Stratigraphic and Paleoecological Controls on Eurypterid Lagerstatten

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphic and Paleoecological Controls on Eurypterid Lagerstatten Stratigraphic and Paleoecological Controls on Eurypterid Lagerstätten in the Mid- Paleozoic A dissertation submitted to the Graduate School University of Cincinnati In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Geology McMicken College of Arts and Sciences May 25, 2016 by Matthew Benjamin Vrazo M.S., University of Bristol (UK), 2006 B.S. University of Bristol (UK), 2004 Dissertation Committee Dr. Carlton E. Brett, Chair Dr. Brooke E. Crowley Dr. Aaron F. Diefendorf Dr. Brenda R. Hunda Dr. Arnold I. Miller ABSTRACT The Eurypterida (Arthropoda: Chelicerata) are unique among chelicerates in having undergone a complete marine-to-freshwater transition during their history. Although the general pattern is well documented, habitats during the peak of the transition during the Silurian and Lower Devonian have remained unclear. This is due to the co-occurrence of eurypterids with euryhaline and marine faunas in environments that have been interpreted as hypersaline, and a paucity of detailed bed-level data within eurypterid-bearing occurrences, such within the numerous Lagerstätten of the Laurentia. A high-resolution field- and specimen-based analysis was carried out on eurypterid occurrences in Silurian–Lower Devonian-age exposures in the Appalachian basin. Eurypterids in the upper Silurian Tonoloway Formation of Pennsylvania occur in a transgressive succession above microbial structures (thrombolites) with a marine fauna that suggests near-euhaline conditions. The paucity of occurrences in adjacent hypersaline facies suggests that eurypterids preferentially occupied freshening conditions. A survey of all eurypterid-bearing units in the basin found that the co-occurrence of eurypterids and hypersaline indicators (evaporites) are common, but only in the northern basin. Here, eurypterid and associated fauna frequently co-occur with disruptive, isolated salt hoppers (pyramidal-shaped halite pseudomorphs), which suggests intra-sedimentary formation. Thus, eurypterid-evaporite associations appear to reflect early-stage diagenesis rather than burial conditions, and it is unlikely that eurypterids inhabited hypersaline conditions. Analysis of eurypterid-bearing strata at the centimeter-scale reveals strong sequence stratigraphic controls on preservation. Eurypterid preservation appears to be principally controlled by water depth in nearshore settings. In carbonate-dominated environments, eurypterids often occur within or above beds containing microbial structures (thrombolites, stromatolites) that are interpreted as the flooding surface within small-scale transgressive events. Shallowing-upward successions above these beds, indicated by desiccation features (evaporites, desiccation cracks), are the result of regressions and/or evaporation. A preservational model is proposed whereby eurypterids entered nearshore settings during transgressive freshening events; subsequent hypersalinity and/or dysoxia or ii anoxia in post-burial sediments following regression was favorable to excellent preservation of cuticle. In settings lacking microbial structures or hypersaline indicators, eurypterids occur in similar transgressive successions. Such stratigraphic constraint on eurypterid occurrences permits detailed assessment of morphological variation among equivocal species. A combined landmark and semi-landmark-based geometric morphometric analysis of eurypterids from contemporaneous upper Silurian populations indicates that eurypterid morphospecies cannot be distinguished using isolated carapaces, unless identifiable macro-scale characters are present. In well-defined species, however, a combined landmark/semi-landmark approach allows regional-scale variance to be quantified. iii iv ACKNOWLEDGEMENTS There are many people that I need to thank for their contributions to my doctoral journey. Firstly, thank you to my advisor, Carlton E. Brett, for allowing pursue my research interests in both familiar and unfamiliar territory. The guidance I received in the field has been invaluable and will continue with me on future endeavors. I thank Brooke E. Crowley and Aaron F. Diefendorf for introducing me to the world of stable isotopes, willingly answering my many queries once the seed was planted, and ultimately training me to do the job myself. Brenda R. Hunda is thanked for her constant enthusiasm and making a morphometrician out of me. Arnold I. Miller is thanked for his continual support, and helping me think in terms of the big picture. I must also thank the faculty in the Department of Geology at UC, many of whom provided technical, editing, or discursive assistance during the course of my Ph.D. Special thanks goes to Andrew D. Czaja, Warren D. Huff, J. Barry Maynard, and David L. Meyer who kindly provided access to their labs and their technical expertise. Joshua H. Miller is thanked for his input on quantitative analyses and willingness to answer any number of R programming-related questions. This dissertation is the result of discussions, input, and feedback from many outside the department. Samuel J. Ciurca, Jr. is thanked for generously dispensing his knowledge in the field, and over the course of many emails and phone calls. A significant portion of this dissertation would not have been possible were it not for the samples gathered during his tireless fieldwork over the last 40 years. I greatly benefitted from assistance by Dr. Jeffrey M. Trop, both in the field and in during manuscript preparation. Susan Butts and Jessica Utrup at the Yale Peabody Museum are thanked for their collections and specimen assistance, which was critical to the completion of this dissertation. John-Paul Zonneveld, Peter van Roy, and anonymous reviewers read earlier versions of parts of this dissertation and are acknowledged for their helpful criticism and suggestions. Finally, Simon J. Braddy is thanked for setting me down the road of arthropod paleoecology and taphonomy that led my continuing interest in this area. v Very large thanks goes to my UC graduate colleagues who listened to my endless spiels, offered their own wisdom, provided technical assistance, joined me for a necessary beverage, and ultimately kept me sane over the course of my Ph.D. This includes, but is not limited to Christopher D. Aucoin, Kelsey M. Feser, Gary J. Motz, Nicholas B. Sullivan, Cameron E. Schwalbach, Janine M. Sparks, James R. Thomka, Alexander F. Wall, Julia L. Wise, and Andrew A. Zaffos. Thanks goes to Gene Hunt at the Smithsonian NMNH for offering me a space in which to finish this dissertation, and to Laura C. Soul and Rachel C. M. Warnock for getting me through the final push. Funding and support for this dissertation was provided by the Geological Society of America, the Paleontological Society, the Schuchert and Dunbar Grants in Aid Program (Yale Peabody Museum), Sigma Xi-University of Cincinnati Chapter, the University of Cincinnati Department of Geology Caster Fund, the University of Cincinnati Graduate Student Governance Association, the University of Cincinnati University Research Council, and the University of Cincinnati Graduate School Dean’s Fellowship. This dissertation is dedicated to: My parents, who always supported my interest in natural history and pushed me to go further; Anna, for her unwavering support (and keeping me on my toes); Alex (a.k.a., my 6th committee member), whom, without her guidance, patience, and sharp-eyed critiques, this Ph.D. would have never been possible. vi TABLE OF CONTENTS Chapter I: Introduction (pp. 1–5) Chapter II: A new eurypterid Lagerstätte from the upper Silurian of Pennsylvania (pp. 6–69) Chapter III: Buried or brined? Eurypterids and evaporites in the Silurian Appalachian basin (pp. 70–118) Chapter IV: Paleoecological and stratigraphic controls on eurypterid Lagerstätten: a model for preservation in the mid-Paleozoic (pp. 119–173) Chapter V: Taphonomic bias in taxonomic assignment: a semi-landmark approach to distinguishing species of Silurian eurypterids (pp. 174–230) Chapter VI: Conclusions (pp. 231–232) Appendix: Chapter II Supplementary Materials (p. 233–236) Chapter III Supplementary Materials (p. 237–238) Chapter V Supplementary Materials (p. 239–252) vii Chapter I INTRODUCTION The transition of an entire group of organisms from one ecosystem into another is a rare occurrence in the history of life (Vermeij and Dudley 2000). Studies of specific clades that have successfully exploited new ecosystems can provide insight into the causes of these important evolutionary events. The arthropod subphylum Chelicerata contains several lineages that have independently made such a transition (Selden and Jeram 1989). These include the Order Eurypterida, a predatory and widely distributed aquatic clade that was closely related to scorpions and other arachnids (Kamenz et al. 2011). Eurypterids originated in open marine environments in the mid-Ordovician (Lamsdell et al. 2015) and were found in nearshore settings by the Late Ordovician (Young et al. 2007). In the Silurian, eurypterids first appeared in freshwater-influenced environments (Swartz and Swartz 1930; Swartz and Swartz 1931); by the beginning of the Carboniferous, they were restricted entirely to terrestrial, freshwater-dominated settings (Plotnick 1983, 1999; Tetlie 2007). Eurypterids transitioned into a new system only once (unlike other aquatic chelicerates, e.g., the Xiphosura, Lamsdell 2016), but freshwater taxa were highly successful and survived longer than any marine clade before their extinction in the end- Permian. Although
Recommended publications
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Biostratigraphy of Some Early Middle Silurian Ostracoda, Eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and Eastern Canada
    This document was produced by scanning the original publication. Ce document est Ie produit d'une numerisation par balayage de la publication originale. BULLETIN 200 PART I - Biostratigraphy of some early Middle Silurian Ostracoda, eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and eastern Canada M. J. Copeland Ottawa Canada Price $1.50 1971 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada 1,IOO.1970.6119 GEOLOGICAL SURVEY OF CANADA BULLETIN 200 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada By M. J. Copeland DEPARTMENT OF ENERGY, MINES AND RESOURCES CANADA © Crown Copyrights reserved Available by mail from Information Canada, Ottawa, from neological Survey of Canada, 601 Booth St., Oltawa. and at the following Information Canada bookshops: HALIFAX 1735 Barrington Street MONTREAL Mterna-Vie Building, 1182 St. Catherine Street West OITAWA 171 Slater Street TORONTO 221 Yonge Street WINNIPEG Mall Center Building, 499 Portage Avenue VANCOUVER 657 Granville Street or through your bookseller A deposit copy of this publication is also available for reference in public libraries across Canada Price: $1.50 Catalogue No. M42-200 Price subject to change without notice Information Canada Ottawa, 1971 PREFACE As more detailed information is obtained on the stra­ tigraphic occurrence and systematic paleontology of Paleozoic Arthropoda, it is increasingly evident that these forms present a useful key for determining the paleontological zonation and age relationships of the enclosing rocks. They are particularly important in strata of lacustrine, brackish, or restricted marine environments in which rapidly evolving leperditiid ostra­ codes, eurypterids, and phyllocarids may occur to the exclusion of other distinctive faunal elements.
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Lecture 16. Endocrine System II
    Highlights from Pesticides Lecture Prior to World War II pesticides were _______________, while post-WW II they were ______________. What is meant by the biomagnification of pesticides and what are its consequences? Differentiate between acute and chronic pesticide toxicity. Define the term LD50. Provide two major consequences of the wide-spread use of Mirex (chlorinated hydrocarbon) to control fire ants. Characterize chlorinated hydrocarbon insecticides (DDT and its relatives). What is meant when it is said that the use of pesticides is contextual? Define the term naturally-occurring inorganic pesticide and provide an example. Highlights from Biological Control Lecture Define the three types of biological control and provide an example of each. Contrast predators and parasitoids. What is a density-dependent mortality factor? How has the introduction of the soybean aphids affected pest management in the Midwest? Name one untoward effect related to controlling tamarisk trees on the Colorado River. What is meant by an inoculative release of a biological control agent? How do pesticide economic thresholds affect biological control programs? Lecture 19. Endocrine system II Physiological functions of hormones • Anatomy • Hormones: 14 • Functions Functions of insect hormones: diversity Hormonal functions: Molting as a paradigm egg Eat and grow Bridge Disperse and passage reproduce embryo Postembryonic sequential polymorphism • Nature of molting, growth or metamorphosis? • When and how to molt? The molting process Ecdysis phase Pre-ecdysis phase Post-ecdysis phase Overview • About 90 years’ study (1917-2000): 7 hormones are involved in regulating molting / metamorphosis • 3 in Pre-ecdysis preparatory phase: the initiation and determination of new cuticle formation and old cuticle digestion, regulated by PTTH, MH (Ecdysteroids), and JH • 3 in Ecdysis phase: Ecdysis, i.e.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Exhibit 5 Town of Barton Geology and Seismicity Report Sections
    GEOLOGY AND SEISMICITY REPORT SNYDER E1-A WELL TOWN OF BARTON TIOGA COUNTY, NEW YORK Prepared for: Couch White, LLP 540 Broadway P.O. Box 22222 Albany, New York 12201 Prepared by: Continental Placer Inc. II Winners Circle Albany, New York 12205 July 25, 2017 Table of Contents 1.0 EXECUTIVE SUMMARY............................................................................................................. 1 2.0 INTRODUCTION ........................................................................................................................... 2 2.1 Depositional Sequences and General Stratigraphic Sequence ................................................ 2 2.1.1 Upper Devonian Lithologies ........................................................................................................ 4 2.1.2 Marcellus-Hamilton ..................................................................................................................... 4 2.1.3 Tristates-Onondaga ...................................................................................................................... 4 2.1.4 Helderberg .................................................................................................................................... 4 2.1.5 Oneida-Clinton-Salina ................................................................................................................. 4 2.1.6 Black River-Trenton-Utica-Frankfort .......................................................................................... 5 2.1.7 Potsdam-Beekmantown ..............................................................................................................
    [Show full text]
  • A New Eurypterid from the Saaremaa- (Oesel-) Beds in Estonia
    TARTU ÜLIKOOLI GEOLOOGIA-INSTITUUDI TOIMETUSED .M 37 PUBLIGA TIONS OF THE GEOLOGICAL INSTITUTION .M 37 OF THE UNIVERSITY OF TARTU A NEW EURYPTERID FROM THE SAAREMAA- (OESEL-) BEDS IN ESTONIA BY LEIF STÖRMER TARTU 1934 K. Mattieseni trükikoda o-ü., Tartu 1934. A new Eurypterid from the Saaremaa- (Oesal-) bads in Estonia. B y L ei f Stör m er. The famous Eurypterus fi�cheri-faunaof Rootsiküla (Rootziküll), Saaremaa, became known to science through the monographs of N iesz kow sk i (1858), Sc hmidt (1.883), and Ho lm (1898). The unique preservation of the eurypterid shells has made it possible to study in detail the finest morphv logical structures of these old arthropods. By means of a special metbod, Ho lm succeeded in separating the chitinaus tests from the matrix. The Saaremaa beds have also furnished a considerable supply of vertebrates and crustaceans. In later years Professor dr. W. Patten from Dartmouth College, Hanover, N. H., U. S. A. made extensive collections in tbe Saaremaa beds. He was specially interested in the remains of the primitive vertebra tes, but also collected a considerable mate­ rial of merostomes. The sad death of Professor Pat.ten in the fall of 1932 prevented him frorn finishing bis interesting studies on the valuable material of prim itive >ertebrates. In May 1932 I had the fortunate opportunity to visit Professor Patten in Dartmouth Col­ lege. He very kindly showed me bis fine collections of eurypterids from Saaremaa. Looking through the material I became aware of an eurypterid specimen , belanging to a genus not known, from tbe Eurypterus fischeri-fauna of Saaremaa.
    [Show full text]
  • Figure 3A. Major Geologic Formations in West Virginia. Allegheney And
    82° 81° 80° 79° 78° EXPLANATION West Virginia county boundaries A West Virginia Geology by map unit Quaternary Modern Reservoirs Qal Alluvium Permian or Pennsylvanian Period LTP d Dunkard Group LTP c Conemaugh Group LTP m Monongahela Group 0 25 50 MILES LTP a Allegheny Formation PENNSYLVANIA LTP pv Pottsville Group 0 25 50 KILOMETERS LTP k Kanawha Formation 40° LTP nr New River Formation LTP p Pocahontas Formation Mississippian Period Mmc Mauch Chunk Group Mbp Bluestone and Princeton Formations Ce Obrr Omc Mh Hinton Formation Obps Dmn Bluefield Formation Dbh Otbr Mbf MARYLAND LTP pv Osp Mg Greenbrier Group Smc Axis of Obs Mmp Maccrady and Pocono, undivided Burning Springs LTP a Mmc St Ce Mmcc Maccrady Formation anticline LTP d Om Dh Cwy Mp Pocono Group Qal Dhs Ch Devonian Period Mp Dohl LTP c Dmu Middle and Upper Devonian, undivided Obps Cw Dhs Hampshire Formation LTP m Dmn OHIO Ct Dch Chemung Group Omc Obs Dch Dbh Dbh Brailler and Harrell, undivided Stw Cwy LTP pv Ca Db Brallier Formation Obrr Cc 39° CPCc Dh Harrell Shale St Dmb Millboro Shale Mmc Dhs Dmt Mahantango Formation Do LTP d Ojo Dm Marcellus Formation Dmn Onondaga Group Om Lower Devonian, undivided LTP k Dhl Dohl Do Oriskany Sandstone Dmt Ot Dhl Helderberg Group LTP m VIRGINIA Qal Obr Silurian Period Dch Smc Om Stw Tonoloway, Wills Creek, and Williamsport Formations LTP c Dmb Sct Lower Silurian, undivided LTP a Smc McKenzie Formation and Clinton Group Dhl Stw Ojo Mbf Db St Tuscarora Sandstone Ordovician Period Ojo Juniata and Oswego Formations Dohl Mg Om Martinsburg Formation LTP nr Otbr Ordovician--Trenton and Black River, undivided 38° Mmcc Ot Trenton Group LTP k WEST VIRGINIA Obr Black River Group Omc Ordovician, middle calcareous units Mp Db Osp St.
    [Show full text]
  • Year in Review 2018/2019
    Contents Shaping the Museum of the Future 2 Philanthropy on View 4 The Year at a Glance 8 Compelling Mix of Original and Touring Exhibitions 12 ROM Objects on Loan Locally and Globally 26 Leading-Edge Research 36 ROM Scholarship in Print 46 Community Connections 50 Access to First Peoples Art and Culture 58 Programming That Inspires 60 Learning at the ROM 66 Members and Volunteers 70 Digital Readiness 72 Philanthropy 74 ROM Leadership 80 Our Supporters 86 2 royal ontario museum year in review 2018–2019 3 One of the initiatives we were most proud of in 2018 was the opening of the Daphne Cockwell Gallery dedicated to First Peoples art & culture as free to the public every day the Museum is open. Initiatives such as this represent just one step on our journey. ROM programs and exhibitions continue to be bold, ambitious, and diverse, fostering discourse at home and around the world. Being Japanese Canadian: reflections on a broken world, Gods in My Home: Chinese New Year with Ancestor Portraits and Deity Prints and The Evidence Room helped ROM visitors connect past to present and understand forces and influences that have shaped our world, while #MeToo & the Arts brought forward a critical conversation about the arts, institutions, and cultural movements. Immersive and interactive exhibitions such as aptured in these pages is a pivotal Zuul: Life of an Armoured Dinosaur and Spiders: year for the Royal Ontario Museum. Fear & Fascination showcased groundbreaking Shaping Not only did the Museum’s robust ROM research and world-class storytelling. The Cattendance of 1.34 million visitors contribute to success achieved with these exhibitions set the our ranking as the #1 most-visited museum in stage for upcoming ROM-originals Bloodsuckers: the Canada and #7 in North America according to The Legends to Leeches, The Cloth That Changed the Art Newspaper, but a new report by Deloitte shows World: India’s Painted and Printed Cottons, and the the ROM, through its various activities, contributed busy slate of art, culture, and nature ahead.
    [Show full text]
  • Hypothesis of Eurypterid Palaeoecology
    Palaeogeography, Palaeoclimatology, Palaeoecology 311 (2011) 63–73 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology Matthew B. Vrazo ⁎, Simon J. Braddy Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK article info abstract Article history: The eurypterids (Arthropoda: Chelicerata), some of the earliest arthropods to undertake amphibious Received 6 May 2011 excursions onto land, are generally rare in the fossil record, but are sometimes found in great abundance, for Received in revised form 16 July 2011 example in the Late Silurian Bertie Group of New York State. The mass-moult-mate hypothesis has been Accepted 29 July 2011 proposed to explain such occurrences, whereby eurypterids undertook mass migrations into near shore Available online 5 August 2011 settings and lagoons to moult, mate and spawn, similar to the behaviour of living horseshoe crabs. This hypothesis is tested using measurements from over 600 Eurypterus specimens from three localities in the Keywords: Arthropod Bertie Group; Eurypterus remipes, from the Fiddlers Green Formation, and the slightly larger Eurypterus Exuvia lacustris, from the overlying Williamsville Formation. Disarticulation patterns support previous evidence for Taphonomy moulted assemblages. A significant predominance of female exuviae is noted at each locality, unlike studies on Biofacies modern Limulus populations. Therefore, a modified mass-mate-spawn-moult hypothesis is proposed here: Silurian males returned to deeper waters after mating, whereas females, having mated, remained at the breeding sites Eurypterus to deposit their eggs before moulting. After hatching, eurypterid larvae and juveniles remained in these spawning grounds until they matured and could move to deeper water, in comparison with Limulus.
    [Show full text]
  • 65Th Annual Tri-State Geological Field Conference 2-3 October 2004
    65th Annual Tri-State Geological Field Conference 2-3 October 2004 Weis Earth Science Museum Menasha, Wisconsin The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago Joanne Kluessendorf & Donald G. Mikulic Organizers The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago 65th Annual Tri-State Geological Field Conference 2-3 October 2004 by Joanne Kluessendorf Weis Earth Science Museum, Menasha and Donald G. Mikulic Illinois State Geological Survey, Champaign With contributions by Bruce Brown, Wisconsin Geological & Natural History Survey, Stop 1 Tom Hooyer, Wisconsin Geological & Natural History Survey, Stops 2 & 5 William Mode, University of Wisconsin-Oshkosh, Stops 2 & 5 Maureen Muldoon, University of Wisconsin-Oshkosh, Stop 1 Weis Earth Science Museum University of Wisconsin-Fox Valley Menasha, Wisconsin WELCOME TO THE TH 65 ANNUAL TRI-STATE GEOLOGICAL FIELD CONFERENCE. The Tri-State Geological Field Conference was founded in 1933 as an informal geological field trip for professionals and students in Iowa, Illinois and Wisconsin. The first Tri-State examined the LaSalle Anticline in Illinois. Fifty-two geologists from the University of Chicago, University of Iowa, University of Illinois, Northwestern University, University of Wisconsin, Northern Illinois State Teachers College, Western Illinois Teachers College, and the Illinois State Geological Survey attended that trip (Anderson, 1980). The 1934 field conference was hosted by the University of Wisconsin and the 1935 by the University of Iowa, establishing the rotation between the three states. The 1947 Tri-State visited quarries at Hamilton Mound and High Cliff, two of the stops on this year’s field trip.
    [Show full text]
  • Exceptionally Preserved Arthropodan Microfossils from the Middle Ordovician Winneshiek Lagerstätte, Iowa
    Exceptionally preserved arthropodan microfossils from the Middle Ordovician Winneshiek Lagerstätte, Iowa, USA Hendrik Nowak, Thomas Harvey, Huaibao Liu, Robert Mckay, Thomas Servais To cite this version: Hendrik Nowak, Thomas Harvey, Huaibao Liu, Robert Mckay, Thomas Servais. Exceptionally pre- served arthropodan microfossils from the Middle Ordovician Winneshiek Lagerstätte, Iowa, USA. Lethaia, Wiley, 2018, 51 (2), pp.267-276. 10.1111/let.12236. hal-02408755 HAL Id: hal-02408755 https://hal.archives-ouvertes.fr/hal-02408755 Submitted on 3 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Exceptionally preserved arthropodan microfossils from the Middle Ordovician Winneshiek Lagerst€atte, Iowa, USA HENDRIK NOWAK , THOMAS H. P. HARVEY, HUAIBAO P. LIU, ROBERT M. MCKAY AND THOMAS SERVAIS Nowak, H., Harvey, T.H.P., Liu, H.P., McKay, R.M. & Servais, T. 2018: Exceptionally preserved arthropodan microfossils from the Middle Ordovician Winneshiek Lagerst€atte, Iowa, USA. Lethaia, Vol. 51, pp. 267–276. The Middle Ordovician (Darriwilian) Winneshiek Shale from Winneshiek County, Iowa, USA, hosts a Konservat-Lagerst€atte that has yielded a diverse fauna including soft-bodied fossils.
    [Show full text]