal role in the recruitment of Arl1 droplet and salivary granule formation, innate immunity and neuronal to the trans-Golgi network (TGN) (Behnia et al., 2004; Panic et al., development, stress tolerance, as well as the response of the unfolded 2003b; Setty et al., 2003; Zahn et al., 2006).
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Coupling of Spliceosome Complexity to Intron Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans.
    [Show full text]
  • Rev7 Dimerization Is Important for Assembly and Function of the Rev1/Pol# Translesion Synthesis Complex
    Rev7 dimerization is important for assembly and function of the Rev1/Pol# translesion synthesis complex The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Rizzo, Alessandro A. et al. “Rev7 Dimerization Is Important for Assembly and Function of the Rev1/Polζ Translesion Synthesis Complex.” Proceedings of the National Academy of Sciences 115, 35 (August 2018): E8191–E8200 © 2018 National Academy of Sciences As Published http://dx.doi.org/10.1073/pnas.1801149115 Publisher National Academy of Sciences (U.S.) Version Final published version Citable link http://hdl.handle.net/1721.1/120569 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex Alessandro A. Rizzoa, Faye-Marie Vasselb, Nimrat Chatterjeeb, Sanjay D’Souzab, Yunfeng Lia, Bing Haoa, Michael T. Hemannb,c, Graham C. Walkerb, and Dmitry M. Korzhneva,1 aDepartment of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030; bDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and cThe David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Gerhard Wagner, Harvard Medical School, Boston, MA, and approved July 18, 2018 (received for review January 20, 2018) The translesion synthesis (TLS) polymerases Polζ and Rev1 form a Besides TLS, Polζ participates in the repair of DNA in- complex that enables replication of damaged DNA.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Data Mining the Genetics of Leukemia
    Data Mining the Genetics of Leukemia by Geoff Morton A thesis submitted to the School of Computing in conformity with the requirements for the degree of Master of Science Queen's University Kingston, Ontario, Canada January 2010 Copyright °c Geo® Morton, 2010 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-65049-3 Our file Notre référence ISBN: 978-0-494-65049-3 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • NIH Public Access Author Manuscript Neuroimage
    NIH Public Access Author Manuscript Neuroimage. Author manuscript; available in PMC 2010 June 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuroimage. 2010 June ; 51(2): 542±554. doi:10.1016/j.neuroimage.2010.02.068. Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer’s Disease Jason L. Stein1, Xue Hua1, Jonathan H. Morra1, Suh Lee1, Derrek P. Hibar1, April J. Ho1, Alex D. Leow1,2, Arthur W. Toga1, Jae Hoon Sul3, Hyun Min Kang4, Eleazar Eskin3,5, Andrew J. Saykin6, Li Shen6, Tatiana Foroud7, Nathan Pankratz7, Matthew J. Huentelman8, David W. Craig8, Jill D. Gerber8, April N. Allen8, Jason J. Corneveaux8, Dietrich A. Stephan8, Jennifer Webster8, Bryan M. DeChairo9, Steven G. Potkin10, Clifford R. Jack Jr.11, Michael W. Weiner12,13, Paul M. Thompson1, and Alzheimer’s Disease Neuroimaging Initiative* 1 Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA 2 Resnick Neuropsychiatric Hospital at UCLA, Los Angeles, CA 3 Department of Computer Science, UCLA, Los Angeles, CA 4 Computer Science and Engineering, UC San Diego, La Jolla, CA 5 Department of Human Genetics, UCLA, Los Angeles, CA 6 Center for Neuroimaging, Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 7 Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 8 The Translational Genomics Research Institute, Phoenix, AZ 9 Neuroscience, Molecular Medicine, Pfizer Global R&D, New London, CT 10 Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 11 Mayo Clinic, Rochester, MN 12 Depts.
    [Show full text]