<<

C 7A OPTICAL STUDIES OF SIVE m

EJ. ZUIDERWIJK optical studies of massive X- ray binaries

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE UNIVERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS, DR. J. BRUYN, HOOGLERAAR IN DE FACULTEIT DER LETTEREN, IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUI) OP WOENSDAG 20 JUN11979 DES NAMIDDAGS TE 15.00 UUR PRECIES

DOOR

EDUARDUSJOSEPHUSZUIDERWIJK

GEBOREN TE HAARLEM

PROMOTOR : Prof. Dr. E.P.J. van den Heave 1 COREFERENT : Dr. H.G L.M. Lamers

The work described in this thesis was supported by the "Netherlands Organi- sation for the advancement of Pure Re- search" (ZWO) and by the University of of Amsterdam.

-\

Voor mijn Iet en onze Ouders

Na het voltooien van mijn proefschrift wil ik graag allen bedanken die aan het tot stand komen ervan hebben bijgedragen. Allereerst dank ik mijn ouders, die mij de gelegenheid gaven een aca- demische opleiding te volgen. Bijzonder erkentelijk ben ik mijn Promotor Prof. Dr. E.P.J. van den Heuvel, die het voor mij mogelijk maakte het onderzoek uit te voeren. Hij is daarbij altijd een steun geweest door de interesse getoond in mijn werk, die onder andere tot uiting kwam in langdurige en diepgaande gedach- tenwisselingen. De coreferent Dr. H.J.G.L.M. Lamers dank ik voor het kritisch lezen van het proefschrift. Het grootste deel van de in mijn proefschrift verwerkte publicaties zijn tot stand gekomen in nauwe samenwerking met mijn collega's van het Sterrenkundig Instituut van de universiteit van Amsterdam en van het As- trophysisch Instituut van de Vrije Universiteit van Brussel. Door hun kenr' nis en ervaring hebben zij ieder op zijn of haar eigen wijze bijgedragen aan dit proefschrift, waarvoor ik hen zeer erkentelijk ben. Bijzondere dank ben ik verschuldigd aan Jan van Paradijs, die de aanzet gaf tot de theoretische berekeningen aan lichtkrommen en die veel waarne- mingen uitwerkte, aan Godelieve Hammerschlag-Hensberge voor haar steun bij het waarnemen en bij reductie werk en aan Roelf Takens voor o.a zijn adviezen bij het programmeren. Met veel genoegen denk ik terug aan öe gezelligheid en de goede werk- sfeer in het Sterrenkundig Instituut te Amsterdam. De vaak diepgaande (en soms verhitte) discussies bij de koffie zullen door mij gemist worden. De algemeen direkteur van de ESO, Prof. Dr. L. woltjer, ben ik zeer erkentelijk omdat hij mij de gelegenheid gaf mijn proefschrift te voltooi- en. Hans de Ruiter bedank ik voor het kritisch lezen van enkele delen van het manuscript. Mijn schoonvader, de heer J.M.M. vanLith, bedank ik voor het verzorgen van de lay-out, de omslag en de fraaie illustraties, waarin hij zijn ge- heel eigen visie op het onderwerp van mijn proefschrift verbeeldde. Drukkerij Trepico te Hooglanderveen, in het bijzonder de heer P.C.v.d. Kletersteeg, dank ik voor de prettige wijze van samenwerken bij het druk- ken van dit proefschrift. Tenslotte, maar niet op de minste plaats, bedank ik mijn lieve echt- genote. Niet alleen verzorgde je een groot deel van het typewerk, Julie, maar zonder jouw voortdurende steun en zonder het door jou opgebrachte geduld was dit proefschrift er hoogstwaarschijnlijk nooit gekomen.

CONTENTS

PAGE 11 INLEIDING 21 SAMENVATTING 25 INTRODUCTION AND SUMMARY

31 CHAPTER I ANALYSIS OF PHOTOMETRIC OBSERVATIONS OF MASSIVE X-RAY BINARIES 33 IA Theoretical Light Curves and Radial Velocity Orbits for Massive X-ray Binaries 33 1. introduction 34 2. Basic Assumptions of the Computational Model 41 3. The Computer Program and Results 59 4. Limitations of the Assumptions used in the Computational Model 70 IB Four Colour Photometric Observations of the X-ray Binary Star HD 77581 (Vela X-l) I 75 ic Four Colour Photometric Observations of the X-ray Binary Star HD 77581 (Vela X-l) II 82 ID Four Colour Photometric Observations of the X-ray Binary HD 153919 (3U1700-37) 86 IE study of the Light Curve of the Of star HD 153919 95 IF Photometric Variations of Wray977 (3U1223-62 ? ) 98 IG Evidence for an in SMC X-l 103 CHAPTER II THE RADIAL VELOCITY ORBIT OF HD77581

105 HA Mass Determination for the X-ray Binary System Vela X-l 107 IIB systematic Distortions of the Radial Velocity Curve of HD 77581 (Vela X-l) due to Tidal Deformation 'I4 IIC The Spectroscopie Orbit and the Masses of the Components of the Binary X-ray Source 3U0900-40/HD 77581

131 CHAPTER III SPECTROSCOPIC STUDIES OF MASSIVE X-RAY BINAIRES

133 UIA Spectroscopie Observations of the Early Type B-Supergiant Wray977 (401223-62): Description of the Spectrum and Classification I45 IIIB The Spectrum of HD77581 (Vela X-l): Variations in the Profiles of H and Hell A 4685 8 Po 169 CURRICULUM VITAE

11

INLEIDING

RONTGENBRONNEN

Ongeveer 16 jaar geleden werd het eerste hemellichaam ontdekt dat zijn energie voor het grootste deel uitzendt in dr vorm van rontgenstraling. Evenals licht en radiostraling bestaat rontgenstraling uit electromag- —8 netische golven, maar dan met een zeer korte golflengte (kleiner dan 10 meter). Omdat deze straling in de aardse dampkring wordt geabsorbeerd moeten waarnemingen van rontgenstraling van hemellichamen worden uitge- voerd op een hoogte van minstens 200 kilometer, waar men zich boven 99,9% van de dampkring bevindt. Op 12 juni 1962 werd door een groep natuurkundigen onder leiding van R. Giacconi een sondeerraket gelanceerd met instrumenten aan boord om röntgen-fluorescentie straling van de maan waar te nemen. De raket be- reikte een hoogte van 230 kilometer en gedurende ongeveer 350 seconden kon worden waargenomen. Veel straling afkomstig van de maan werd niet gemeten, maar wel werd, volkomen onverwacht, een sterke bron van ront- genstraling ontdekt die zich bevond in" de richting van het sterrenbeeld Schorpioen (Scorpio). Tijdens twee volgende raketvluchten, in oktober 1962 en juni 1963, werd deze röntgenbron opnieuw waargenomen, waarbij . werd vastgesteld dat deze niet van plaats veranderde ten opzichte van de "vaste" sterren. Dit betekende dat dit object zich op aanzienlijke af- stand van het zonnestelsel moest bevinden, een afstand minstens verge- lijkbaar met die van de ons omringende sterren. Er werden ook twee zwak- kere röntgenbronnen ontdekt in de richting van de sterrenbeelden Stier (Taurus) en Zwaan (Cygnus). De pas ontdekte bronnen werden al spoedig aangeduid als resp. Sco X-I, Tau X-l en Cyg X-l, waarbij de "X" staat voor "X-ray" (= rontgenstraling).

Sinds 1963 zijn er talloze waarnemingsvluchten gemaakt met sondeerra- ketten. Door de steeds toenemende gevoeligheid van de meet-apparatuur werd het waarnemen van steeds zwakkere röntgenbronnen mogelijk. Eind 1967 waren een dertigtal bronnen bekend, ondanks de beperkte hoeveelheid waar- neemtijd per vlucht (557 minuten). In 1970 kwam voor de röntgen-astronomie de grote doorbraak. In december van dat jaar werd de UUURU (SAS-A) kunstmaan gelanceerd, de eerste die 12 geheel gebouwd was voor uitsluitend het waarnemen van rontgenbronnen. In de loop van 4 jaar is hiermee de gehele "röntgen-hemel" in.kaart gebracht; de 4e (en- laatste) UHURU catalogus bevat gegevetis over 339 rontgenbronnen (het "4U" nummer van een bron geeft de positie aan de hemel weer), Doordat veel van deze bronnen meerdere keren zijn waargenomen is hun positie aan de hemel vrij goed bekend. Bij elke rontgenbron wordt een klein gebiedje aan de hemel opgegeven, de zogenaamde "error box", waarbinnen de betref- fende bron zich met grote waarschijnlijkheid bevindt. Na UHURU zijn verschillende andere kunstmanen gelanceerd waarmee ront- genbronnen werden en nog worden waargenomen, zoals Copernicus, ANS, Ariel, COS-B, SAS-3 en HEAO-A. Het aantal bekende "vaste" bronnen wordt regelma- tig groter en de posities aan de hemel worden steeds nauwkeuriger bepaald. Dat laatste vooral door de waarnemingen met de SAS-3 die een buitengewoon preciese positiebepaling mogelijk maken. Voor de toekomst wordt vooral veel verwacht van de HEAO-B die eind 1978 is gelanceerd. Vanwege de grote gevoeligheid van de waarneeminstrumenten en het hoge ruir.telijk oplossend vermogen kunnen met HEAO-B zelfs bronnen in sterrenstelsels op grote af- stand van ons "eigen" melkwegstelsel worden waargenomen.

RONTGEN DUBBELSTERREN EN RONTGEN PULSARS

Een van de belangrijkste ontdekkingen die met UHURU gedaan werden was die van de röntgendubbelsterren: de rontgenbron bevindt zich hier in een dubbelstersysteem. Een dubbelster bestaat uit twee sterren die door de wederzijdse zwaartekrachtsaantrekking bijeen gehouden worden en een.baan- beweging om elkaar uitvoeren (eigenlijk: om hun gemeenschappelijke zwaar- tepunt) . Minstens de helft van alle sterren maakt deel uit van dubbel- stersystemen. Een röntgendubbelster bestaat uit een "normale" optisch waarneembare ster en een niet zichtbare compacte ster, meestal een neu- tronenster, die de bron is van de röntgenstraling. Bij de zware röntgen- dubbelsterren is de optisch -waarneembare component verreweg de zwaarste van de twee; deze ster heeft een massa ("gewicht!') en ook een diameter van enkele tientallen keren die van de zon - respectievelijk 2.10 kg en 1.4 miljoen kilometer - terwijl het steroppervlak een temperatuur heeft van 25000 tot 35000 graden. Daardoor is deze reuzenster zeer hel- der en straalt iedere seconde enkele honderduizendén keren meer energie uit dan de zon. 13

Een neutronenster heeft een massa vergelijkbaar met die van de zon, maar ziin diameter daarentegen is slechts ongeveer 20 kilometer. De materie in 18 3 zo'n ster is sterk samengeperst; de dichtheid bedraagt ongeveer 10 kg/m , wat van dezelfde orde van grootte is als de dichtheid in atoomkernen. Een ster opgebouwd uit materie met zo'n grote dichtheid bestaat dan ook voor het grootste deel uit neutronen. De rontgenstraling ontstaat wanneer gas (afkomstig van de reuzenster) onder invloed van de zwaartekracht naar het oppervlak van de neutronenster valt. Hierbij worden valsnelheden bereikt van meer dan honderdduizend ki- lometer per seconde. Het gas wordt door het zeer sterke magneetveld van 12 de neutronenster (10 Gauss) gekanaliseerd in twee stromen die op het op- pervlak botsen bij de zich diametraal tegenover elkaar bevindende magne- tische polen. Daar wordt het gas - doordat de bewegingsenergie wordt om- gezet in warmte - verhit tot een temperatuur van meer dan tien miljoen graden waardoor het een grote hoeveelheid rontgenstraling uitzendt. De zo gevormde hete gebieden beslaan elk een oppervlakte van slechts ongeveer één vierkante kilometer.

Omdat de neutronenster een baan beschrijft om de reuzenster (figuur 1) kan het gebeuren dat vanaf de aarde gezien de röntgenbron ( = neutronen- ster) zich gedurende enige tijd daarachter bevindt; er wordt dan geen rontgenstraling waargenomen. Zo'n röntgen-eclips vindt tijdens iedere om- loop van de neutronenster plaats en de röntgenbron wordt daarom met grote regelmaat verduisterd. Het tijdsverschil tussen twee opeenvolgende eclip- sen is gelijk aan de tijd die de neutronenster nodig heeft om één omloop te voltooien. Deze zogenaamde dubbelsterperiode van de röntgenbron Vela X-l is 8.96 dagen; die van Centaurus X-3 is 2.087 dagen. De rontgenstraling zelf heeft bij een aantal bronnen een regelmatig ge- pulst karakter: de uitstraling in de richting van de aarde geschiedt niet gelijkmatig maar varieert in intensiteit volgens een zich steeds herhalend patroon (figuur 2). De bron is dan een röntgenpulsar. Dit gedrag wordt ver- oorzaakt door de rotatie van de neutronenster om zijn as. Doordat de mag- netische as in het algemeen niet samenvalt met de rotatieas van de ster verandert door de draaiing steeds de hoek waaronder de hete gebieden bij de magnetische polen worden waargenomen en daarmee de ontvangen hoeveel- heid rontgenstraling. De pulsperioden, dus de rotatietijden van de betref- fende neutronensterren, verschillen van bron tot bron en zijn van de orde van seconden tot minuten. De pulsar Vela X-l bijvoorbeeld heeft een puls- b.J. JLiUlJLSJCifVVVlJ.IV

14

«1 TIJD

X X

Jf *

* K

'13 '17 jan 1971 1DAG

Figuur 1; (A) Model voor een zware röntgendubbelster. De neutronenster N beschrijft een baan om de reuzenster R. (B) De intensiteit 1% van de waargenomen röntgenstraling als . functie van de tijd (schematisch). De tijdstippen tj t/m tg komen overeen met de posities 1 t/m 6 in figuur 1&. Tussen t$ en tg bevindt de rOntgenbron (=neutronenster) zich achter de reuzenster; dan wordt geen röntgenstraling waargenomen. Het midden van de rbntgenecïips is aangegeven met tg.. (C) De door UHURU gemeten rpntgenhelderheid van SMC X-l in 1971. Duidelijk zijn de eclvgsen te- zien op 13 en op 17 januari. De dubbelsterperiode bedraagt3.89 dagen. 15

O CM •e in

TUD 283 sec

Figuur 2: De neutronenster als röntgenpulsar (boven). De invallende mate- rie kan het oppervlak alleen bereiken bij de magnetische polen (M) van het zeer sterke magneetveld; daar wordt het gas sterk verhit. Door de draaiing van de neutronenster om zijn as (R) varieert de door de waarnemer ontvangen straling voortdurend in intensiteit volgens een steeds herhalend patroon. Omdat de twee "hete plekken" bij de magnetische polen beurtelings in beeld komen ziet men vaak twee maxima en twee minima per pulsperiode. Dit is duidelijk zichtbaar in een serie pulsen (onder) van de bron 3U0900-40 (Vela X-l), waargenomen met SAS-3 in juli 1975. 16 periode van 283 seconden, die van Cen X-3 is 4.84 seconden en de pulsar SMC X-l heeft een pulsperiode van 0.71 seconden (SMC=Kleine Magelhaese Wolk). De snelheid van de neutronenster ten opzichte van de aarde - de radiële snelheid - verandert voortdurend als gevolg van de baanbeweging; hierdoor varieert de waargenomen pulsperióde (de intrinsieke pulsperiode - de rota- tietijd van de neutronenster - verandert niet). Dit zogenaamde Doppler- effeet stelt ons in staat om de baansnelheid van de neutronenster te be- palen: die van Vela X-l bedraagt 270 km/s, die van Cen X-3 is 415.1 km/s. Uit de grootte van de baansnelheid van de neutronenster kan worden bere- kend dat de reuzenster in Vela X-l minstens 18 en die in Cen X-3 minstens 16 keer zo zwaar is als de zon. (Op veel langere tijdschaal gezien neemt de pulsperiode langzaam af. Deze verandering is intrinsiek - de rotatie- snelheid van de neutronenster neemt langzaam tóe - en wordt veroorzaakt door de naar het oppervlak vallende materie die draaiimpuls overdraagt op de neutronenster. Uit de sc«r.--id waarmee de rotatie toeneemt - die bij de meeste pulsars tot een halvering van de pulsperiode leidt in enke- le duizenden jaren - kan worden afgeleid dat de röntgenbron zó compact is dat het alleen een neutronenster kan zijn). Hoewel de neutronenster in een zware röntgendubbelster optisch niet waar- neembaar is wordt zijn aanwezigheid duidelijk kenbaar door de getij denwer- king die de veel zwaardere en wel zichtbare reuzenster ervan ondervindt. Die bevindt zich immers in het zwaartekrachtsveld van de neutronenster en door de getijkrachten die daardoor op de reuzenster werken heeft deze niet meer een zuivere bolvorm, maar is enigszins uitgerekt in de richting van de neutronenster. Deze vervorming volgt de baanbeweging van de neutronenster en draait dus eenmaal per dubbelsterperiode rond. Dit heeft tot gevolg dat de grootte van het voor ons zichtbare steroppervlak steeds verandert, waar- door de waargenomen helderheid van de reuzenster regelmatig varieert. Per dubbelsterperiode worden twee helderheidsmaxima waargenomen gescheiden door twee helderheidsminima (figuur 3); we spreken van ellipsoïdale helderheids- variaties. Een ander gevolg van de vervorming is dat de temperatuur van het oppervlak van de reuzenster niet overal dezelfde is: de door getijkrachten veroorzaakte "punt" die zich het dichtst bij de neutronenster bevindt is enkele duizenden graden koeler dan de rest van de ster. Dit effect ver- groot de helderheidsvariaties en heeft ook tot gevolg dat de twee helder- heidsminima enigszins ongelijk zijn; het diepste minimum wordt waargenomen als de neutronenster zich tussen ons en de reuzenster bevindt. Behalve de 17 »f

N

« * r *

B

0.0 0.4 0.6 0.8 1.0 XRRY PHflSE

Figuur 3: De ellipsoidale helderheidsvariaties van een door getijkrachten vervormde ster. (A) Door de draaiing van de vervormde reuzenster (als gevolg van de baanbeweging van de neutronenster) verandert de positie van de "punt" voortdurend ten opzichte van de waarnemer3 waar- door de grootte van het voor hem zichtbare oppervlak varieert. In de richtingen a en c wordt een helderheidsminimvm en in de richtingen b en d een helderheidsmaximum waargenomen. (B) De helderheidsvariaties van HD153919 (4U1700-37). Alle waarnemingen zijn getekend als functie van de fase, dat is de fractie van de dubbelsterperiode die op het tijdstip van elke waarneming is verlopen sinds de laatste rOntgeneclips; rechts van fase 1.0 en linke van fase 0.0 wordt de tekening herhaald. Duidelijk zichtbaar zijn de maxima bij fase 0.25 en fase 0.75 (overeenkomend met de posities b en d van de waarnemer) en de minima bij fase 0 en 0.5 (posities a en c). 1 l 18 helderheidsvariaties vertoont de reuzenster ook radiële snelheidsveran- deringeri als gevolg van de baanbeweging. Deze komen tot uiting in kleine veranderingen in de golflengte van absorptielijnen in het waargenomen spectrum van de ster. Ook dit is een vorm van het Dopplereffect en kan worden gebruikt om de baansneïheid van de reuzenster te'bepalen. Indertijd werd de ster HD77581 geidentificeerd met de röntgenbron Vela X-l (AU0900-40). De ster bevindt zich binnen de "error box" van de rönt- genbron en vertoont helderheidsveranderingen van ongeveer 10% met een periode van 8.96 dagen, precies de dubbelsterperiode die eerder uit de rontgeneclipswaarnemingen was afgeleid. Bovendien varieert de snelheid van de ster ten opzichte van de aarde met dezelfde periode; de baansneïheid is ongeveer 19 km/s, dus veel kleiner dan die van de neutronenster (270 km/s). Dat komt doordat de reuzenster een veel grotere massa heeft.

MASSABEPALING

Dubbelsterren zijn van buitengewoon groot belang voor het astrofysisch . onderzoek, omdat zij als de enige hemellichamen de mogelijkheid bieden om de massa's van sterren te meten. De massa's van neutronensterren in het bijzonder kunnen alleen worden bepaald als deze sterren deel uit maken, van een dubbelster, zoals bij de röntgendubbelsterren het geval is. Het kennen van de preciese massa's van sterren stelt ons in staat om theoretische be- rekeningen over de inwendige structuur en de ontwikkeling van sterren, die de laatste jaren door het beschikbaar zijn van snelle rekenautomaten moge- lijk werden, op hun juistheid te testen. Deze berekeningen worden uitge- voerd aan de hand van zogenaamde stermodellen, waarin een groot aantal uit de natuurkunde bekende-wetmatigheden zijn verwerkt over het gedrag van straling en materie bij de omstandigheden die in zo'n ster voorkomen (zo- als hoge temperaturen en hoge dichtheden). De massa van een ster blijkt de belangrijkste grootheid te zijn die de structuur van de ster vastlegt en de ontwikkeling ervan in de loop van miljoenen jaren bepaalt. Voor een ster waarvan de massa bekend is kunnen met zo'n stermodel waarneembare grootheden worden berekend , zoals de afmetingen van de ster, de tempera- tuur van het oppervlak en de totale hoeveelheid uitgezonden energie; deze kunnen dan worden vergeleken met de waarnemingen van die ster.

De modellen van neutronensterren voorspellen dat er een grenswaarde I —4 I

19

bestaat voor de massa van zo'n neutronenster. Dat wil zeggen dat een neu- tronenster met een massa groter dan die grenswaarde niet stabiel is en door zijn eigen gewicht ineenstort tot een zwart gat (daar is de zwaarte- kracht zo sterk dat zelfs licht niet meer van de ster kan ontsnappen). De omstandigheden in neutronensterren zijn echter dermate extreem, dat in de modellen verwerkte natuurkundige wetmatigheden vrijwel uitsluitend langs theoretische weg kunnen worden afgeleid, o.a. met behulp van de quan- tum-mechanica. Afhankelijk van de daarbij gekozen uitgangspunten volgt voor de bovengrens aan de massa van een neutronenster bij verschillende modellen een waarde van tussen 1.4 en 2.7 zonnemassa's. Door nu de massa's van nautroiVGristerren te meten kan in beginsel de werkelijke, door de na- tuur bepaalde, grenswaarde worden vastgesteld en kan zo een keuze worden gemaakt welk neutronenstermodel het juiste is. Indirect wordt daardoor ook informatie verkregen over het gedrag van materie bij de in neutro- nensterren voorkomende temperaturen en dichtheden.

De massa's van de twee componenten in een dubbelster kunnen worden be- rekend als voor beide sterren de afmetingen bekend zijn van de banen waar- in ze om elkaar bewegen. De baan van elke component afzonderlijk wordt vastgesteld door de radiële snelheid van de ster te meten in de loop van de dubbelsterperiode; als gevolg van de baanbeweging verandert deze per riodiek; uit de snelheidsveranderingen kunnen dan zowel de vorm als de grootte van de baan worden afgeleid, mits ook de inclinatie - dat is de hoek die het baanvlak maakt met de hemelbol - bekend is. Deze inclinatie is een onmisbaar gegeven. Uit de radiële snelheidsmetingen wordt alleen de beweging van de ster ten opzichte van de aarde bepaald; we meten al- leen de snelheidscomponent langs de gezichtslijn. Veronderstel eens dat we precies loodrecht op het baanvlak kijken: de (baan)beweging van de ster is dan altijd loodrecht op de gezichtslijn, hetgeen betekent dat we geen radiële snelheidsveranderingen zien hoe groot de baansnelheid van de ster ook moge zijn. Bevinden wij ons als waarnemers daarentegen in het baan- vlak zelf - weliswaar op grote afstand van de dubbelster - dan zijn de radiële snelheidsvariaties maximaal. Bij een waarneempositie tussen deze twee uitersten nemen we in de vorm van de radiële snelheid de baansnel- heid van de ster dus verkleind waar, waarbij de mate van verkleining af- hankelijk is van de preciese waarde van de inclinatie. De gemeten radiële snelheden moeten daarom gecorrigeerd worden om de werkelijke baansnelheden te vinden (de factor ertussen is gelijk aan de sinus van de inclinatie).

De radiële snelheidsvariaties van de neutronenster en de reuzenster in n * 20

een röntgendubbelstersysteem worden bepaald met behulp van het Doppler- effect uit de regelmatige veranderingen van respectievelijk de röntgen- pulsperiode en de golflengte van absorptielijnen in het sterspectrum. De inclinatie van het baanvlak kan bij sommige röntgendubbelsterren wor- den afgeleid uit de duur van de röntgeneclips, maar in de meeste gevallen wordt de inclinatie bepaald uit de grootte van de ellipsóïdale helderheids- variaties van de reuzenster. Daarvoor geldt namelijk een zelfde soort re- denering als voor de radiële snelheden: als we loodrecht op het baanvlak kijken zien we altijd hetzelfde deel van het steroppervlak waardoor de helderheid van de ster konstant is; bevinden we ons in hef. baanvlak, dan zijn de helderheidsvariaties maximaal. De grootse van de waargenomen el- lipsóïdale helderheidsvariaties kan theoretisch worden berekend o.a. als functie van inclinatie. Door de waarnemingen met deze berekeningen te ver- gelijken kan de inclinatie worden bepaald of kunnen grenzen worden afge- leid voor de waarde ervan. 21

SAMENVATTING

Dit proefschrift beschrijft een fotometrisch en spectroscopisch onderzoek aan de zware röntgendubbelsterren HD77581/4O0900-40 (Vela X-l), HD153919/ 4U1700-37, Skl60/4O0115-74 (SMC X-l) en Wray 977/4U1223-62. Het doel van dit onderzoek was: zo nauwkeurig mogelijk de massa van één of meer neutronensterren te bepalen; voor Vela X-l werd dit doel verwezen- lijkt. Bovendien werd de invloed bestudeerd die de neutronenster uitoefent op de reuzenster in een röntgendubbelster. Het waarnemingsmateriaal werd verzameld tijdens een groot aantal waarneem- perioden tussen 1973 en eind 1976, door medewerkers van het Sterrenkundig Instituut van de Universiteit van Amsterdam en van het Astrofysisch Insti- tuut van de Vrije Universiteit van Brussel; door mijzelf werden zes waar- neemprogramma's uitgevoerd. De fotometrische waarnemingen (helderheidsme- tingen) werden uitgevoerd op de Europese Zuidelijke Sterrenwacht (ESO) te Chili met de 50 cm ESO telescoop en de 50 cm Deense telescoop en op het Leidse Zuidelijke Station (Zuid-Afrika) met de 90 cm telescoop. De spectro- grammen werden opgenomen met de Coudé en Echelle spectrografen van de 152 cm telescoop van de ESO. Met de Faul Coradi volautomatische microphotometer van het Sterrenkundig Instituut te Utrecht werden gedigitiseerde densiteits- registraties van deze spectra verkregen. De positie van absorptielijnen in de spectra werden gemeten met de Grant comperateur van het Sterrenkundig Laboratorium Kapteyn te Groningen.

Het eerste hoofdstuk is gewijd aan de studie van helderheidsvariaties van de reuzenstarren HD77581, HD153919, Skl60 en Wray 977. Er wordt een computerprogramma beschreven dat ontwikkeld werd om de licht- krommen van zware röntgendubbelsterren theoretisch te berekenen. Deze bere- keningen zijn gebaseerd op het Roche model voor een door rotatie en getijde- krachten vervormde ster; om de bijdrage van ieder zichtbaar oppervlakte ele- ment aan de totale helderheid van de ster in een bepaalde fotometrische band te bepalen wordt gebruik gemaakt van de steratmosfeermodellen van Kurucz, Peytremann en Avrett (1974). De resultaten verkregen met dit programma komen goed overeen met die van soortgelijke programma's waarin echter min pf meer ruwe benaderingen voor de modelatmosferen werden gebruikt; deze programma's werden onderling vergeleken door Wickramasinghe en Whelan (1975).

1 22

HD77581 werd in 1975 gedurende 46 nachten waargenomen in het Stfömgren uvby vier-kleuren systeem. De ellipsoïdale heldérheidsvariaties hebben een ampli- tude van ongeveer 0.10 magnitude (d.w.z. 10% variatie). Van de ene dubbel- steromloop tot de andere komen onregelmatige variaties voor; bovendien zijn de afwijkingen van de gemiddelde lichtkromme vaak gekorreleerd; dit wordt mogelijk veroorzaakt door een opgedrongen pulsatie van HD77581 als gevolg van de excentrische baan van de neutronenster. De gemiddelde lichtkromme van HD77581 werd vergeleken met theoretisch berekende lichtkrommen; het was hier- door mogelijk om een ondergrens voor de inclinatie van het systeem vast te stellen: deze ligt tussen 70 en 90-. Dit resultaat is van groot belang voor de bepaling van de massa van de neutronenster (hoofdstuk II) en is geheel, in overeenstemming met de waarde van i > 74 die Avni en Bahcall (1975) vinden uit röntgenwaarneminge»-'. Bovendien werd gevonden dat de ster het kritische (Roche) oppervlak vrijwel volledig vult. De waargenomen variatie van dé Ström- gren cl kleurindex is consistent met de modelberekeningen.. De Of ster HD153919 werd waargenomen in het Stromgren systeem en in het Wal- raven VBLUW vijf kleuren systeem. De ster vertoont ellipsoïdale heldérheids- variaties met een amplitude van 0.04 magnitude (d.w.z. 4% variatie). Uit een vergelijking van de gemiddelde lichtkromme met de rontgenwaarnemingen werd gevonden dat het midden van de röntgeneclips niet precies samenvalt met het secundaire helderheidsrainimum, maar een faseverschuiving van 0.06 vertoont.' Het eerste deel van de röntgeneclips lijkt het gevolg te zijn van verduiste- ring door de zeer dichte sterrewind van deze ster, die meer dan 10 zonnemas- sa's per jaar verliest (Hensberge,1974). Het blijkt evenwel niet mogelijk te zijn de lichtkromme van deze ster bevredigend te verklaren met het Roche mo- • del voor dubbelsterren dat de basis van de theoretische berekeningen vormt. Een verklaring hiervoor kan mogelijk worden gevonden in de zeer hoge tempe- ratuur die heerst in de atmosfeer van HD153919 (35000-40000K); de (Thomson) verstrooiing aan vrije electronen speelt daardoor een belangrijke rol bij het stralingstransport, waardoor de in het Roche-model toegepaste methode om de verdeling van de oppervlaktehelderheid te bepalen minder nauwkeurig is. De Bi la superreus Wray 977 werd door waarnemingen met de SAS-3 kunstmaan (Bradt e.a., 1976) geïdentificeerd met de röntgenbron 4U1223-62. Deze bron is een röfitgenpulsar, maar hij vertoont geen röntgeneclipsen, wat het gevolg is van de kleine inclinatie van het baanvlak (i < 60°). Uit onze fo- tometrische waarnemingen werd een dubbelsterperiode van 23 dagen afgeleid; dit resultaat werd onlangs bevestigd door Pakull (1978), die een periode van 22.6 dagen vond aan de hand van waarnemingen uit vier achtereenvolgende jaren. 23

Het laatste artikel van dit hoofdstuk beschrijft de analyse van de licht- kromme van Skl60, een 13e magnitude ster in de Kleine Magelhaese Wolk. Qndat zowel de massa' s van de twee componenten als de inclinatie van het baanvlak bekend zijn uit röntgen- en spectroscopische waarnemingen (Primini e.a., 1977; Hutchings e.a., 1977) kon een nauwkeurige theoretische lichtkromme worden berekend. De waargenomen lichtkromme (in het VBLUW systeem) wijkt daarvan echter sterk af; in het bijzonder de amplitude van de helderheidsvariaties is veel groter dan op grond van de massaverhouding en de inclinatie verwacht kan worden. Het bleek evenwel mogelijk te zijn om de lichtkromme te verklaren door aan te nemen dat in dit dubbelstersysteem de neutronenster zich in het middelpunt bevindt van een schijfvormige gaswolk, die ongeveer vijf procent bijdraagt aan de totale helderheid van het dubbelstersysteem. De aanwezig- heid van zo 'n gasschijf duidt erop dat de massaoverdracht hier plaatsvindt doordat de reuzenster Skl60 iets buiten zijn kritische Lagrange oppervlak puilt; de uitpuilende materie stroomt naar de neutronenster en vormt eerst een gasschijf alvorens op de neutronenster zelf te vallen.

In het tweede hoofdstuk wordt een uitgebreide studie gepresenteerd van de radiële snelheidsvariaties van HD77581. De baan die de röntgenpulsar Vela X-l (P=283 ) om deze reuzenster beschrijft werd met grote precisie bepaald door Rappaport en McClintock (1975). De nauwkeurigheid van de massabepaling van deze neutronenster is daarom geheel afhankelijk van de nauwkeurigheid waar- mee de baan van HD77581 wordt bepaald. Om een juiste interpretatie te kun- nen maken van de snelheidsmetingen werd de invioed bestudeerd van de ver- von.iiijg van de reuzenster op de profielen van absorptielijnen in het waar- genomen spectrum. Het al eerder genoemde computerprogramma werd uitgebreid om ook (absorptie)lijnprofielen te kunnen berekenen; de bijdrage daaraan van elk oppervlakte elementje van de ster (afhankelijk van de temperatuur en de versnelling van de zwaartekracht ter plaatse) wordt bepaald met de KPA steratmosfeermodellen. Het blijkt uit deze berekeningen dat er aanzien- lijke verschillen kunnen bestaan tussen de werkelijke (baan)snelheid van de reuzenster en de snelheid die wordt afgeleid uit de positie van een absorp- tielijn in het spectrum; het theoretisch voorspelde gedrag van spectraal- lijnen van verschillende ionen (Hel, Oil, SilV) is echter zeer verschillend, waardoor het in principe mogelijk is verstoringen van deze soort te herken- nen. Deze studie leverde voor de massa van de neutronenster Vela X-l een

waarde van 1.74 M ; de massa van HD77581 bedraagt 21.3 M . o 'o In het derde hoofdstuk worden de eerste resultaten gepresenteerd van een gedetailleerde studie van de spectra van Wray 977 en HD77581. 24

Bij de reductie van gedigitiseerde densiteitsregistraties van de Echelle en Coudë spectrogrammen werd gebruik gemaakt van speciaal hiertoe door mij ontwikkelde computerprogramma's. Het is hiermee onder andere mogelijk om een gemiddeld spectrum te berekenen uitgaande van de optelling van een aantal afzonderlijke densiteitsregistraties. Op deze manier wordt een aan- zienlijke verbetering van de signaal/ruisverhouding (t.o.v. de individuele spectra) verkregen, waardoor bijvoorbeeld spectraallijnen en de variaties daarin veel duidelijker zichtbaar worden. Gemiddelde spectra van Wray 977 werden gebruikt om een betrouwbare spec- trale classificatie te maken van deze ster (Blla). De spectraallijnen Ho P en H zijn duidelijk variabel en verdienen verdere studie; opvallend in dit spectrum zijn de zeer sterke interstellaire absorptielijnen. Een dergelijke studie van het spectrum van HD77581 leverde als eerste resultaten, interessante variaties in de spectraallijnen H en Hell X4686 A

Literatuur

Avni, Y., Bahcall, J.N. (1975) -. Ap. J. (Letters) 202, L131 Bradt, H.V., Apparao, K.M.V., Clark, G.W., Dower, R., Doxsey, R., Hearn, D.R., Jernigan, J.G., Joss, P.C., Mayer, W., McClintock, J., Walker, F. (1977): Nature 269_, 21 Hensberge, G. (1974): Astron. & Astroph. 36_, 295 Hutchings, J.B., Crampton, D., Cowley, A.P., Osmer, P.S. (1977): Ap. J. 217^, 186 Kurucz, R., Peytremann, E., Avrett, E. (1974): "Blanketed Model Atmos- pheres for Early Type Stars", Washington D.C.: Smithonian Institute Pakull, M. (1978): IAUC 3317 Primini, F., Rappaport, S., Joss, P.C. (1977): Ap. J. 217, 543 Rappaport, S., Joss, P.C., McClintock, J.E. (1976): Ap. J. (Letters) 206_, L103 Wickramasinghe, D.T., Whelan, J. (1975): M.N.R.A.S. 172, 175 25

INTRODUCTION AND SUMMARY

One of the most Important recent developments in astrophysics was the discovery of several neutron stars in close binary systems. The existence of neutron stars had been predicted theoretically by Landau in 1933 and was confirmed by the discovery of the pulsars in 1967. These ob- jects, however, - with the sole exception of the recently discovered bina- ry radio pulsar PSR1913+16 (Taylor et al., 1976) - are always single ra- pidly rotating neutron stars and therefore no information about their mas- ses - an important parameter in theoretical models - can be obtained directly. X-ray observations with UHURU, the first satellite entirely designed for the detection of X-rays from celestial objects, have revealed since its launch in December 1970 several hundreds of X-ray sources; the final "4U"- catalog lists 339 sources (Forman et al., 1978). More than ten of them turned out to be members of close binary systems. The binary character is - in most cases - firmly established from the re- gular occurrance of X-ray er.lipses. Moreover, in various binary systems the X-ray source is a short period X-ray pulsar and the orbital motion is re- flected by small Doppler changes in the observed pulse period. The short time variability (down to milliseconds) as well as the hardness of the X-ray spectrum indicate that the emitting region is very small and hot, and that the X-ray sources are very compact objects, such as neutron stars. The ac- curately known orbital periods (derived from the X-ray eclipse timing) made it possible to identify the optical companions of about a dozen of these sources. These stars usually show variations in brightness or radial velo- city - or both - with the same periodicity as the X-ray source.

Tiie optical counterparts in massive X-ray binaries are in most cases mas- sive luminous early-type supergiants. The currently accepted model of such massive X-ray binary systems consists of an optically invisible neutron star orbiting the visible supergiant:. The X-ray source is powered by mass transfer from the normal primary star tb the neutron star either by means of a stellar wind or by Roche-lobe overflow (Davidson and Ostriker, 1973; van den Heuvel, 1975). The extremely compact neutron star constitutes a very deep gravitational potential well and the infalling material gains on its way down an amount of kinetic energy equivalent to some ten percent of its restmass energy. The very strong magnetic field of the neutron star _1

26

12 (10 Gauss) channels the inflow of the matter towards the magnetic poles. There the kinetic energy is converted into heat which leads to the for- mation of two hot X-ray emitting regions with an area of about one square kilometer each. The pulsed character of the observed X-ray flux is explained "by the rotation of the neutron star: the non-alignment of the magnetic and rotational axes causes for an outside observer a periodically varying aspect of the "hot spots" near the magnetic poles, resulting in the pulsed modula- lation of the observed flux (Davidson and Ostriker, 1973; Lamb, 1977). X-ray binaries are of great importance for astrophysics, because they constitute - sofar - the only possibility to measure the masses of neutron stars. Current theoretical models predict the existence of a limiting mass for these compact objects, above which no stable configuration can exist; a neutron star more massive than this upper limit is expected to continue its collapse, presumably to become a black hole. Depending on the particu- lar choice of the equation of state in various models the derived values of the limiting mass range from 1.4M up to 2,7 M (Canuto, 1977). In order . 0 Q to distinguish between the various equations of state, the real limiting value has to be estimated from observations. Mass determinations of neutron stars can in principle provide us with a firmly established lower boundary, value for the limiting mass. In a binary system the masses of the components are determined by esta- blishing the actual dimensions of both orbits around the common- centre of gravity. This is performed by estimating the inclination of the orbital, plane and by measuring the varying radial velocity (due to orbital motion) of each star individually throughout the binary period. For the neutron star in an X-ray binary this radial-velocity orbit is determined from de- lay measurements of the X-ray pulse-arrival times; the radial velocity orbit of the normal primary can be estimated in the classical way from the Doppler shifts of absorption lines in its spectrum. Knowledge of the in- clination angle is required to correct the radial velocity measurements for the fact that these refer only to the motion with respect to . In most cases the photometric variations of the primary, where possible in combination with the X-ray eclipse durations, are used to determine - or to set constraints on - the value of the inclination. These photometric variations result from the rotational and tidal distortions of the primary by the neutron star. Because in most X-ray binaries the contribution from the neutron star to the total optical luminosity is negligible, these sys- tems also- offer an unique opportunity to study the effects of these dis-

40 27

tortions on the photometric and spectroscopie characteristics* of a binary component.

In this thesis photometric and spectroscopie studies of several opti- cal counterparts of massive X-ray binaries are presented. Subjects of study were the binary systems:HD77581/4U0900-40 (Vela X-l), HD153919/4U1700-37, Wray 977/4U1223-62 and Skl60/4U0115-74 (=SMC X-l). The observational material was collected during many observing runs by several observers from the Astronomical Institute of the University of Amsterdam and from the Astrophysical Institute of the Vrije Universiteit at Brussels. Six observing runs at the European Southern Observatory in Chile were carried out by the author. Strömgren (uvby) four-colour photometric observations .of HD77581, HD153919 and Wray 977 were performed at the European Southern Observatory, using the ESO 50 cm telescope and the Danish 50 cm telescope with four channel photometer of the University of Kopenhagen. Walraven (VBLUW) five colour observations of Skl60 and HD153919 were collected with the 90 cm telescope and five channel photometer at the for- mer Leiden Southern Observatory in South-Africa. Spectrograms of HD77581 and Wray 977. were recorded with the Coudé and Echelle spectrographs of the 1.52 m spectroscopie telescope of the European Southern Observatory. Density tracings of theae spectra were obtained with the Faul Coradi Microphotometer of the Astronomical Institute at Utrecht. The positions of absorption lines in the Coudé spectra were measured with the Grant comparator of the Kapteyn Astronomical Laboratory of the Univer- sity of Groningen.

In the first chapter the photometric variations of HD77581, HD153919, Wray 977 and Skl60 are discussed. A computer program is described that has been developed to calculate theoretical light curves of X-ray binaries. These calculations are based on the Roche model for a tidally and rotatio- nally distorted star; this model is extensively discussed. A set of model atmospheres given by Kurucz, Peytremann and Avrett (1974) was used to es- timate the contribution of each visible surface element of the primary to the total luminosity (in a specified photometric passband). The light curves computed with this program agree well with results from similar programs'discussed by Wickramasinghe and Whelan (1975).. I UHtilM V V * W MMUG

28

The BO.5Ib supergiant HD77581 was observed during 46 nights in 1975. The (uvby) ellipsoidal brightness variations have an amplitude of about 0.1 magnitude. We compared this light curve with theoretically computed curves; it turned out to be possible to set constraints on the inclination of the orbital plane, which is in the range 70 -90 . This result is in agreement with the constraint i > 74° derived by Avni and Bahcall (1975) from X-ray observations. We also found that the primary is on the edge of filling its critical e^uipotential surface. The observed periodic variation of the cl colour index is also consis- tent with the model calculations. Deviations of individual observations (from the same night) from the mean light curve are often correlated. This may be due to some type of forced pulsation of HD77581, which is subject to the time dependent gravitational attraction of the secondary as a result of the orbital eccentricity. The ellipsoidal brightness variations (uvby and VBLUW), of the 06.5f star HD153919 have an amplitude of about 0.04 magnitude. A comparison of the light curve with X-ray observations revealed a phase shift of about 0.06 between the moment of mid X-ray eclipse and the secondary minimum. This shift is interpreted as due toJ the very dense wind of this star, which is losing more than 10 M /yr (Hensberge, 1974); in fact the first part of the eclipse is due to absorptions of X-rays in the asymmetrically .out- flowing atmosphere. It appears to be impossible to reproduce the mean ob- served light curve by theoretical model calculations. A possible explana-. tion of this result may be found in the very high temperature (35OOOK - 40000K) in the atmosphere of HD153919. Due to this, Thomson scattering contributes considerably to the total continuum opacity which makes the. use of van Zeipel's law of gravity darkening in the Roche model less ac- curate. Therefore the light curve of the primary cannot be used to set any constraint on the mass of the X-ray source 4U1700-37.

The Blla supergiant Wray 977 has been the optical candidate star for the X-ray source 4U1223-62 for a long time, but only recently this identifica- tion has been confirmed by high precision X-ray observations with SAS-3 (Bradt et al., .1977). Our uvby observations suggest an ellipsoidal light curve with a period of about 23 days. This result has been confirmed re- cently by Pakull (1978). The final paper of this chapter deals with VBLUW observations of the. BOla supergiant Skl6O. An accurate theoretical light curve could be computed because both the masses of the two components in this X-ray binary and

42 29 the inclination of the orbital plane were known from X-ray- and spectros- copie observations (Primini et al., 1977; Hutchings et al., 1977). The observed light curve strongly deviates from the theoretical one; especial- ly the amplitude of the brightness variations is much larger than expec- ted. However, it turned out to be possible to explain the light curve of Skl60 by assuming the existence of a gaseous disk around the neutron star, which contributes some five percent to the total luminosity of the binary system. The existence of such a disk is a strong indication that the mass transfer from the primary to the neutron star is due to the Roche lobe overflow of Skl60. An extended radial velocity study of HD77581 is presented in the second g chapter. The orbit of the X-ray pulsar, Vela X-l (P = 283 ) was determined with great precision from pulse time delay measurements by Rappaport, Joss and McClintock (1975) . Therefore, the accuracy of the mass determination for this neutron star depends critically on the precision of the estimated radial velocity orbit of HD77581. In order to eliminate non-orbital con- tributions to the radial velocity variations we investigated the effects of the deformation of the primary on the observed profiles of absorption lines. The light curve synthesis computer program was extended to enable the calculation of absorption line profiles; the contribution to the line profile from each surface element of the primary (dependent on the local temperature and gravity) was calculated by using the KPA model atmospheres. It turned out that large discrepances can exist between the true orbital velocity of the center of gravity of the star and the "velocity" derived from the measured position of an absorption line in the spectrum. Lines of various ions (Hel, OH, SilV), however, have a completely dif- ferent behaviour, which makes it in principle possible to recognize this type of distortions in the radial velocity orbit. The result of this stu- dy was the determination of the mass of Vela X-l which is 1.74 ' M ; + 1~1 0 the mass of the supergiant HD77581 was estimated to be 21.3 ." M , — 1 .8 0 (the errors are 1 o limits). The first results of spectroscopie studies of Wray 977 and HD77581 are presented in the last chapter. The software for the reduction of the di- gitized density registrations of the spectra was written and developed by the author. With these programs it is possible (among other things) to compute averaged spectra from several individual density tracings, which results in a much better signal to noise ratio compared with those of the individual tracings. 30

Averaged spectra of Wray 977 were used to determine the precise spec- tral classification of the star (Blla) and to study the time variations rfc of Bo and H . The diffuse interstellar absorption lines are very strong P Y in the spectrum, consistent with the reddening, • A similar study of the spectrum of HD77581 reveals interesting varia- tions of H. and Hell \ 4686 A* . p

References

Avni, Y., Bahcall, J.N. (1975): Ap- J. (Letters) 202, L131

Bradt, B.V., Apparao, K.M.V., Clark, G.w., Dower, R., Doxsey, R.f Beam, D.R., Jernigan, J.G., Joss, P.C., Mayer, W., McClintock, J., Walker, F. (1977): Nature 269, 21 Canuto, V. (1977) in: Proc. Eighth Texas Symposium on Relativistic Astrophysics, Ann. N.Y. Acad.Sci. 302^, 514 Davidson, K., Ostriker,J.P. (1973): Ap. J. 17£, 598 Forman, W., Jones, C., Cominsky, L., Julien, P., Murray, S., Peters, G., Tananbaum, H., Giacconi, R. (1978): Ap. J. (Suppl.Series) 38_, 357 Bensberge, G. (1974): Astiyn. & Astroph. 36_, 295 van den Beuvel, E.P.J. (1975): Ap. J. (Letters) 198_, L109 Butchings, J.B., Crampton, D., Cowley, A.P., Osmer, P.S. (1977): Ap. J. 217, 186 Kurucz, R., Peytremann, E., Avrett, E. (1974): "Blanketed Model Atmos- pheres for Early-Type Stars", Washington D.C.: Smithonian Institute Lamb, F.K. (1977) in: Proc. Eighth Texas Symposium on Relativistic Astrophysics, Ann. N.Y. Acad. Sci. 302, 482 Landau, L. (1933): Nature 14a, 333 Pakull, M. (1978): IAUC 3317 Primini, F., Rappaport, S., Joss, P.C. (1977): Ap. J. 217, 543 Rappaport, S., Joss, P.C., McClintock, J.E. (1976): Ap. J. (Letters) 206, L103 Taylor, J.B., Bulse, R.A., Fowler, L.A. (1976): Ap. J. (Letters) 206_, L53 Wickramasinghe, D.T., Whelan, J. (1975): M.N.R.A.S. .172, 175

| (overeenkomend met de posities b en d van de waarnemer) en de minima bij fase O en 0.5 (posities a en o).

31

ANALYSIS OF PHOTOMETRIC OBSERVATIONS OF MASSIVE X-RAY BINARIES

33

I .A: THEORETICAL LIGHT CURVES AND RADIAL VELOCITY ORBITS FOR MASSIVE X-RAY BINARIES

1. Introduction

The observed periodic brightness variations, "light curves" of the lu- minous primaries in massive X-ray binary systems are of the so-called el- lipsoidal type (Avni and Bahcall, 1975). Per orbital cycle they show two maxima of approximately equal brightness, separated by two somewhat un- equal minima. These variations arise from the changing aspect (due to bi- nary revolution) of the primary, which is tidally and rotationally dis- torted by the optically faint companion. The distribution of the observed surface brightness over the primary is determined by gravity and limb darkening, and in some cases by X-ray heating due to the companion. The distortion of the primary is a function of several binary system parame- ters, such as the separation of the two components, the mass ratio, the mass of the primary and its size. (The first three parameters fix the bi- nary period; the size of the primary is determined by the evolutionary state of the star.) The appearance of the light curve of the primary in an X-ray binary system and in particular the total amplitude of the brightness variations are fixed by the intrinsic system parameters and by the inclination angle under which the system is observed. This physi- cal "picture" allows one to derive - or set constraints on - some of these parameters by comparing the observed light curve with synthetic light curves calculated with a computer model simulation. Theoretical binary light curves can be obtained by calculating the to- tal flux (in a specified photometric passband) emerging from the primary in the direction of the observer, as a function of binary phase. This calculation is in general carried out by constructing a grid of discrete surface elements distributed approximately uniformly over the stellar surface and by subsequently adding the contributions from the different elements. (Of course, those elements which are situated beyond the hori- zon, are excluded.)

Computer calculations of this type have been performed by several au- 34

thorsj an intercomparison of a number of programs is given by Wickrama - singhe and Whelan (1975). In these models the locally emerging intensity and the limb darkening are treated in a more or less approximate way, i.e. by using Planck's law to compute the monochromatic intensity toge- ther with a linear limb-darkening law I,(O,y) ^l-u + uu where u is in the range from 0.4 to 0.6 (Avni and Bahcall, 1975; Wilson, 1972), or by using a grey atmospheric model (Strittmatter et al., 1973) or scaled non- grey model atmospheres based on a T = 20000 K and log g=3.0 model (Wick- ramasinghe and Whelan, 1975).

Instead, we use a set of blanketed LTE atmospheric models given by Kurucz et al. (1974): at each surface element the emerging intensity is obtained by interpolation in tables, calculated beforehand from these models. Several aspects of the computational model and the logical orga- nisation of the program will be discussed in the following sections. The LTE model atmospheres have been used also to compute the shape and the strength of several important spectral absorption lines (in the spectra of early-type stars) in the same way: at each surface element the line profile is constructed from precalculated tables and the "obser- ved" profile is derived by adding the local contributions at a number of wavelengths, taking into account the radial velocity of each surface ele- ment. In this way the theoretical radial velocity of the primary as a • function of orbital phase can be estimated by analyzing the shape of the apparent theoretical line profile.

2. Basic Assumptions of the Computational Model

2.1 The Shape of the Primary - the Roche Model

The definition of the shape of the primary in our model is based on the classical centrally-condensed Roche model for a tidally and rotation- ally distorted star in a binary system. The surface of the star is given by one of the Lagrangian equipotentials, a choica which implies the fol- lowing assumptions:

• - The actual gravitational potential of each of the components can be

"1 35

approximated by that of a point mass; - The primary is considered to be corotating with the orbital angular velocity, while the axis of rotation is perpendicular to the orbital plane; - The relative orbit of the two components is circular.

The effects of deviations from these purely geometrical conditions will be discussed in section 4.2 . Following Kopal (1959, p.125) a rectangular system of coordinates was chosen, corotating with the orbital angular velocity and having its ori- gin at the center of mass of the primary (figure 1). In this reference . frame the X and Y axes are located in the orbital plane. The X-axis poin- ting towards the secondary which is located at a distance a. The Z-axis is perpendicular to the orbital plane.

Figure 1: The corotating reference frame. F and N denote the •positions of the oenter of mass of the primary and of the neutron start respectively. An outline of the surface of the primary star is indicated. jaren.

36

The equation of motion for a fluid element at position R (x,y,z) in this rotating frame is (Kruszewski, 1966):

2-y * p —+ 2p3L xS| = - + pV¥(x, y, z) (1) dt2 K dt

where r is the position vector of the fluid element, ü^ is the angular velocity of the frame, which is identical with the Keplerian angular ve- locity, p is the density and P is the total pressure in the fluid element. The potential ¥ is given by ):

~_ .,2 m (2) (

with: x2 + yZ +

= (x - a)2 + y2 + z2

where m and m are the masses of the primary and secondary respectively, r and r represent the distances of R from the centers of gravity of the components, and G denotes the gravitational constant. The first and sec- ond terms on the right-hand side of expression (2) represent the gravita- tional potentials of the two components; the third term arises from the centripetal force produced by the rotation of the frame around its origin, and the last term is due to the acceleration of the origin of the frame itself, which is located at a. distance am /(in +m ) from the axis of re- s p s revolution of the system. Equipotential surfaces defined by the equation:

¥ = constant

are the "Roche equipotentials" or "Lagrangian surfaces". Because the primary is assumed to be corotating with the frame (as a rigid body) both the acceleration d2r/dt2 and the Coriolis force 2 pin x dr/dt vanish and equation (1) reduces to the equation of hydro- is, static equilibrium:

) We adopted the sign convention of Kopal (1959) and Kruszewski (1966) "1 37

VP - = O (3)

It is assumed that the surface of the deformed primary can be identi- fied with some equlpotential surface defined by:

y = w (4)

This choice will be discussed later on. .

For computational purposes it is convenient to write expression (2) in dimensionless form by adopting the distance of the two components a^ as unit of length and by changing over from rectangular x, y, z coordinates to the spherical polar coordinates r, 6, (j) defined by (cf. figure 1):

x = r cos 9 =r X y = r sin 6 sin = r ]x (5) z = r sin 9 sin $ = r V

The potential in dimensionless form then becomes (Kopal, 1959, p.127):

^+ q (l-2Xr- - qXr + (6)

m m where: Ü = and q = — 2 m (m +m ) Gm p p s' m

Our definition of X, ]i and V is different from the 'one by Kopal, but is more convenient for the construction of the grid of surface elements. For any given value of the mass ratio q the topological properties of the Lagrangian surfaces clearly depend on the value of the dimensionless potential parameter £2; they are extensively discussed by Kopal (1959, 1972) and Kitamura (1970). A special value £2=?Q exists such that equipo- tentials defined by Ü > Q are closed convex surfaces around each of the two components (for fi»fic they are close to ellipsoids); those with c ti

ized by il = S2c, the "critical lobe" or "Roche lobe", is, if we restrict ourselves to the primary, the (limiting) convex surface enclosing the 1 J

1 l 2 2 3 3 4 4 5 5 6 CC 6 a ÜJ 7 7 2; 8 O 8 9 9 10 10 -1.0 -o.s o.o 0.5 1.5 2.0 -1.0 -0.5 0.0 0.5 1.5 2.0 X Q=.O76 X Q=.O76

Figure 2: The dimensionless potential Q (af. eq.(6)) along the X-axis of the oorotating system of coordinates. The positions of the primary (B), the secondary (S) and the inner Lagrangian point (L) are indicated. The primary can underfill its critical lobe (left) or overflow it (right). A mass ratio q = 0.076 was adopted.

J 39

maximum possible volume around this star. At the intersection of the cri- tical lobe with the X-axis the gradient of the potential vanishes. This "inner Lagrangian point" is a saddlepoint: the potential Q has a local minimum along the X-axis and a local maximum along a line perpendicular to the X-axis. The value Q depends only on the value of q and can easily . be computed by solving the equation:

- q + ( 1 + q ) x O (7) y,z=O ( 1 - x ) '

followed by substituting the thus found dimensionless coordinates of the inner Lagrangian point L ( x, 0, 0) in expression (6).

The surface of the primary is defined in terms of energy," if we iden- tify it with a Lagrangian surface. This is demonstrated in figure 2: the stellar material fills the potential well around the center of gravity of the primary up to some energy level U =-fi . Due to its internal evo- s s lution the'primary may expand, which results in a decrease of Ü ; when ._ . S J2_ becomes equal to Q the star fills its critical lobe. In the case of S ' C further expansion Qsa becomes smaller than Üc and that part of the stellar material below Q can freely reach the secondary: matter is transfered from the primary to the secondary by Roche-lobe overflow through the in- ner Lagrangian point. Therefore, the critical lobe is the maximum possi- ble volume that can be occupied by the primary while the gas is still energetically bound to the star.

2.2 The Locally Emergent Flux - von Zeipel's "Theorem"

The distribution of the emergent flux over the stellar surface is es- timated in our model by using von Zeipel's (1924) gravity-darkening law, which states that the radiation flux in any point of the stellar surface is proportional to the local acceleration of gravity. In short, this can be demonstrated in the following way (cf. Mestel, 1965; Clayton, 1968): For a star in hydrostatic equilibrium the pressure and density at any point in the stellar interior are related through the equation:

VP = (8)

"1 40

where VP is the (local), gradient of the total pressure (Mihalas, 1978, p. 170), p is the density of the stellar material, and the potential gra- dient V ¥ represents all external forces acting on the fluid. (It is assumed that these forces are conservative.) In the case of a star in a binary system corotating with the orbital angular velocity, ¥ is given by the expression (2). Since the density p is a scalar quantity, the lo- cal gradients of P and ¥ are everywhere parallel to each other which means that the pressure P is constant on any given equipotential surface. Therefore, P is a function of ¥ only, so P= P(¥) and, because of equation (8) one will also have: p = p(¥). Given the equation of state this leads to the conclusion that also the gas temperature is a function of ¥ only, thus:

T = T (P,p) = T (¥) (9)

In radiative equilibrium the (radiative) heat flux is given by:

where K = K (p,T) is the mass absorption coefficient and a is the Stefan - dT Boltzman constant. Sxnce the quantities T, p, K and —— are all functions dT of ¥ only, we see that the flux propagating through the stellar interior should be proportional to the magnitude of the local potential gradient. (Starting from equation (10) it can be demonstrated that V.H^O, which is a violation of the condition of radiative equilibrium, and will' cause the development of slow meridional circulation currents. This inconsis- tency in the derivation of the gravity-darkening law is usually ignored since the velocities of the currents are very small and do not influence the hydrostatic equilibrium (Schwarzschild, 1958, p.179; Nestel, 1965).)

In section 4 we discuss the limitations of the assumptions used in our model calculations. 41

3 The Computer Program and Results

3.1 Representation of the Model Atmospheres

A set of 37 LTE model atmospheres given by Kurucz, Peytremann and Avrett (KPA, 1974) was used to estimate the contribution of each surface element of the primary to the total flux emerged into the direction of the observer and also to compute the local contribution to several spec- tral absorption line profiles. Table 1 lists parameters of the available model atmospheres. The contribution OF per unit area of a surface element on the primary to the total flux in a specified photometric passband is given by:

OF = /r^I^O.U) ydX (ID A.

where y is the cosine of the angle between the surface normal and the line of sight, X is the wavelength, r. is the spectral response function of the passband filter and 1,(0,U) is the specific intensity. The latter quantity is dependent on the local values of the effective temperature T and the acceleration of gravity g. In the case of a narrow passband filter (with a FHMW of 200 8 to 300 A ), such as those of "the Strömgren uvby system, the limb-darkening coefficient L, (y) is effectively constant over the passband; therefore we replace expression (11) by:

OF = ƒ yd A = L^ (U) y ƒ dX (12) X o X

where X is the wavelength at the maximum transmission of the filter, and L°(y) is defined by: V°'y) (13)

This approximation allows us to represent 6 F by using two functions which give:

i) The perpendicularly emerging intensity integrated over the pass-, band (a function of T and g): 6

-| 42

Tabl~ 1; parcaneters of the LTE model atmospheres (KPA) used in the computations

No T log g No T log g eff eff 1 12000 K 2.0 21 25000K 4.5 2 12000 3.0 22 25000 5.0 3 12000 4.0 23 30000 3.5 4 14000 2.0 24 30000 4.0 5 14000 3.0 25 30000 4.3 6 14000 4.0 26 30000 5.0 7 16000 2.0 27 35000 3.5 8 16000 3.0 28 35000 4.0 9 16000 3.5 29 35000 4.5 10 16000 4.0 30 35000 5.0 11 18000 3.0 31 40000 4.0 12 18000 3.5 32 40000 4.5 13 18000 4.0 33 40000 5.0 14 18000 4.5 34 45000 4.5 15 20000 3.0 35 45000 5.0 16 20000 3.5 36 50000 4.5 17 20000 4.0 37 50000 5.0 18 20000 4.5 19 25000 3.5 20 25000 4.0

Table 2: wavelengths and p values for which the' limb darkening ratio I (0,y) / I. (0,1) was computed. A A

A 3000 X X 4000 & ]i = 0.00 0.15 3200 4500 0.01 0.20 3400 5000 0.02 0.40 3500 5500 0.04 0.60 3600 6000 0.05 0.80 - 3700 6500 0.10 1.00 3800 . 7000 43

ƒ r. 1,(0,1) dX X X A

ii) The limb-darkening ratio L. (]i), which is a function of T , g and X.

Integrated perpendicularly emerging intensities were computed for each KPA model atmosphere for the passbands of the Strömgren uvby system and the Walraven VBLUW system. The spectral response functions for the Ström- gren system were adopted from Crawford (1975) and for the Walraven system from Lub and Pel (1977). The value of the integrated intensity at a par- ticular effective temperature and gravity is then obtained by means of a two dimensional logarithmic 6-point interpolation in this table (Abramo- witz, 1970). It should be noticed that the particular choice of the basic points used in the interpolation procedure slightly influences the final magnitude estimates. We also have, in the case of HD77581 (log g-2.8), to extrapolate to gravities somewhat lower than those covered by the KPA models. Therefore, several test calculations were performed for a range of realistic binary system parameters using different sets of basic points for the interpolation between the KPA data. These tests showed that the thus produced variations of the individual magnitudes were of the order of 0.005, but that the amplitude of the light curves was hardly affected. The deviations in this amplitude were always smaller than 0.002. The approximation given by equation (12) might give some trouble for the Walraven V and B passbands, which are rather wide (800ft and 500ft , respectively). Several test calculations using a Planckian continuum in- tensity distribution and the KPA limb-darkening law (which will be dis- cussed later) showed that the approximation is very good for the small passbands, and that the amplitude of the light curve is not affected. The differential discrepancies for the V and B passbands (due to the filter width) are of the order of 0i001 over a range of effective temperatures of 5000 K ( which is about the temperature variation over the surface of the primary in an X-ray binary ) centered on central temperatures ranging from 15000 K to 35000 K. Therefore, only a minor increase of the errors in the light-curve amplitudes is introduced.

The limb-darkening function L.(y) was derived from the models in the A following way: For each KPA model at 14 wavelength values in the spectral

1 1.0

0.5

1(0.1)

0.0 1.0 0.5 0.0

Figure 3: The definition of the generalized limb darkening function G(\i) (of. eq.(14)). a) The limb darkening law is written as : 1^(0,y) /1^(0,1) =l-f(0.1) G(y). b) The generalized limb darkening function G(]i) for T' = 20000 K. 6 ' 45

range 3000% - 7000 % , and for each wavelength at 12 values of ]i (see ta- ble 2), the specific intensity I°(0,y) of the emergent radiation was com- puted. This grid - 6216 specific intensities - was used to construct a sim- ple computer subroutine to represent the limb-darkening law. We first de-

fined a generalized limb-darkening function GT ,(y) by writing:

(14)

1,(0,1) -I, (0,U) So: (y) A A (15) lA(0,1)-Ix(0,0.1)

The function G - normalized to y = 0.1-turned out to be practically in- dependent of both the gravity g and the wavelength X, to a high degree of

as a stan<3ard accuracy. Therefore, we used the function G _2oooo^ " " generalized limb-darkening function (see figures 3a and 3b). For a given value of y the differences between the "true" limb darkening ratio and the one derived from equation (14) using this standard function, correla- te nicely with the effective temperature and could be represented by sim- ple linear functions of T . -Starting from the standard function, the (temperature dependent) generalized limb darkening ratio is evaluated by applying this (small) correction. The scaling factor f , (0.1) also turned out to be virtually inde- Te,g,X pendent of g, and could be represented easily in terms of a standard function for T = 20000 K (f ,) together with some linear correc- e Te=20000,m nnnnn A tion functions of T .

The limb-darkening function constructed in this way was checked against the KPA data in order to estimate the accuracy. The discrepancies are the

Table 3: Accuracy of the limb darkening representation

y Al^(y)

y i; o.01

largest for values y<0.05 (table 3). In the computation of the total flux, however, only the product yi^(O,y).is used. Therefore, the uncer- tainty in the final result due to this limb darkening representation is always smaller than 0.1 percent, corresponding to one thousandth of a magnitude. The limb-darkening laws at the central wavelength of the four pass- bands of the Strömgren system are shown in figure 4.

1.0

A: X5500 B: A4680 C:\4100 D:\3450

0.5

G.5 1.0 Figure 4: KPA limb-darkening taws for the Strömgren uvby passbands; T =-25000 K.

In a similar way subroutines were constructed for the calculation of the local contribution of a surface element to the profiles of the absorp- tion lines Hel X4387, Oil A4367 and SilV A4089. The profiles of these li- nes were computed for each KPA model at 12 \i values (table 3). It is pos- sible to reproduce the line profiles with reasonable accuracy, by using - for each ion individually - several simple semi-empirical interpola- tion subroutines which give:

i) The central line depth relative to continuum, for perpendicularly emerging intensity R (1), which is a function of T and g, and is c e obtained by two-dimensional six point interpolation between the KPA data stored in the memory.

ii) The perpendicularly emerging continuum intensity I. (0,1) at the computer caicuiat-ions or tms type nave neen periormea oy several au-

47

central wavelength of the spectral line X . This quantity is also obtained by the two-dimensional interpolation between the KPA data.

iii) The limb-darkening law for the product of continuum intensity and central line depth Lcr ,(y), defined by:

Lcr(y) (16)

This quantity turned out to be function of only y and T The limb-darkening law for the continuum intensity itself L.c (y, ) A c was already available. iiii) A line shape function S(X - X ) depending only on the central line

cr depth Rc(y) = Rc(l) L (y) / L?(y).

The local contribution per unit area of a surface element to the flux at wavelength X at a distance AX = X - X from the line center in the frame c of the observer, is then given by:

OF, (17) where I. .. is given by:

V R (1) (y) S(AX--^ c ~cC

In this expression V is the radial velocity of the surface element with respect to the observer; C denotes the velocity of light. (V is measured negative for a surface element which approaches the observer.) 48

3.2 Logical Organisation of the Program a) Introductory Remarks

The light curve synthesis program is written in Fortran IV; it was developed for use on the CDC 7300 Cyber computer of the SARA (Amsterdam). For obvious reasons the program was designed to use a minimum of central memory at an optimum computational speed. We adopted the policy to store all those position-dependent quantities needed for each surface el- ement which are independent of the foreshortening factor ]i. This resulted in the use of (5+NC) NP machine words storage in the case of light curve synthesis for NC photometric passbands and NP grid points. The synthesis of absorption line profiles and the computation of radial velocity orbits requires 10 NP words storage. It would have been possible to compute several parameters for each grid point at the moment they are needed; although this approach saves a lot of central memory, it is much more time consuming. The grid parameters are stored in "blank common". In order to ensure program flexibility, all essential operations are performed using a se- quence of subroutines, which create, use or modify these data in "blank common". As input for the program one can use binary system parameters such as the mass ratio q, the dimensionless potential Q, the corotation factor (cf. section 4.2), the inclination angle :L, the optical luminosity of the primary. X-ray luminosity of the secondary and some combination of the

following observational quantities: asini, a t sin i, a sini, the period opt X P and/or the mass of the primary M . The proper choice of the input data determines the system completely.

• b) Construction of the Grid of Surface Elements

We constructed the grid of surface elements by dividing the surface of the primary into a number of rings N , using the polar coordinates intro- duced in section 2.1 . The first and the last rings are small circles centered on the X-axis. Starting from the number of rings the construction proceeds as follows. We define A 0 by:

A6 = ir/ (N - 1 ) (18) 49

Then the area of ring i (with i = 2f ,1*^- 1) is determined by:

where: 0° = (i - 1) A 6

The solid angle subtended by this ring is:

. Qo . Ae (19) iii. = 4 IT sin 6. sin —r-

The solid angle subtended by each polar element is given by:

Ü) = 2 TT ( 1 - COS —T- ) (20) P 2

Each ring is divided into Nj surface elements in such a way that the area of each element on the stellar surface, after correcting for the variation of the radius as a function of 6 and ij) , is as nearly constant as possible. In order to achieve this we used the equation:

b). f 0) N* = int ( -i- x { } + 0.5) (21) i ü) r ( it , 0)

which means that we used the radius of the primary r ( TT , 0) 180 degrees away from the direction to the neutron star to define a unit of surface area. The variation in the size of the individual surface elements ob- tained in tills way is less than 3 percent. The solid angles to. . of the NT elements are stored, together with the values of the polar coordinates 0. and d>.; these quantities are defined by: 0' ij i

2ir< j- (22) 1=1 •!

(Because of the symmetry of the geometry of the standard Roche model one would expect that only one-fourth of the total number of grid elements equiiiorium:

) We adopted the sign convention of Kopal (1959) and Kruszewski (1966)

SO

have to be stored. However, if one does this, the number of elements in •i/t each ring should be an integer multiple of 4. This would cause the dif- ferences in area between the grid elements to increase and would make a somewhat larger number of rings necessary to achieve the same intrinsic accuracy of the program (cf. section 3.3) . One also looses the possibi- lity to introduce asymmetries - such as realistic effects of non-corota- tion (cf. section 4.2) -in future models.) An impression of the distribution of the grid elements over the stel- lar surface is shown in figure 5; typical numbers of rings and surface elements are given in table 4.

Table 4: The total number of surface elements N for several numbers N . of rvngs r

Nr N N = E N N r P 1 P

10 135 25 950 15 320 30 1370 20 590 35 1900

c) Computation of the Grid Parameters

For each grid element the surface parameters are computed by numerous calls to a subroutine RADIUS, which solves equation (6) for r. (8. ,((>. ,ïï,q) with the Newton-Raphson method? each computed radius is used as the ini- tial approximation to the next radius. The convergence is such that in -6 one or two iterations the accuracy of 10 is reached (in r). The radius r. of the lobe is returned as the function value of RADIUS; other output of RADIUS is produced in a "named common block" and consists of:

- The surface normal components at the grid point (xn , yn , zn.). •

- The coordinates of the grid point (x., y , z.).

- The length of the potential gradient (g ), which is the local acce- leration of gravity apart from a scaling factor due to the use of the dimensionless coordinates. ourselves to the primary, the (limiting) convex surface enclosing the

51

Figure 5: The grid of surface elements, computed fov N = 25, q= 0.076 and ft = 1.89. (The secondary is indicated with the small dot.)

In order to set the weight w. of each surface element correctly, we com- pensate for the varying radius of the primary and for the small tilt of the element with respect to the. radius vector. Therefore, we replace the values U. (stored in "blank common") by:

w± = to r * / co,s 3. (23)

where B. is the angle between the surface normal and the radius, so we have:

cos 3± = yn ± + z± zn± ) / r L (24)

The distribution of the locally emergent flux, which defines the lo- call.lyy "effective temperature" T , is computed fojr each surface element according to von Zeipel's gravity darkening, law: 52

(25) ei

The constant o£ proportionality a is fixed by prescribing the total lumi- nosity F of the primary:

NP NP (26) where a is the distance between the two components (section 2.1) Therefore, we have:

NP a = F / < a2 E g w ) (27) il from which it follows:

, NP 2 1 ?±/or = {FTg±/(oa S SiV (28)

For use in the light curve synthesis the following quantities are sto- red: w. (replacing u.), T (replacing 9.), xn. (replacing (j).), yn. and 1 1 © • . 1 1 * 11 zn ; the acceleration of gravity is stored as: log (Gm g. /a2 )(cf. sec- tion 2.1). If one wishes to compute line profiles, or to incorporate X- ray heating, also x., y. and z. have to be stored. X-ray heating is treated in our model in a rough way: we use the "deep heating" approach, which implies that the local effective temperature is increased by absorption of X-rays below the photosphere of the primary. * Using an albedo r| we compute the new, increased effective temperature T according to the equation:

CTT* =(JT'+ (1-n ) L q/Ca^J) (29) °i ei . X where Te. is the undisturbed local effective temperature computed from the gravity darkening, L is the luminosity of the x-ray source and r. A 1 and X. are the distance of the X-ray source from the surface element and the angle between the surface normal and the direction to the X-ray sour- ce, respectively. Therefore, r. and X- are defined by:

(30) VP

53

and: cos x^^ = - { ( x± - 1 ) xn± + y± yn± + z± zn±} / r± (31)

Of course, the temperature is replaced only for those surface elements for which cosx. > 0.

d) Light Curve Synthesis

As was pointed out in section 3.1 the local contributions to the total luminosity in a photometric passband is computed from a table of perpen- dicularly emerging intensities and from the limb-darkening law. We there- fore store these perpendicularly emerging intensities for each grid point, as they are only dependent of the local effective temperature (the flux) and the local gravity.. The NC x NP quantities are stored in "blank common", where NC is the number of photometric passbands used: 4 in the case of uvby, and 5 in the case of VBLUW photometry. (Since the limb-darkening function - cf. section 3.1-is independent of the gravity, the value g. for each surface element can be replaced by one of the intensities.) Por a given orbital phase $ (with respect to X-ray eclipse) and an or- bital inclination i, the line of sight is defined by the three coordinates:

sx = - sin i cos 2ir$

sy=-sini sin 2TT$ (32)

sz = cos i,

The totally emerging flux in each passband in this direction is given by: NP F = a2 I I (0,y )y w (33) il

where y. is the cosine of the angle between the line of sight and the surface normal of the grid element:

U± = sx± xn± + sy± yn± + szi z^ (34)

and the integrated specific intensity I (0,y.) for each grid element is given by:

I (0,y ) =L°(y ).l (0,1) (35) 1 1 A X X J

54

For every phase $, NP values of y are computed while the limb-darkening function L°(y) has to be evaluated roughly NC*NP/2 times. A.

e) Line Profile Synthesis

As for the light curve synthesis we store all those quantities that are independent of the orbital phase $ and the inclination i. The velocity components in terms of wavelength shifts Xx., Xy. and Xz. are defined by: X , o. (36)

Xz.

where X is the central wavelength of the line, P is the orbital period in seconds and C is the velocity of light. (The third equation implies that it is not necessary to store z..) The quantities 1,(1,0) and R (1), which are the perpendicularly emer- \> c gent intensity at wavelength X and the relative central depth of the ab— o sorption line, respectively (cf. section 3.1) are computed from the KPA tables in the memory by means of the six-point interpolation, and are stored. (Because both limb-darkening functions L° and LCr are independent " i of the gravity, the values g. are replaced in the memory by R (1).) For a given line of sight (equations (32)) and a prescribed wavelength X = X + AX in the frame of the observer, the contribution to the totally observed flux at wavelength X is given by: S(A X ) (37) ""X +AX l R (1) ok c V" S

where vi is given by equation (34) and the wavelength shift due to the velocity of the surface element X is given by:

X = Xx. sx. + Xy. sy. + Xz. sz. (38) s 1 i i i i l

The profile of an absorption line is computed by evaluating the quan- tity F , defined by: NP . Wi (39) x=l xkJ

P±>0 55

for a number of wavelength shifts AX^. In practise, we calculated P for 60 equally spaced wavelength values (AX = 0.2A). For each line pro- c file NP values of u have to be computed; the limb-darkening functions L^ and L°r have to be evaluated roughly -r- times each and the line shape function S has to be evaluated roughly —-— times, where K is the num- ber of wavelength points used. The theoretically computed line profiles can be used to estimate the "radial velocity" of the line, by computing the apparent wavelength of the line. We used for this apparent wavelength the first moment of the profile, defined by:

X = ƒ X D, d X / ƒ D.. d X (40) a X X where D. is the depth of the line as a function of wavelength. It is not fully certain whether this is indeed the quantity that we observe when measuring line positions with a comparator, and it would be interesting to repeat the computations using other definitions of the apparent wavelength of the line, for example, a realistic simulation of the "Grant comparator" method.

3.3 Stability and Accuracy of the Results

In the figures 6 and 7 are presented a theoretically computed light curve and a theoretical radial velocity curve for the system Vela X-l. Apart from the model dependent intrinsic approximations in the compu- tational procedure, the precision of the computations is mainly determi- ned by the accuracy with which the surface of the primary can be repre- sented by the grid of surface elements. We expect that with an increasing number of elements, the computational results derived with the program converge towards an asymptotically "true" value. In order to check this expectation and to have an estimate of the errors introduced by the f ini- teness of the number of surface elements, the following tests were per- formed:

We considered N values VVr computed with the program using N rings for the construction of the grid. In the case of light curve synthesis we used a series of computed y magnitudes at N phase angles, equally spaced v 56

.f 0 v y A \ / \ . 1 q=0.076 \ / 0.05 \ / iUi.89 \ / - - \ / \ / M=20.3M« \_y \ / L= 1.2 1039 erg/s \^y P= 8.966 o i = 90* mo - d i l *^"*-—. ' ml

- 1 1 1 1 1 ill 0.5 1.0 PHASE

Figure 6: Synthetic Light Curve for the y passband of the StrOmgren photometrie system and theoretical Color Indices cl are. ml. The parameters indicated are those of the Vela X-l sys- tem. Corotation of the primary and a circular orbit of the secondary are assumed. The variations of the theoretical el index with orbital phase are due to the variation of the gravity over the sur- face of the primary. This predicted variation is observed

in the Vela X-l system (cf. Zuideruyigk et al.3 1977-, paper IC of this thesis) 1 1 1 1 1 1 | i . i i 1 i

10 - , f.

o -

/ Hel 4387 / q=0.076 -10 / 1=90* \ /

-20 il i i i i lii i i 1 0.5 1.0 PHASE

Figure 7: Synthetic Line Profiles for Eel 438? 8. (left)3 and the corresponding "First Moment" Radial Velocity Orbit (right). Notice the asymmetry in the profiles around phase 0.25 and phase 0.75. System parameters and internal assumptions are the same as for figure 6. J

• • . J - 58

over the binary period? in the case of line profile synthesis we used the relative depth (compared with the' continuum level) of the absorption line profiles at a large number of wavelengths (typically 60). Also the final- ly derived radial velocity was considered at a number of phase angles equally spaced over the binary period. We defined the quantity a(M,N) as follows: N

CT(M,N) ={• (41) N V

The quantity a(N ,N -1) gives an estimate of the differences between the results using N -1 rings and those using N rings; c(N ,36) indicates the differences between the results computed with N rings and those com- puted with 36 (a very large number) rings. These two quantities were com- puted for values of N between 10 and 35, using several sets of realistic X-ray binary system parameters as input of the program. It turned out that with increasing number of rings N__ the quantity a(N ,36) converges more systematically (but slower) than a(N ,N -1). Therefore o(N ,36) gives a more realistic estimate of the accuracy of the results. From ta- ble 5 it can be seen that the computational errors in the results for a reasonable number of rings used - 25 for light curve synthesis and 36 • for line profile synthesis - are smaller than, or comparable with, the errors introduced by the representation of the KPA model atmospheres (cf. section 3.1). Therefore, we conclude that the internal accuracy of the computed amplitudes of X-ray binary light curves is of the order of 0m002, which corresponds to 2 percent in the case of HD77581 (Am=0.10).

This implies that any discrepancies that are.found between the obser- ved and theoretically computed light curves will not be due to computa- tional inaccuracies, but must be intrinsic. Therefore, comparison of ob- served X-ray binary light curves with synthetic light curves provides us with information about the validity of, and deviations from the standard model (section 2). In the next section we will discuss the limitations of various assumptions underlying the standard model., and qualitatively discuss the deviations that might be expected between our computed curves and real,-life X-ray binary light curves.

| U.i>U <• ]i S l.UU <: 0.1 %

59

Table 5; Accuracy of the computational results

measured quantity number of rings

V^=y( -y N 1 < 0.01 magnitude V (V r Ü l

With: N.r > 25 < 0.0010 magnitude

. _i2i ... N > 30 < 0.0005 magnitude V r

P F vN. 60- i V± ~V P60 where: (N =60) N > 20 < 0.001 r X. =X + (i-30) 0.2 N > 32 < 0.0005 1 O with: i=l,...,60

v r-v C4 } a o i ~ rad 'i ~ X C N > 10 < 1.0 km/s o with: N > 15 < 0.5 km/s r N > 31 < 0.1 km/s V r

Note to table 5: . indicates the orbital phase.

4. Limitations of the Assumptions used in the Computational Model

4.1 The Definition of the Stellar Surface

In this section our computational mciel, as presented in section 2, is discussed, still under the assumption that the primary rotates syn- chronously with the orbital angular velocity and that the orbit of the secondary is circular.

a) Effects of Extended Atmospheres

For stars with extended atmospheres some difficulty may arise regar- ding the- definition of the surface level in the primary that we observe photometrically (i.e. the level with continuum optical depth T =1). "1 Ac

60

For example, let us consider the case of a primary which is slightly overfilling its critical lobe and transfers matter towards the secondary. It is in principle possible that while the total mass fraction above the energy level -Q (cf. section 2.1) is sufficient to maintain the Roche- lobe overflow, the level surface with continuum optical depth x =1 may at the same time be located considerably inside the critical lobe. This situation may occur in massive X-ray binaries, where the primaries are in most cases hot luminous supergiants with extended and expanding atmos- pheres. In such stars the distance between the levels x =0 and x =1 may be a considerable fraction of the stellar radius. For instance, Kunasz et al. (1975.) present for a 30 M low gravity model (log g =3.2; M. .= -9) the following parameters computed with a non-LTE extended atmosphere mo-

del: Te=29800K, = 22.5R@ and R /R =1.28. Although this particular example may be an extreme case, their results indicate that a distance between the levels X =0 and x =1 of about 10 percent of the stellar radius might very well be possible in the atmos- pheres of hot luminous supergiants. When the primary is a normal main- sequence star, the distance between these two levels is a much smaller fraction of the stellar radius, i.e. smaller than 1 percent, which can for example be seen from the data given by Allen (1973, p.213). Such an extended atmosphere will have the following effect on the ap- parent light curve of a massive X-ray binary. If we assume that the star is filling the potential well up to ti , then the photometrically obser- s ved surface level can be written as:

(42)

where 6(0,) can be of the order 0.05 to 0.10, corresponding roughly to 5 to 10 percent of the stellar radius. If 6 has a constant value over the surface of the primary, the photometrically observed level is again a Lagrangian equipotential surface, but with a higher value of Ü. In gene- ral S depends on the position at the surface, as the opacity of the stel- lar material is dependent of the gravity en the temperature. If, however, the variation of 6 is small compared with the value of 5 itself, the pho- tometrically observed level is close to a Lagrangian surface and the re- sulting deviations in the light curve can be considered as higher order 61

effects. This is certainly a good assumption for main-sequence primaries, and probably still a reasonable one for B-type supergiants.

b) Applicability of von Zeipel's Gravity Darkening Law-, the Thermalisation Condition

The derivation of von Zeipel's gravity-darkening law, as presented in section 2.2, is in fact only allowed under a more stringent condition than those of hydrostatic and radiative equilibrium alone, for the follo- wing reasons: The use of the equation of hydrostatic equilibrium (8) implies that the total pressure P is treated as an isotropic hydrostatic pressure, which is a scalar quantity. Part of the pressure, however, is due to the radiation pressure, which.has a tensor character (Mihalas, 1978, p.12). Therefore, the application of equation (8) is only valid if the radiation pressure tensor degenerates into a scalar (i.e. if the elements outside the diagonal vanish). This condition is satisfied when we are dealing with a (nearly) isotropic radiation field. The same condition applies for the validity of.equation (10). This is basically a diffusion equation which states that the radiation flux is driven by a small anisotropy in the local radiation field, described by the temperature T. Furthermore, the application of the equation of state (9) to show that T is a function of the potential ¥ only, followed by the use of this temperature in equation (10), is only allowed when the tempe- ratures of the gas and the radiation field are identical. We conclude that the gravity darkening law is only valid if we res- trict ourselves to that part of the stellar interior where the radiation is thermalized, which is a stronger restriction than the condition of ra- diative equilibrium alone. The above derived result can easily be understood intuitively, as fol- lows. The physical mechanism of gravity darkening requires some interac- tion between the external force field, described by the potential Y, and the radiation; the radiation must "know" about the potential field, and the only way it can do so is through absorption and emission processes in the stellar material. If we now follow the radiation flux from the central parts of the star towards the stellar "surface", we will reach a level above which an increasing fraction e of the photons can escape di-

"1 1 (18)

62

rectly into interstellar space, without further interaction with the gas. From this point on the information link between the radiation field and the force field becomes less and less efficient and, as e approaches uni- ty, it. disappears completely. If we are dealing with a stellar atmosphere where scattering proces- ses give a negligible contribution to the total continuum opacity, which is the case for spectral types later than BO, <"hen the radiation field can be considered as being thermalized when the continuum optical depth is larger than about 1. In this case the surface level that we observe photometrically is also the limiting level were we can apply von Zeipel's gravity-darkening law. In very hot stars, however, (T >3.010l>K) where electron scattering contributes considerably to the total continuum opa- city, the thermalization level can be situated far below the T ^1 level. R In this case the distribution of the surface brightness is determined at a level in star that is situated considerably deeper than the photomet- rically observed surface. a) Canelusions

If we restrict ourselves to binary systems with a corotating primary and a circular orbit, we can summarize the above given discussion as follows:

- In the primary, three different levels are of importance: a) The level that defines the boundary of the star energetically; this level is given by a Lagrangian equipotential; b) The "surface" level that we observe photometrically; c) The thermalization level, below which von Zeipel's "theorem" can be applied to compute the distribution of the' emergent flux. In the case of primaries of spectral type later than BO the photometric and thermalization levels coincide.

- In main-sequence primaries the photometrically observed surface level coincides to a high degree of accuracy with a Lagrangian equipotential} the distance between this surface and the boundary of the star is ne- gligible compared with the radius of the star, due to the small scale • height (Allen, 1973). The Roche model gives an accurate description of the primary in this case. 63

- For supergiants with extended atmospheres the approximation of the photometrically observed surface by an equipotential surface is consi- dered to be permissible if the factor 6, defined in equation (42), is less than a few times 0.01. The latter is most likely the case in the primaries of Cyg X-l (HDE 226868) , Vela X-l (HD 77581) and 401538-52, which are all early B-type supergiants. For the primaries of very early spectral type, like in 401700-37 (HD 153919) and Cen X-3, larger devia- tions from an equipotential surface can be expected. In these stars the thermalisation level will be located deeper then the photometrically observed surface.

The effects of extended atmospheres and NLTE effects on the light curves of X-ray binaries with a supergiant primary will be such that the level Q , to which the primary fills its potential well, can be underestimated if one derives it from the apparent amplitude of the brightness varia- tions. The discrepancy will be the largest for O-type primaries. Even if such a primary fills its critical lobe completely, the amplitude of the light curve will suggest serious underfilling.

4.2 Further Effects that may Produce Light Curve Deviations a) The Point-Mass Approximation

The density distribution in the distorted primary and the gravitatio- nal potential mutually infuence each other, which might result in devia- tions of the equipotential surfaces from those computed with the central- ly condensed model. Calculations based on the analysis of a tidally and rotationally distorted polytropic stellar model by Martin (1970), however, show that the shape of the equipotential surfaces is virtually indepen- dent of the run of the internal density. The deviations from the Roche model are of the order of 10"3 for a model with poly tropic index n=3, and become smaller with increasing value of n (which is as expected,- because then the central concentration is higher). As the polytropic index of a supergiant primary is somewhat larger than 3 (see for example the model given by Schwarzschild, 1958, p.258) these deviations can be considered negligible (see also Kruszewski, 1966) the dimensionless coordinates.

64

b) Deviations from Covotaiion

When the primary is not corotating with the orbital angular velocity, or if the orbital and rotational axes are rot aligned, the determination of its shape becomes a dynamical problem because the star is moving with respect to the corotating frame, and the position of the secondary with respect to any fluid element in the primary is time dependent. This pro- duces a tidal bulge on the primary, which will probably be stationary in the corotating frame. A possible way to treat this situation mathemati- cally is to construct a rotating stellar model for the primary in which the motion of every fluid element satisfies equation (1), and search for a time-independent density distribution (if such exists) in the frame co- rotating with the orbital angular velocity. This type of computations is very complicated due to the presence of the Coriolis force, which cannot be derived from a potential; it is not possible to apply a transformation to some reference frame, such that this force vanishes. An approximate treatment is given by Kruszewski (1966): he considers a £» H» ? frame fixed to the primary and rotating with angular velocity til. The equation óf motion in this frame is, in analogy with (1) :

f + 2pu x -£= - n, ?, t) (43)

dt2 • dt

where the time dependent potential is given by:

Gm Gm m C, t) = (44) S

If the rotation axis of the primary is perpendicular to the orbital pla- ne, we have the following relations between the £, n, C frame and the X, y, 2 frame: ~ x2+ y2

(45)

while:

where f is the corotation factor. The potential ¥ is time dependent in the frame fixed with the prima- ry, but time independent in the frame rotating with angular velocity ID . K according to von Zeipel's gravity darkening, law;

65

• In this frame ¥ can be written in dimensionless form:

a- i (46)

This equation was used by Wickramasinghe (1975) and Avni and Bahcall (1975) to study the effects of non-synchronous rotation of the primary on the light curves of X-ray binaries, assuming that the star adjusts it-

i self instantaneously to the shape of the equipotential surfaces of ¥ . This assumption is commonly referred to as "instantaneous hydrostatic equilibrium" (IHE) and is basically identical with the condition that in the frame of the primary the equation of motion (43) reduces to its hy- drostatic form: VP = pVf' (47)

This assumption cannot be satisfied in the case of non-synchronous rota- tion (Kruszewski, 1966) • In that case the equipotential surfaces of ¥ are time dependent in the frame fixed inside the primary, which means that if IHE is satisfied, large-scale velocity fields must exist in the star: therefore equation (47) cannot be satisfied. In this approach the Coriolis force is ignored in the frame corotating with the primary. This is also reflected in the fact that ¥ is symmetrical with respect to the X2 plane, which means that a trailing tidal bulge is a priori impossible. Also the hydrostatic equilibrium condition cannot be satisfied in an a- synchronously rotating primary (Avni and Bahcall, 1975). It is not known how this affects the gravity darkening and thus the emergent flux. Although the assumption of IHE can only be considered as a rough first approximation, equation (46) produces some qualitative results that could also be inferred intuitively, such as the increase of the equatorial dia- meter of the primary (compared with the polar diameter) with increasing value of the corotation factor f . Therefore, these results can be consi- c dered as an indication of the effects of deviations from corotation on the light curves. It can be seen from the tables given by Wickramasinghe (1975) that for HD77581 (f ^ 0.7; Mikkelson and Wallerstein, 1974) the c amplitude of the light curve decreases by about 0.005 magnitude. (30)

66

c) Eccentric Orbits

In two X-ray binaries, Vela X-l and Cyg X-l, the eccentricity of the orbit is well established (van Paradijs et al., 1977; Bolton, 1975). The effects of an eccentric orbit on the shape of the primary are hard to estimate; no theoretical calculations are available in the literature. The assumption of IHE is certainly not valid for the same reason as in the case of non-synchronous rotation. Computations using IHE would there-1 fore presumably be as inaccurate as those based on the standard model. It is reasonable to assume that the primary will exhibit some type of forced pulsation (not necessarily radial), due to the periodically vary- ing gravitational potential to which the star is subjected. The correla- ted deviations from the mean light curve of HD77581 may perhaps be inter- preted in this wayj the observations suggest that-a quasi-periodic varia- tion with a period of about 1.6 days is present in the uvby light curve of this star (cf. Zuiderwijk et al., 1977).

d) Conclusions

In table 6 the known deviations from the standard model are indicated for the best studied massive X-ray binaries. The table shows that the Roche model should be-considered as a rather rough first approximation, and that the analysis of observed light curves by means of comparison with theoretical ones can be subject to considerable model-dependent er- rors, although it is possible to estimate at least qualitatively the in- fluence of deviations from corotation and of the effects of extended at- mospheres. The system HD77581/4U0900-40 is illustrative in this respect: because both deviations tend to decrease the amplitude of the light curve we can conclude that the lower boundary value for the inclination angle of the o • orbital plane (70 ), obtained from light curve analysis, is not affected. The fact that the variation of the cl index is reproduced at least quali- tatively indicates that the standard model seems to be a reasonable ap- proximation for this system. Table 6; Deviations from the Standard Model in Massive X-ray Binaries

Binary System Spectral Effects of Extended Corotation Circular Other Complications Type Atmospheres Orbit

2 HD77561 (Vela X-l) B0.5lb minor no no HD153919 06-5f important ? no3 (?) Strong Stellar Wind 4 O Skl60 (SMC X-l) B0.5la minor yes yes x-ray Heating / Disk

Wray 977 B1I minor ? ? II 6 7 Cen X-3 06III important no yes 5 8 HDE226868 (Cyg X-l) BOI minor yes no o 9 LMC X-4 08V-III moderate ? ? Disk H

4U1538-52 BOIa minor ? ?

Notes to table 6: 1) Wallerstein (1974) 6) Conti (1978) 2) van Paradijs et al. (1977) 7) Pabbiano and Schreier (1977) 3) Hammerschlag Hensberge (1978) 8) Bolton (1975) 4) Hutchings et al. (1977) 9) Chevalier and Ilovaiski (1977) 5) Primini et al. (1976)

ui UI 68

References

Abramowitz, M.,- Stegun, I.A. (1970):"Handbook of Mathematical Functions", "Handbook of Mathematical Functions", Dover Publ. (New York)

Allen, C.W. (1973): "Astro-physical Quantities", The Athlone Press ()

Avni, Y., Bahcall, J.N. (1975): Astrophys.J. 197_, 675

Bahcall, J.N. (1978): Ann. Rev. Astron.Astrophys. 16, 241

Bolton, C.T. (1975): Astrophys.J. 200, 269

Chevalier, C., Ilovaisky, S.A. (1977): Astron.Astrophys. 59_, L9

Clayton, D.D. (1968): "Principles of Stellar Evolution and Nucleo- synthesis", Mac Graw Hill (New York)

Conti, P.S. (1978): Astron.Astrophys. 63_, 225

Crawford, D.L. (1975): Astron.J. 75_, 977

Fabbiano, G., Schreier, E. (1977): Astrophys.J. 214, 235

Hammerschlag-Heiisberge, G. (1978): Astron.Astrophys. 64_, 399

Hutchings, J.B., Crampton, D., Cowley, A.P., Osmer, P. (1977): Astrophys.J. 217_, 186.

Kitamura, M. (1970): Astrophys.Space Sci., 7_, 272

Kopal, Z. (1959): "Close Binary Systems", Ch.III, Wiley (New York)

Kopal, Z. (1972): Adv.Astron.Astrophys. 9, 1

Kruszewski, A. (1966): Adv.Astron.Astrophys., 3_, 89

Kunacz, P.B., Hummer, D.G., Mihalas, D. (1975): Astrophys*J. 202, 92

Kurucz, R., Peytremann, E., Avrett, E.H. (1974): "Blanketed Model Atmos- pheres for Early-Type Stars", Smithonian Astrophysical Institute, Washington, D.C.

Lub, J., Pel, J.w. (1977): Astron.Astrophys. 5£, 137

Martin, P.G. (1970): Astrophys.Space Sci., 7_, 119

Mestel, L. (1965): in "Stellar Structure", ed. L.H. Aller and D.B. McLaughlin (Chicago: University of Chicago Press) I. 69

Mihalas, D. (1978): "stellar Atmospheres" (Freeman, San Francisco)

Mikkelson, D.R., Wallerstein, G. (1974): Astrophys.J. 194, 459 van Paradijs, J., Zuiderwijk, E.J., Takens, R.J., Hammerschlag-Hensberge, G., van den Heuvel, E.P.J., de Loore, C. (1977): Astron.Astrophys.Suppl. 3£, 195

Primini, F., Joss, P.C., Rappaport, S. (1977): Astrophys.J. 217, 543

Schwarzschild, M. (1958): "Structure and Evolution of the Stars" Dover Pub. (New York)

Strittmatter, P.A., Scott, J., Whelan, J., Wickramasinghe, D.T., Woolf, N.J. (1973): Astron.Astrophys. 25_, 275

Wallerstein, G. (1974): Astrophys.J. 194, 451

Wickramasinghe, D.T. (1975): M.N.R.A.S. 173_, 21

Wickramasinghe, D.T... Whelan, J. (1975): M.N.R.A.S. 172^, 175

Wilson, R.E. (1972): Astrophys.J. (Letters) 174_, L27

von Zeipel, H- (1924): M.N.R.A.S. 8£, 665

Zuiderwijk, E.J., Hammerschlag-Hensberge, G., van Paradijs, J., Sterken, C, Hensberge, H. (1977): Astron.Astrophys. 54, 167 70

1977, Astron. Astrophys. Suppl. 27,433-434.

IB FOUR-COLOUR PHOTOMETRIC OBSERVATIONS OF THE JT-RAY BINARY STAR HD 77581 (VELA X-l) I. OBSERVATIONS

E.J. ZUIDERWUK, G. HAMMERSCHLAG-HENSBERGE, J. VAN PARADIJS Astronomical Institute, University of Amsterdam, The Netherlands and European Southern Observatory, La Silla, Chile C. STERKEN and H. HENSBERGE Astrophysical Institute, Vrije Universiteit, Brussels, Belgium European Southern Observatory, La Silla, Chile

Received June 1, 1976

Results or the uvby observations of HD 77S81, used in the analysis of the light curves (Zuiderwijk et al. 1976) are presented.

Key ironic.- Jf-ray binaries- uvby photometry

We have observed the BO.S Ib supergiant HD 77S81, the optical counterpart of the X-ray binary system 3U 0900-40 (Vela X-l). A discussion of the data presented here is given in a companion paper in the Main Journal (Zuiderwijk el al. 1976, paper II). The observations were made with the 50 cm Danish telescope on La Silla, Chile, with a four-channel photometer designed for simultaneous measurements in the Strömgren uvby system. The photometer is used in combination with a photon counting system, and is described in detail by Granbech et al. (1976). HD 77581 was observed on 46 nights during the periods February 16 to March 14 (by E.J.Z. and G.H.-H.), May 27 to June 8 (by E.J.Z.) and December 3 to December 21, 1975 (by C.S.). The most extensive observations were made during the first period. Table 1 lists the 429 magnitude differences which were obtained for HD 77581 with respect to the comparison star HR 3656 (B8). The table is ordered according to JD. Each tabulated observation is the result of three integrations of 20 sec. for HD 77581 (P) and two integrations of 20 sec. for the comparison star (S). The typical standard deviation of such a sequence (one observation in table I) is 0.005 mag. All observations of magnitude differences are given in the instrumental system, as an accurate transformation of reddened supergiants to the standard uvby system is very difficult (E(B-V) =0.13 for HD 77581, see puper II). Especially the indices c\ and ml are highly affected by the reddening. Acknowledgements are given in paper II.

REFERENCES

Cirunbcch. B.. Olsen. E.H. and Slriimgrcn. B.: 1976. Aslron. Astrophys. Suppl. 26, 15S. Zuiderwijk. E.J.. Hammcrschlag-Hcnshcrgc. G.. Paradijs, J. van. Sterken. C. and Hensberge, H.: 1976, Astron. Astrophys. (paper II).

E.J. Zuiderwijk Astronomical Institute G. Hammcrschkig-Hcnshcrgc University of Amsterdam J. van Paradijs Roetersstraat 15 N - 1004 Amsterdam, The Netherlands

C. Sterken - Astrophysical Institute H. Hensbergc Vrije Universiteit Brussel Pleinlaan 2 B - 10S0 Brussel. Belgium

—f . ~ ^"""1 71

tf)inioininiAifiininioininif>intfi«otfiiiiininii>iniAinifl>oin4> r •* r r r r §* •* i* i* »* r r r •* r •* •* r •* r r r r •* t%t!tt!ï»>ttii • • • • • • • • < • • • • • •

iiiiiiiitiitiiiiiii Illlllllllltlltllllllfl

«•«•tninininininmininin «o oaxooaXDoaxsoioo a>

iinin mininm4mininm > a> -* •••-»••

nul in in in in in > 11111111 • 111 • i i i" •" r r r r r i* r •* / r r •*

• • • 111 • • • i : i i i i i I IIIIII

(ua)nain*rn»niOom«o«eOKAi#«inAiNo*aiAi^oicni4)*no«Nooin inin mm mmmmm mmmmmmmmmm *in *u>tn mm

NNinui^^^^iflifliflinOOfitfNNaiiiOOiMMroO * r-r-r- i»-o

rvm o— mm •#

imfOOooch e ^ * ir * * AJ m ir (

1 uiuiuiaiuiinu>*'«'«'uiui*'Uiuitii9 uiui uiiiiiMnuiuiuiuia>ui(ii»uiuiuio>iii unn ui

I i i i I i i i • i i • I i I I I i i i I • •

uiuio>9uiuie>»o>(Miiui(Miiuiui0>iii»a>a'Uii]it>ivi(V'»'O>uiuiuiuiuiui uio>-o>w » O> V O> U> ai UI UI UI a>>a> UI O> 0OOOO «M^O «4004 4>O O OOO4>O0OOGOOOOO0 OO O0004>0^ OO«4|A000 ^O O

uiuiuiuiuiui«uiuiuia>uiuiuiuiui»uiuiuiuio>uiuiuiuiuiuiuiuia-ui»uiuiuiuiuiuiuiuiuiuiuiiii»uiu>uiu><ui •4»«iiiwwg'»'4uraususii>o»i»»''uivv«u9i>auu»Ni»o-'

liiiiiiiiiiiiiiiiiiliiiiiiiiiliiii'ii g • I i • ** »* •-• »* •- ui»uiuiui»O'»uiuiui0>uiui»ui«fioi«>1<'» »UIUIU>U>UIO> o>uitn o> in

• I I i i i I I I i i i i t I i I I I • • I i • i i • • • I i « » • » i » i •'••••.' • '••'•• ' ' o-u>u> o-ui iuiui»» o>o> uj»» OAAOd

ZL photometrically (i.e. the level with continuum optical depth x =1).

73

55tn ••••••••••••••••••••••••••••••••••••• i • i i • i • i i i i • i • • • i • • i • i i i i i i • i •••••••• ••>>•••

in r r r r r r r r r r r r r r r r r r r r r »* •* •* r r •* i* •* r r r •* •* •* •* •" •* •"-•* •" •* »* •* • • • • • • > • • Q.

« ifii/iir. in in in in in

'4H9*4a) HUI (

• i i i i • i i • • i i * i • i i i i i • i •iitiiiiiiiiiiiii

n j>tnihinin thin A'in 4> in« ï« ü> £i) o<aih

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII in a. __ __ fti***a*»oo***-©*-(uo» in inininuiininininu>in«inininininui in

nno oo> fn^^fninfn^n t

> am «ui « ©ii l suiting deviations in the light curve can be considered as higher order

74

«iniMinr-eii-nioi^pii^*in*on*«io*-*»o«mo'omr">oni«inr. oi»»5io»oujMoaj{uo—K-e £ V £ £ £« m « <• m « « u> & «in « m « « « « m « « 'in< ut tf>i n >o <0 <<> «.o in in

e

ON am on in £.a>

ni SS

o9»ataaoo9pe

••••••••••••••••••••••••••••••••••••••••A ••llllllllllllltllllllllllltlllllllllllllllllllilll

« ni * * nim o«»nNNoanni»i)iorA«in9a«ea«hnonvn«o««uii4Miiiii»e<»eea ifiiiiiniOinininu>inininuiini>>ininiftin<<>in«irifluiininin«ininin

| level above which an increasing fraction e of the photons can escape di-

75

ASTRONOMY Astron. Aslrophys. 54,167-173 (1977) AND ASTROPHYSICS 1C Four Colour Photometric Observations of the X-ray Binary Star HD 77581 (Vela X-l), II: Analysis of the Light Curve

E. J. Zuiderwijk1, G. Hammerschlag-Hensberge1, J- van Paradijs1, C, Sterken2 and H. Hensberge2 1 Astronomical Institute, University of Amsterdam. Roetersstraat 15,1004 Amsterdam, The Netherlands and European Southern Observatory, La Silla, Chile 2 Astrophysical Institute, Vrije Universiteit, Pleinlaan 2, 1050 Brussels, Belgium and European Southern Observatory, La Silla, Chile

Received June 1,1976

Summary. Extended photometric observations of HD tions of HD 77581 in the Strömgren uvby system. 77581, the optical counterpart of the X-ray source Our observations in this intermediate band system Vela X-l, in the Strömgren four colour system are reveal light and colour changes which are in phase discussed. These observations show changes in the with the orbital period. Colour-index changes were not light curve from one orbital period to another. A regular noticed in the UBV data obtained by Jones and Liller double-wave variation of the colour index cl (and (1973) and Vidal (1974). possibly b—y) is observed. These observations are In the following sections we discuss these observa- consistent with light and colour variations predicted tions and give a preliminary analysis using a theoretical from a model of a tidally distorted, rotating primary, model of a tidally distorted rotating star. These light using orbital parameters derived from spectroscopie and colour variations can be understood from the observations. temperature and gravity variations on the surface of Key words: X-ray binaries — uvby photometry the distorted primary.

2. Observations I. Introduction The observations of HD 77581 weie made on 46 nights during several observing runs in 1975 with the 50 cm The B0.5Ib supergiant HD 77581 is the optical counter- Danish telescope at the ESO, Chile. The results are part or the X-ray binary source 3 U0 900-40 (Vela X-l). presented in tabular form in a separate paper (Zuider- X-ray observations show an eclipsing light curve with a period of 8.95 days (Forman et al., 1973). The optical wijk et al., 1976, paper I). In Figure 1 we show the uvby identification was first achieved by photometric observa- magnitudes of HD 77581 during the first observing tions, and confirmed by spectroscopie observations run, as a function of JD. A double wave in phase with (Hiltner et al, 1972: Jones and Liller, 1973; Vidal et al., the binary period of 8.966 days is clearly visible. [This 1973: Zuiderwijk et al.. 1974). These observations orbital period has been derived from the radial velocity showed that HD 77581 is a member of a binary system variations of HD 77581 during a time interval of 17 with a period of 8.96 days. Recently a regular X-ray years, cf. van Paradijs et al. (1976).] It is apparent that pulse with a period of 283 s was discovered with the the minima occurring at X-ray eclipse time (=JD SAS-3 satellite (Rappaport and McClintock, 1975: 2442468.7+nx 8.966, « integer) are less pronounced McCliniock et al.. 1976). The modulation of the pulse than those occurring half a period later. We also arrival times by the Doppler effect, together with the notice the disappearance of a maximum twice during optical radial velocity curve of the supergiant enabled our observations. A similar phenomenon has also been for the first time an accurate mass determination for found by Jones and Liiler (1973) in their UBV light both the compact object and the supergiant in the curves, although it should be noted, that their missing system (van Paradijs et al.. 1976: Rappaport et al., maximum occurs after X-ray eclipse (

76

168 E. J. Zuidetwijk et al.: Photometry of HD 77581 (Vela X-l) I \ l

x Vl I

i.oo ist .00 «6«.oo «es.co us.no 470.00 472.00 474.00 476.00 470.00 4B0.00 482.00 «a«.oo «e.oo us.oo JO Z44ZOO0+

S1!

MO.OO «1.00 «64.00 U>.l ua.oo «o.n> »ii.oo ««.00 nE.oo na.oo iio.oo «BI.OO «B«.OO ««6.00 «es.00 JD 244Z000+ S i \ '» * !•*

1

'«80«00 4Sf.ffll 4I4.0D 40S.OO 48S.D0 470.00 472.00 474.00 ' 476.00 470.00 480.00 482.00 484.00 486.00 40B.OI JD 2442000*

=5 - f I f\* 8 IM X # »i

"410.00 4tt.OO 4S4.00 466.00 486JP0 47O.Oo' 47t .Oo' «74.0»' »78.Oo' «78.. o' Üo.Oo' «82.OD' 464 .Oo' 466.00 466.00 JD Z442000+ Rg. I. uvby light variations of HD 77581 for the period Februaiy 16—March 14,1975, in the instrumental system of the Danish 50 cm telescope. The ordinales give the differential magnitudes of HD 77581 with respect to the comparison star HR 3656

T—| 77

E. J. Zuiderwijk et al.: Photometry of HD 77581 (Vela X-l) 169

x*

IO 7St.Oo"754.00*IM.Oo'151.00710.00 7«.«' 7M.00 7U.00 7M.I»

I 75t.00' 754.00' 75t.oo'7SO.0o' 710.00' 711.00' TI4.oo' 7U.Oo' 15».Oo'

0.00 75Z.0O 754.00. 751.00 7M.0O 780.00 7IZ.WJ 704.00 7M.00 7U.00

"750.00 75f.00' 154 .OO' ISi.OO lit.OO 7IO.Oo' Tu.oo' 7H.00* 7H.Oo'

JD 2442000*

Fig. 2. uvby light variations of HD 77581 for the observing period of December 1975

Bessell et al„ 1975; Charles et al, 1975). Another The variability of the light curve from one orbital possible explanation of the effect is that, due to the period to another is also clearly demonstrated by the non-zero orbital eccentricity, the primary may try to results from our last observing run (see Fig. 2), where adjust itself to the varying instantaneous size and the minimum during X-ray eclipse (=JD 2442755.6) shape of the Lagrangian surfaces, leading to an in- is much ijïiore pronounced than during our first observ- cipient forced pulsation [the time scale on which the ing run. ,_ .'• " shape changes significantly, i.e. half the orbital period, In spite of the variability of the light curve there are is not much different from the pulsation period 2/ 1/z periods in which the light variation appears to be rather (4irGe/3) alday]. undisturbed, e.g. between JD 2442470 and JD 2442480. ry, but time independent in the frame rotating with angular velocity

78

170 E. 1. Zuiderwijk et al.: Photometry of HD 77581 (Vela X-l)

-0-20 0.00 D.2U 0.40 0.60 0.10 1.00 1.20 1.40 1.80 1.80 2.00

-0.20 0.00 0.70 0.40 0.10 0.10 1.00 1.20 1.40 I.M 1 -»0 2.00

OB U) t» c-

-0.20 0.00 0.20 0.40 0.(0 0-10 1.00 1.20 1.40 180 1.50 2.01

0.20 0.40 O.W 0.» 1 l.tO 140 I-M l.M 2.00 PHASE Hg. 3. y-light curve and colour indices of HD 77581 against binary phase (P=8?966j. Phase zero corresponds to X-ray eclipse time (see text)

Using this part of the light curve it is possible to define curve confirms the variability of the light curve men- typical values of the amplitudes A\\ (magnitude tioned before. Attempts to analyze the erratic varia- difference between phase 0.25 and 0.50) and dy2 (be- tions by means of fourier methods had to be abandoned tween phases 0.00 and 0.25). We find Ay, =O"?IO±OTO2 because of the very irregular spacing between our and /ly,=:O1rO6±OI?OI5. Five observations of HD data points. The cl index shows a double wave varia- 77581 on different nights in the uvhy system were tion in phase with the light curves (see Fig. 3). Maximum made in January, 1976 by H.H. with the 50 cm ESO values of cl occur at phases 0.0 and 0.5, minimum telescope. These observations yield the following stan- values at phases 0.25 and 0.75. The total amplitude dard V and b-x values: V'=6?87-6?92 and b-v= of the variation is 07007 ±07003. This uncertainty 0T438± 07002 From ANS-ultraviolel observations of has been estimated from the scatter of the mean observed HD 775X1 an accurate value for the reddening could cl data points around a smooth curve drawn by free be determined: £„_ y=0773 (Hammerschlag-Hensberge hand. et al., 1976). This gives £,,..,.=0754 (cf. Crawford, There is less clear evidence for a systematic varia- 1975) and [h-y)0=-Of? 102. These results are in tion of the colour index b—y, and ml is constant over agreement with the spectral type of HD 77581 and the orbital period. Variations of colour indices have 7^ =25000 K, log0=28 (Mihalas, 1972) in agreement not been detected earlier and are indicative of tem- with the determination of 7[.fr and gravity from con- perature and gravity variations over the stellar surface tinuum scans (Wickramasinghe et al., 1974). (see next section). The B— V and U-B colour indices A study of the colour indices reveals that these do not show the effect (Jones and Liller, 1973). We remain the same, regardless whether or not a minimum conjecture that the reason why we do find it is our or maximum disappears. In Figure 3 we have plotted larger number of observations per phase point (about the variation of y, b-y. ml and cl as a function of 45 on the average). orbital phase. Phase zero (i.e. X-ray eclipse) corresponds Figure 4 shows the mean b-y, ml and cl values to JD2442459.70+nx8.966. The scatter in the y-light per phase point with 2a error bars.

1 79

E. J. Zuiderwijk et al.: Photometry of HD 77581 (VelaX-1) 171 b-y

-05a - Fig. 4. Mean colour indices of HD 77581 against binary phase, with 2ff-error bars 0.00 020 o.4O 0.60 aso uo 1.20 1.40 h

3. Preliminary Discussion We have attempted to analyze these data using theoreti- we distributed equidistant points {Aq>=constant), in cal calculations of light and colour curves for a tidally such a way as to make the element of solid angle distorted rotating primary star, analogous to previous sinOA8Aq> approximately constant for all directions work by Strittmatter et al. (1973), Wilson and Devinney (0, q>). Each point on the Lagrangian surface has been (1971), Hutchings (1974), Avni and Bahcall (1975) and weighted according to the surface element d0= Wickramasinghe and Whelan (1975). In the following r2sin0404g>/cosj3, where /? is the angle between the we will first give a short description of these model radius vector r and the normal n to the Lagrangian calculations, and then compare the results with the surface. In each point on the stellar surface values of present observations. the effective temperature and surface gravity are defined, An important basic assumption entering these coupled by Von Zeipel's theorem. [Concerning the calculations is the definition of the shape of the primary. validity of this assumption we refer to the discussion We have here assumed that the shape is given by a by Avni and Bahcall (1975).] The scaling of the tem- Lagrangian surface, characterized by the parameters perature values was achieved by prescribing the total a 9=A*x-raysiar/^8upcrgiani. nd the dimensionless poten- luminosity of the primary and the dimension of thé tial Q (cf. Kopal, 1959). This definition implicitly binary system. The contribution of each such a point contains assumptions, e.g. corotation of the primary. to the total energy received by the observer at a par- In view of the observed eccentricity of the orbit ticular wavelength was determined by using a grid of (Rappaport et al., 1976; van Paradijs et al., 1976) model atmospheres (Kurucz et al., 1972) (KPA). These the former assumption can serve only as a first ap- models have been computed with the assumption of proximation. We have also neglected a possible heating LTE, and include the effects of line blanketing through effect of the X-rays from VelaX-1 on the atmosphere of the use of opacity probability distribution, functions. HD 77581. This is justified, as the ratio of the incident We have calculated the surface intensity iA(0, n) emerg- X-ray flux between 2 and 10 keV to the optical flux is ing into different directions using continuum opacity of the order of 10 ~*. [Using the absolute calibration only. The neglect of .line opacity gives rise to a small of the UHURU counts given by Giacconi et al. (1972), overestimate of the flux (and the intensity) (a few and a distance of 2kpc for VelaX-1 (Zuiderwijk et al, percent), which in the visual part of the spectrum 1974).] The integrations (over the visible part of the changes only very slowly with effective temperature stellar surface) for the total amount of energy received and gravity. We are here only interested in differential by the observer in a specified photometric band, have effects, due to the variations of the size of the stellar been done numerically, by" distributing over the disk, and of the average effective temperature and gravity Lagrangian surface a total of 1730 points as follows. over the visible stellar surface. The latter quantities We introduce a polar coordinate system (r,0,

I 80

172 E.J.Zuiderwijketal.: Photometry of HD 77581 (VelaX-1)

From the latter data we have constructed a simple but made the A-integration over the uvby filters (Craw- approximation to the limb-darkening law—accurate ford, 1975) for'the KPA models before making the to better than about 1 %—as a function of n, Tta and integration over the stellar surface. This is correct as wavelength. The largest deviations occur at small long as the effective wavelength of the band does not values of n, where they do not count much because change significantly over the stellar surface (the limb- of the additional projection factor n for the surface darkening law depends on A). This, however, is the case element. The value of 7A(ju=l) at a particular pair of as the Strömgren bands are quite narrow, and the values (Teff, logg) has been obtained by a two-dimen- effective wavelengths will not change by more than a sional 6-point interpolation in a table giving /*(!« = 1) few tens of Angstroms between effective temperatures for the KPA models. 10000 and 30000 K. The product of i) and ii) yields the contribution In the present calculations we have assumed to the total monochromatic energy received by the parameters for the VelaX-1 system, as obtained from observer per unit surface, apart from the foreshortening the analysis of the radial velocity and pulse-arrival factor ju. With mass and radius values appropriate to time data. For the primary mass and the mass ratio we HD 77581 (see below) we find for the surface gravity adopted 21AMQ and 0.076±0.009, respectively. We values around log74° the 6-point interpolation formula. We have made test (in agreement with our results, see below). The cor- calculations for different choices of grid points, and responding uncertainty in sin/ and therefore in the find that the effect on the light curves is very small. scale of the system is less than 4%. At a fixed value The amplitudes change by less than OT003 over a large of the luminosity this corresponds to a change in the range of system parameters. Colour variations pose effective temperature at each point of the stellar surface more problems, as their total amplitude is of the same of two percent. Such a small difference does not show order of magnitude as extrapolation inaccuracy (a few up in the light curves. This is shown by test calcula- times (TOOI). tions in which, in turn, the scale of the system was In order to check the correctness of our program assumed constant, and the effective temperature was we calculated monochromatic light curves atk = 5500 A, scaled by varying the luminosity by ±1 magnitude. forthesameparameters(q,Q,i)asusedbyWickramasinghe The light curves are affected only very slightly by these and Whclan (1975). In Table 1 our results are compared effects (change of amplitude a few times 0T001), apart with their case A (for which the limb darkening law is from a shift of the zero point. For the inclination and closest to the one computed here). There is a good the luminosity of the primary we assumed values agreement with their results, with only small differences 60', 75U and 90°, and 6.96 1038, 1.211039 and 2.10 1039 that may easily be due to the differences in the used erg/s, respectively (Mbol= — 8.4, —9.0 and —9.6). model atmospheres, etc. In the calculations of the The results of these calculations are summarised energy received through the iwhy bands of the Ström- in Figure 5, where we show the dependence of the grcn photometric system we did not first calculate the amplitudes Ay, and Ay2 on q, Q, and i. monochromatic' quantities for a particular phase. Taking as observed parameters of the y light curve the amplitudes zl>-I=0T10±0T02 and Ay2= 0T06±0T015 (see above) we find that a solution can Table I. Comparison of lhcorclic-.il monochromatic light curves be obtained only in the case 1) that i>70° and 2) the (/.=55(K) A) for different mass ratios and Tor models which completely primary is nearly completely filling its Roche lobe. fill their critical Roche lobes (inclination i'=90 ). The amplitudes This latter result may explain the occasional X-ray Am, and .tin. correspond to magnitude differences between phases flaring of VelaX-1 as due to the occasional Roche 0.25 and 0.50. and 0.00 and 0.25. respectively lobe overflow of relatively small masses of gas, on top

Mass ratio .-tni,''.Ini, of a more regular stellar wind flow. 'ƒ In the calculation of the c\ variation we meet the Present calculations Wickramusinghe and Whclan problem that the small uncertainty (a few times 0T001) (1975). case A due to the extrapolation to gravities slightly lower than

0.018 0.046/0.031 0.052/0.033 the values covered by the KPA models, prevents at 0.038 0.066/0.046 0.074/0.049 present the unequivocal determination of a theoretical 0.055 0.079/0.055 O.OK7/O.O58 el curve. For the same parameters as used for the y 0.100 0.102/0.072 O.1II/O.O77 light curves we find, depending on the way we inter- 0.500 0.187/0.142 0.199/0.144 polate in the KPA models, curves with amplitudes 1.000 0.232/0.181 0.241/0.178 between 0T003 and 0T007, clustering around the value 81

E. J. Zuiderwijk et al.: Photometry of HD 77S81 (Vela X-l) 173

Fig. S. Dependence of light amplitude Ay on q, ii and i (see text). The arrows denote the value of Q for which the Roche lobe is filled

0T005. The maximum values of cl occur always at Hammerschlag-Hensberge.G., van den Heuvel.E.P.J,, Wu,C.C: phases 0.0 and 0.S, in agreement with the observed 1976, to be published Hiltner.W.A, Werner.J., Osmer.P.: 1972, Aslrophys. J. 175, L19 phase dependence (see Fig. 4). We may therefore Hutchings,J.B.: 1974, Astrophys. J. 188,341 conclude that we qualitatively understand the observed Jones,C, Liller, W,: 1973, Astrophys. J. 184, L121 average variation of cl from the temperature and gravity Kopal.Z.: 1959, Close Binary Systems, Ed. Chapmann and Hall, variations over the surface of the primary star. London, p. 125 Kurucz,R.L., Peytremann,E., Avrett,E.H.: 1972, Blanketed Model Acknowledgements. We are indebted to Prof. Dr. E. P. J. van den Atmospheres for Early-type Stars, Smithsonian Astrophysical Heuvel for stimulating discussions during the course of this investiga- Observatory, preprint tion. E. }. Zuiderwijk acknowledges support by the Netherlands McClintockJ.E, Rappaport.S., Joss,P.C, Bradt.H., BufT,J., Clark, Organization for the Advancement of Pure Research (ZWO). H. liens- G.W, Hearn,D., Lewin.W.H.G., Matilsky.T, Mayer,W., Primini, berge acknowledges support by the National Foundation of Collective F.: 1976, preprint Fundamental Research of Belgium (FKFO) under no. 10303. Mihalas,D.: 1972, Astrophys. J. 176,139 The calculations described in this paper have been performed van Paradijs,J.A., Hammerschlag-Hensberge.G., van den Heuvel, with the CDC cyber-73 of the Stichting Academisch Rekencentrum E.P.J., Takens,R.J, Zuiderwijk.E.J., de Loore,C: 1976, Nature Amsterdam (SARA). 259,547 Rappaport,S., McClintock.J.: 1975,1.A.U. Ore. no. 2833 Rappaport.S., Joss, P.C, McClintock.J.E.: 1976, preprint References Strittmatter.P.A, Scolt.J., WhelanJ, Wickramasinghe,D.T., Woolf, " N.J.: 1973, Astron. Astrophys.25,275 Avni.Y_ BahcalU.N.: 1975. Aslrophys. J. 197. 675 Vidal.N.V.: 1974, Publ. Astron. Soc. Pacific^, 317 Bahcall.J.N.: 1975. Lectures at the Varenna School on the Physics Vidal, N.V.: 1975, in Workshop Papers for a Symposium on X-ray and Astrophysics of Neutron Stars and Black Holes. North Holland Binaries, NASA preprint X-66O-75-285, Eds. Y. Kondo and E. Boldt, Publishing Company, Amsterdam 1976 p.281 Bcsscll.M.S.. Vidal. N.V. Wickramasinghc.D.T.: 1975, Astrophvs. J. Vidal, N.V., Wickramasinghe, D.T., Petterson.B.A.: 1973, Astrophys. 195.L117 J. 182, L77 Charles. P. A_ Mason. K.O_ CulhaneJ. U Sanford. P. W, White,N.E.: Wallerstein,G.: 1974, Astrophys. J. 194,451 1975. paper presented at the Symposium on X-ray Binaries. Wickramasinghe,D.T., Vidal.N.V, BesselLM.S., Peterson,B.A., Goddard Space Flight Center. October 20 22 Perry.M.E.: 1974, Astrophys. J. 188,167 Crawford.D.L.: 1975, Puhl. Astrtm.Sm: ft«//«-87.4Xl Wickramasinghe, D.T_ Whelan.J.: 1975, Monthly Notices Rov. As- Crawford. D.L.: 1975. Aaron. J. 75.977 tron. Soc. 172, 175 EadicC Peacock.A, Pounds. K.A.. Watson, M_ Jackson.J.C, Hunt, Wilson. RE.. Devinney, E. J.: 1971. Astrophys. J. 166, 605 R-: 1975. Monthly Nut. Roy. Aaron. Soc. 172. 35P Zuiderwijk, E.J., van den Heuvel, E. P.J., Hensberge, G.: 1974, As- Forman.W_ Jones. C Tnnanbaum. H_ Gursky.H. Kcllog. L.. tron. Astrophys. 35, 353 Ciiacconi.R.: 1973. Aarnphys. J. 182. L 103 Zuiderwijk.E.J» Hammerschlag-Hensberge.G., van Paradijs,J., üiacconi.R.. Murniy.S.. Gursky.H» Kellogg.E„ Schreier. E„ Tanan- Sterken,C Hensberge, H.: 1976, Astron. Astrophys. Suppl. Series biium.H.: 1972. Aslrophys. J. 178,2K1 (paper I), in press J

82

ASTRONOMY ^stron! Astrophys. 54,543—546 (1977) AND ASTROPHYSICS

Four Colour Photometric Observations of the X-ray Binary HD 153919 (3U1700-37) G. Hammerschlag-Hensberge and E. J. Zuiderwijk Astronomical Institute-University of Amsterdam. Roeiersslraat 15, Amsterdam-C, The Netherlands and European Southern Observatory, La Silla, Chile

-Received May 24, revised July 28,1976

Summary. Strömgren uvby photometry of the O 6.5f star binary system we refer to Bahcall (1975) and to Hutchings HD 153919 is presented. The light variations are (1975) and references therein. consistent with a double wave variation in phase with In this paper we present extended uvby photometry the X-ray binary period of 3.412 days. The secondary of HD 153919. The observations are consistent with van minimum coincides with the X-ray eclipse. Our ob- Genderen's results. A marginal colour change around servations show evidence for a marginal colour change phase 0.2 is present. with binary phase. Key words: X-ray binaries — uvby photometry 2. Observations and Reductions The observations were made with a photometer for simultaneous measurements in the Strömgren uvhy system with the Danish 50 cm telescope at the ESO, La Silla, Chile. The photometer is used in combination 1... roduction with a photon counting system and is described in detail HD 153919, an O6.5f star, is the optical counterpart of by Grenbech et al. (1976). HD 153919 was observed the X-ray eclipsing binary system 3U 1700-37. The during the periods February 16-March 14 (by EJZ and X-ray luminosity varies with a period of 3.412 days and GH-H), Mcy 27-June 8 (EJZ) and July 25-August 22, has a relatively long eclipse duration of 1.1 days (Jones 1975 (EJZ). Table 1 lists the 168 magnitude differences et al., 1973). Recently, observations with the Copernicus which were obtained for HD 153919 with respect to the satellite showed a shorter eclipse duration than measured 2 comparison stars HR6327 (SI) and HD 153767 (S2). by UHURU lasting only 0.88 days (Mason et al., 1976); [HR 6327 is an eclipsing variable (Bolton and Herbsl, this indicates that the eclipse duration is variable, 1976); however, all but one of our observations were probably due to changes in the amount of absorbing done outside its eclipses and the star did not vary by material in the extended envelope of the Of star. Identi- more than 0T005 with respect to S2; peculiarly enough fication with the Of star HD 153919 was proposed by also the one observation that should have occurred Jones et al. (1973) and confirmed by optical observations during eclipse—according to the ephemeris of Bolton (van den Heuvel, 1973; Pennyetal., 1973). Spectroscopie and Herbst—did not indicate a variation of the star by observations show that the star belongs to a binary more than 0T005, although, according to the ephemeris system with a period of 3.41 days (cf. van den Heuvel, it should have been 0T15 fainter at that time; this seems 1973; Hensberge et al., 1973; Hutchings et aL, 1973; to indicate that the ephemeris is not fully correct. We Wolff and Morrison, 1974). UBV photometry of also do not find, evidence for secondary eclipses.] Each HD 153919 shows a double wave variation in phase reduced tabulated observation is the result of the follow- with the binary period; the light curve has two minima ing series of integrations: SI—P—S2— P—S2— P—SI, of about equal depth and of different shape (Penny et al., where P denotes HD 153919 and each individual stellar 1973). Observations by van Genderen (1973, 1976) in observation has an integration time of 20 s. The typical the Walraven five colour system show two unequal standard deviation of the measurements tabulated in minima—the secondary minimum occuring at X-ray Table 1 is 0T005. All observations of magnitude dif- eclipse time—and a pronounced asymmetry of the light ferences are given in the instrumental system, as it is curve. For a detailed review of the properties of the generally known that a transformation to the standard system is very inaccurate for highly reddened early type Srtvl offprint requests ia: G. Hammcnchlag-Kensbcrge stars [cf. E(B- K)=0.58 for HD 153919]. J

83

544 G. Hammerschlag-Hensberge and E. J. Zuiderwijk: Photometry of HD 153919 (3U 1700-37)

V

-0.20 0-00 0.20 0.40 0.60 0.60 1.00 1.20 1.40

ODc

-0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

1**% x* IC *« X 4 ~-Ó-20 0.00 0.20 0.40 0-60 0.80 1.00 ' 1.20 1.40 4ft

-0.20 0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 PHftSE Fig. I. ii. r. h and y variations of HD 15.1919. in the instrumental system of the Danish 50cm telescope. The differential n.ignitudes are plotted against binary phase(P=3'?412)

3. Discussion of the Results he did not find evidence for such a change. Our ob- servations are consistent with this result. The light curve Figure 1 shows the uvhy light curves of HD 153919, has in all four colours an amplitude of about 0707 at plotted against phase in the binary period of 3.412 days. primary minimum and of 0T04 at secondary minimum Phase zero corresponds to JD 2442459.680+nx 3.412 (=X-ray eclipse time). The scatter in the light curve is as days (=mid X-ray eclipse time), van Genderen (1976) large as 0T02 and must be intrinsic to the source. looked fora possible period change using all photometric Probably irregular mass streaming in the expanding observations of this star ranging from 1967 to 1975, but atmosphere of the Of star causes most of the scatter. In J

84

G. Hammerschlag-Hensberge and E. J. Zuiderwijk: Photometry of HD 153919 (3U 1700-37) 545

-.3E0 -.001 -.706 Table 1. Journal of observations -.aïa -.071 -.706 -.058 -.0S1 — 689 b^1.6Si. .061 .& 51 -.033 -.611 -.056 -.060 -.707

B-T Hl 11 G2K.573 27 .620 -.053 -.t«9 -.7 05 11 29 • :9 -.060 -.079 -.7 0b **9.BS* .031 -.056 -.089 02 it -,SS6 -.DBD ,«37 .6 6 -.0£9 -.076 -.705 HÓI.IVB ,«n -.0» -.093 561.833 .439 .6 ÏB -.0 -.O/A -.7 01 63*..(.15 . Ï3ï 6Z5 -.1 S3 -.096 -. i9b .659 -.08? 9S >,a2.0M .6<>3 O SS -.Oil. b3.579 ÜO • 612 -.052 -.H9t. -. Ï93 .Ó<..t39 • 6-tü 15 566.610 ^16 -ti>.,Bi.7 .(.f2 14 - .349 .640 -.0 SS -,0B8 -.E 90 05 ,B*.BlB .6(0 54 -i 02 636.576 S52 . 677 -.055 —082 -. 07 -«.947 ,óit 96 635.592 . 55?7 • 269 • 6Z5 569*672 .237 31 -. 638.595 •i2 -. 55 -• 0(1 .271 .620 569.737 .251 ;a -. 618,5iï • 1.36 . .« -. 15 -. at -. •9H ,sb). .b70 569.744 .25e 26 -. 5lt -.006 -. 99 639.<>B3 • 97 . iib -. 56 B2 -. '10 .671 .273 28 -. SS -,oae 03 6J9.H91 '00 , ïlh -. 51 -• 92 'im 569.817 • 27C JE -. 53 -.092 -. bl9.6>r '3% ïïi -. £6 BZ -. '06 569.85* . tïC £9 -. 1S6 -.080 -. 187 639.636 THZ . Ü2 -. 59 85 -. '0? .151 bt.ft.t.40 9B9 6*7 -. 63 i74 -. '1* .153 371.606 13 -. 357 -.083 706 992 • il.5 -. 60 79 -. '06 .737 571.616 .«07 a 58 6<.d.61? 131 . 551 -. 60 ai >99 571,646 34 -• 59 6i»D.6>i6 130 . ï*9 -. ei -• 76 -. '06 571.655 39 -. t? -.Q75 01 Ó^l.30 -, ïi -• 97 -, >46 371.71* 47 -. IfiO -.078 -. >99 6<*1.I»«S . 29% U3 -. 63 -• 175 '01, ,71.8' .338 SI -. 155 -.001 6*1.624 . 326 b36 -• tl -• 79 -. '02 <.71.9 .453 53 -. 62 -.073 -. 6sa 50 -. 160 61.2.616 >15 i*»7 -* 152 -.091 i« 572.608 -.Z -* 158 '03 btZ.623 >ia 6H6 -. l!3 -.OBi ro7 572,61* 43 -. \'A -.082 .91 170 637 -. IÏ5 -.09 roo .109 39 -. 153 B8 'DE 6(.3. 92 172 . 635 -. 156 -.00 roi 572.6^4 4» -. IM. 45 -. rot 6.Ï. il? SO» . 653 -. 157 -.08 70 611.53» .tsz lïï -. 95 -. »96 64.3. »21 110 651 -. I5B -.08 ros .«51 Ï40 -. tei 78 ril 61.1.. 89 164 b*3 -. i:>» -.03 b« 619.543 >31 '-. 153 31 iJl b^V. 94 . 167 . 6*5 -. IS7 -.08 70S oil.59) .370 tik -. )60 92 -. 70S 99 Mt3 . 650 -. It3 -.07 -. rol .167 33b iS6 -. b9< 6H5. 20 ••67 6

-.794 621.5*» , 1.5J 1Ï6 -. 053 ..D9B 700 -.617 -.711 b<(7. 6.1 J . Ü79 6 10 -. 053 D8B 70?

"-Ó-ZO 0.00 0-20 0.40 0-60 0.60 1.00 t .20 1.40

O > M .

> '-0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 CD

-Ó-20 0.00 0.20 0.40 0.60 O.«O 1.00 1.20 1.40

-O.tO 0.00 O.fO 0.40 O .tO 0 .(O 1.00 1.20 1.40 PHASE Fig. 2. Colour indices of HD 153919 against binary phase. Phase i"-to corresponds to X-ray eclipse lime J

85

546 C. Hammerschlag-Hensberge and E. J. Zuiderwijk: Photometry of HD 153919 (3U 1700-37) accordance with the results of van Genderen (1973,1976), References we find an asymmetric light curve. The rising branch Bahcall.J.N.: 1975, Lectures at the Varenna School on the Physics after the primary minimum is steeper than the descending and Astrophysics of Neutron Stars and Black Holes, North Holland branch preceding it. Publishing Company, Amsterdam 1976 Bolton,C.T., Herbst,W.: 1976, Astron. J. 81,339 Figure 2 shows the colour index b—y and the colour Gr0nbech,B., Olsen,E.H., Strömgren.B.: 1976, Astron. Astrophys. indices ml and c\ plotted against binary phase. There (in press) seems to be an indication for colour change around van Genderen,A.M: 1973, Inf. Bull. Var. Stars, No. 856 van Genderen,A.M.: 1976, preprint phase 0.2; especially the ml index shows the effect (see Hensberge.G, van den Heuvel,E.P.J, Paes de Barros.M.H.: 1973. Fig. 2). This effect might be due to a variation in the Astron. Astrophys. 29, 69 emission lines He II4686, C in 4650 and N in 4634-4641 van den Heuvel,E. P.J.: 1973,1.A.U. Circular No. 2493 which lie in the center of the Strömgren 6-filter. How- Hutchings,J. B.: 1975, in Workshop Papers for a Symposium on X-ray ever, Krzeminski (197S) has observed the star with an Binaries, NASA preprint X-66O-75-285, Eds. Y. Kondo and E. Boldt. p. 263 interference filter centered on the He II 4686 emission Hutchings,J.B., Thackeray,A.D., Websler,B.L., Andrews,P.J.: 1973. line and found no variation within the orbital period. Monthly Notices Roy. Astron. Soc. 163,13P Further narrow band photometry is desirable to confirm Jones,C, Forman.W., Tananbaum,H., Schraer.E, Gursky.H.. our results. Kellogg.E.. Giacconi.R.: 1973. Astrophys. J. 181. L43 Krzeminski, W.: 1975, in Workshop Papers for a Symposium on X-ray Binaries. NASA preprint X-66O-75-2K5. Eds. Y. Kondo and E. Boldt Acknowledgements. E. 3. Zuiderwijk acknowledges support by the Mason, K.O., Branduardi.G.. Sanford, P.: 1976, Astrophys. J. 203, L 29 Netherlands Organisation for the Advancement of Pure Research Penny.A.J.. Ólowin,R.P, Penfold.J.E., Warren,P.R.: 1973. Monthly (Z.W.O.). We are indebted to Prof. Dr. E. P. J. van den Heuvel for Notices Roy. Astron. Soc. 163,7P stimulating discussions about the subject Wolir.S.C. Morrison,N.D.: 1974, Astrophys. J. 187.69 86

1978, Asiron. Astrophys. Suppl. 31.189-198.

1E - STUDY OF THE LIGHTCURVE OF THE Of STAR HD 153919 J.A. VAN PARAD1'?.. G. HAMMERSCHLAG-HENSBERGE and EJ. ZU1DERWUK Astronomical Institute or the University of Amsterdam, The Netherlands

Received June 19, 1977

Photoelectric live-colour observations are presented for the O6f star HD 153919, optical counterpart of the X-ray binary 3U1700-37. Combining these data with those obtained by other observers, we derive an orbital period of f=3.41117±0.0004I days. The lightcurve is variable: remarkable differences occur between the average results of different observers. The scatter of the individual observations around the mean lightcurve amounts to about 0.02 mag, which is much larger than expected from observational scatter alone. No definite colour-index variations are found. The observed mean tighlcurve of HO 153919 cannot be reproduced by light variations predicted from a model of a tidally distorted corulaling primary. Possible reasons for this discrepancy are given.

Key minis: Of stars photometry - X-ray binaries

1. INTRODUCTION HD 153919 is the brightest known early-type supergiant in an X-ray binary. The identification of this 6.6 mag O6.Sf star with the X-ray source was accomplished through positional coincidence and brightness and radial velocity variations in phase with the X-ray lightcurve (Jones et al. 1973, Penny et al. 1973, van den Heuvel 1973. Hensberge el al. 1973. Hutchings et al. 1973, Wolff and Morrison 1974). The system shows X-ray eclipses with a period of 3.412 days; the eclipse duration is large and variable (Jones et al. 1973. Mason el ul. 1976). Outside eclipse the X-ray source is highly variable on time scales of minutes to hours. Optical light variations have been observed by Penny et at. (1973), de Freitas Pacheco et al. (1974), Hammcrschlag-Hcnsbcrge and Zuiderwijk (1976), van Genderen (1976) and van Genderen and Uiterwaal (1976). These observational studies agree in giving the same overall features of the average lightcurve, in which double-wave ellipsoidal brightness variations are present. Thé minimum at phase 0.5 is deeper than the one at phase 0.0 (i.e. X-ray eclipse), which can be understood from gravity darkening together with the fact that heating of the primary by X-rays is negligible. However, the details of the light curves differ from one study to the other. This is most probably due to rather large erratic variations, superimposed on the average lighlcurvc. No definite colour variations have been found for HD 153919. In order to obtain more information on the variation of the lightcurve we carried out new and extensive photometric observations of HD 153919 in the Walraven five colour system. In this paper the results of these observations arc presented.

2. OBSERVATIONS AND REDUCTIONS The observations were made by one of us (J.v.P.) in the VBLUW photometric system with the five channel photometer attached to the 90 cm light collector of the Leiden Southern Station near Hartebeespoortdam, South Africa. A description of the instrument and the photometric system has been given by Rijf et al. (1969) and by Lub and Pei (1977). HD 153919 was observed during 29 nights between August 19 and September 22, 1976. relative to the comparison star HD 153767 (V=T?4; sp. A0). This star was also used as a comparison star by van Genderen (1976) and by Hammerschlag-Hensberge and Zuiderwijk (1976). The non-variability of this star was tested in the latter study. A single observation of HD 153919 consisted of two integrations of HD 153919 itself, one of the sky background and one of HD 153767. One integration lasted for 32 sec. In the reduction the average value of the results for the comparison star was used, as obtained before and after the integration of HD 153919. The sky data were interpolated in a smoothed graph of the time variation of all sky readings. As both the programme star and the comparison star are bright objects the treatment of the sky is not of critical importance to the results. 87

190 J.A. van Paradijs, G. Hammerschlag-Hensberge and E.I. Zuiderwijk

3. RESULTS In table 1 the observed differences AV, A(V-B), A(B-L), A(B-U) and A(U-W) are listed, in the sense HD 153919 minus HD 153767 (in units of 10log (intensity), as is customary in the Walraven system). The data for the V band are displayed in figure 1, plotted versus phase. The zero point of the photometric data was determined from a comparison of HD 153767 with standard stars of the Walraven system. The transformation to the UBV system of Johnson and Morgan was made using an expression given by Pel (1976). Also data from other observers were plotted in this figure; each set of observations is indicated by a different symbol. Due to possible small zero point errors the different data sets had to be shifted relative to each other by small amounts; the shifts were obtained by requiring that each group of observations had the same mean observed V magnitude. The phase was calculated using the ephemeris derived below. Taking the scatter of the individual observations into account the lightcurves by different observers mutually agree well, with one exception: the minimum in the Iightcurve near X-ray eclipse observed by Penny et al. (1973) is systematically deeper than in the other light curves by 0.015 mag; i.e. this minimum is about twice as deep as normal. Such variations in the minima of the lightcurve have also been observed for HD 77581, the optical counterpart of Vela X-l (Zuiderwijk et al. 1977). From all available photometric data we derived a new value for the orbital period, by using the computer programme "ORBIT', written by R.J. Takens, in the "period" mode. This programme has been described by van Paradijs et al. (1977). The value derived for the period is P=3.41117±0.00041 days. This period is slightly shorter than obtained in earlier determinations (~3"?412), but fully agrees with the value recently determined by Hammerschlag-Hensberge (1977) from the radial velocity variations, viz.: P=3Al 11 +0.0002 days. These spectroscopie observations cover the same observing period as the photometry used here, viz. from 1973 till 1976. The zero point in the phase calculations was fixed by the mid-X-ray eclipse time as determined from Copernicus observations (Mason et al. 1976). This yields the following ephemeris: phase=(JD—2442231.13)/ 3.41117. In figure 2 the average lightcurve of HD 153919 is shown. The amplitudes of the light variations are Ao 5=0.040±0.004 mag and Ao „=0.019+0.004 mag, where we used as definition Aa 5 = F(0.56)- 'A(V(Q3l)+ K(0.81)) and Ao.„= K(0.06)- '/2(V(0.31)+ K(0.81)) (see next section). The phase variations of the mean colour indices A(. -B), A(B-L), A(B— U) and A(U- W), as derived from the present observations, are shown in figure 3. No definite variations of the colour indices are observed with the possible exception of A(B-L) and A(U-W), which show a little dip of 0.005 and 0.015 mag, respectively near phase 0.8. This may be related to the observed additional absorption of the Hel P Cyg profiles in the spectrum at this phase (see also section 4). The average value of the colour indices A(B—L), A(B-U) and A(U-W.) differs from the values given by van Genderen (1976) by about 0.01 mag. If this difference is real either HD 153919 or the comparison star shows a long-term variation in ihe Balmer jump. More observations are required to confirm this long-term behaviour.

4. DISCUSSION It is clear from figures 1 and 2 that the light variations of HD 153919 have the ellipsoidal character expected for a tidally distorted rotating star in an X-ray binary system. However, the whole lightcurve appears to be shifted in phase with respect to the X-ray curve. This is especially clear for the phases of the well-defined maxima and the deepest minimum. These occur later than expected by A

Lightcurve of HD 153919 191

(i) Asymmetric stellar wind. From the spectroscopie study by Hammerschlag-Hensberge (1977) it appears that the Balmer progression of the radial velocity is strongly correlated with phase. Clearly the stellar wind parameters (flow velocity and density profiles) are not the same in all directions. (ii) Incipient Roche lobe overflow. There are indications that in other early-type X-ray binaries Roche lobe overflow may be an important mass-transfer mechanism (Ziolkowski 1976, Savonije 1977). The strong stellar wind in HD 153919 may stabilize this mass-transfer process (Basko et al. 1977). (iii) A trailing accretion wake. This was suggested by Conti and Cowley (1975) to explain additional shifted Hel line absorption around phase 0.75. Also in other X-ray binaries there is evidence for additional absorption of X-rays just before the onset of the occultation of the X-ray source. In their extended study of the X-ray lightcurve of 3U090O-4O Watson and Griffiths (1977) find that the entry into X-ray eclipse takes place much more gradually than the exit from the eclipse. In Cen X-3 strong X-ray absorption is sometimes found just before the entry into eclipse (Giacconi 1975, Bennett et al. 1976). In this picture the real duration of the X-ray eclipse, i.e. of the occultation of the X-ray source by the primary star, is given by twice the time interval between the moments of mid-eclipse (as obtained from the optical photometric and spectroscopie data) and the observed exit from X-ray eclipse. This yields an eclipse duration of 0.47+0.11 days, corresponding to an eclipse angle of 50° + 12°. We have attempted to analyse the observed light curve, using a model for a tidally distorted rotating early-type star (Zuiderwijk et al. 1977). In the model calculations we have assumed the following ranges of system parameters: 10 (i) aop, sin i runs from 7.6 xlO cm to 1.0x10" cm. This is a 2a range which was obtained from new radial velocity data, based on 76 blue spectrograms, obtained by Hammerschlag-Hensberge (1977).

(ii) For the absolute bolometric magnitude Mbol we have adopted values between —9T0 and — 10T5 39 39 (corresponding to Lafl=12x 10 erg/s and 4.9 xlO erg/s, respectively), based on the results given by Conti and Alschuler(1971), Hutchings (1976) and Conti (1977). We have furthermore limited our calculations to cases where the average effective temperature is between 32000 and 40000 K (cf. Conti 1973). (iii) The X-ray luminosity of 3U1700-37 is so small relative to the luminosity of the primary that we neglected heating effects by X-rays.

(iv) We have allowed the mass of the primary to have values between 8 and 70 ma. This roughly corresponds to values of the mass ratio q between 0.04 and 0.07. For the calculation of the lightcurve we further need the mass ratio q, the inclination / of the orbital plane and the dimensionless potential parameter SI, which is a measure of the degree of filling of the Roche lobe. A detailed description of our method used for the model calculations is given by Zuiderwijk at al. (1977). As q, Q and i together uniquely determine the eclipse duration, they are not allowed to vary independently, once :he observed eclipse duration is fixed. We varied q and Q independently, and then used the fixed inclination in the lightcurve calculation; in this way each set of q and £1 determines the masses

of both components (a sin i=aapl sin i (1 + \/q)). It appears that over the entire range of system parameters it is impossible to produce a theoretical lightcurve which represents the observed variations. As an illustration of the difficulty we refer to figure 4, where we have plotted the two amplitudes of the V lightcurve as a function of ii, at a fixed q=0.05, for three values of the observed eclipse duration

(0e=38°, 50° and 62°). Clearly a value of il can be found, for which the observed large amplitude /40.5 is represented. However, for this value of il the smaller amplitude Aoo does not fit the observations. Trie other way around, values of il can be found which fit AQ0, but then Aos does not fit. This situation occurs for all values of q between 0.04 and 0.07. Variations of the luminosity do not alter this situation. Figure 5 shows the discrepancy between the calculated lightcurves and the mean observed lightcurve. Variations of mass ratio, luminosity or eclipse duration do not alter the shape of the lightcurve. For eclipse durations 2:80° no solutions are possible in the used range of mass ratios. 89

192 J.A. van Paradijs, G. Hammerschlag-Hensberge and E.J. Zuiderwijk

Possible reasons for this discrepancy are: (i) Due to the strong stellar wind the surfaces which are visible in the continuum may not be at rest. In this case the shape of the star may be rather different from a Roche equipotential surface and the use of equipotential surfaces starts losing its meaning. (ii) Phase dependent variations in the stellar wind may affect the shape of the star: extension of the visible layers above the "resting" subphotospheric layers may be different in different directions. (iii) Deviations from the used LTE plane parallel model atmospheres (Kurucz et al. 1972) may not be the same in all directions. Phase dependent errors may occur due to the use of these plane parallel atmospheres and due to the deviations from isotropy (LTE). Until better dynamical model atmospheres for early-type stars with expanding atmospheres become available, it seems very difficult to use a lightcurve analysis for obtaining constraints to the masses of the components of this system.

ACKNOWLEDGEMENTS J. van Paradijs thanks the Leiden Observatory for granting observing time on the 90 cm light collector. The hospitallity of the staff at Hartebeespoortdam is gratefully acknowledged. E.J. Zuiderwijk acknowledges support by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.). We are grateful to R J. Takens for the use of his computer programme and for many helpful discussions about it. We thank Prof. Dr. E.P.J. van den Heuvel for critically reading the manuscript.

REFERENCES Basko, M.M.. Hatchelt, S., McCray, R. and Sunyaev, R.A.: 1977, Astrophys. J. 215.276. Bennett, K., Bignami, G.F., Di Gesu, V., Fiordilino, E., Hermsen. W., Kanbach. G.. Lichti. G.G.. Mayer-Hasselwander. H.A.. Molteni, D., Paizis, C, Paul, J.A., Soroka, F., Swanenburg. B.N.. Taylor, B.G. and Wills, R.D.: 1976. Asiroa. Astrophys. 51. 475. Conti, P.S.: 1973, Astrophys. J. 179, 181. Conti, P.S.: 1977, preprint. Conti, P.S. and Alschuler. W.R.: 1971. Astrophys. J. 170.325. Conti. P.S. and Cowley, A.P.: 1975, Astrophys. J. 200,133. Freilas Pacheco, J.A. de, Steiner, I.E. and Quast, G.R.: 1974, Asiron. Aslrophys. 33,131. Genderen, A.M. van: 1977, Astron. Aslrophys. 54,683. Genderen, A.M. van and Uiterwaal, G.M.: 1976, Asiron. Aslrophys. 52, 139. Giacconi, R.: 1975, Proc. 7th Texas Conference on Relativistic Astrophysics, Boston, Mass. Hammerschlag-Hensberge, G.: 1977, in prep. Hammerschlag-Hensberge, G. and Zuiderwijk, E J.: 1977, Astron. Aslrophys. 54,543. Hensberge, G., Heuvel, E.PJ. van den, and Paes de Barros, M.H.: 1973, Asiron. Aslrophys. 29,69. Heuvel, E.P.J. van den: 1973,1.A.U. Circ. no. 2526. Hutchings, J.B.: 1976, Astrophys. J. 203,438. Hutchings, J.B., Thackeray, A.D., Webster, B.L. and Andrews, P.J.: 1973, Monthly Notices Roy. Astron. Soc. 163,13P. Jones, C, Forman, W., Tananbaum, H., Schreier, E., Gursky, H., Kellogg, E., Giacconi, R.: 1973, Astrophys. J. Utters 181, L43. Kurucz, R.L., Peytremann, E. and Avrett, E.H.: 1972, Blanketed Model Atmospheres for Early-type Stars. Smithsonian Astrophysical Observatory, preprint. Lub, J. and Pel, J.W.: 1977, Asiron. Astrophys. 54, 137. Mason, K.O., Branduardi, G. and Sanford, P.: 1976, Astrophys. J. Utters 203, L29. Pel,J.W.: 1976, Asiron. Astrophys. Suppl. 24,413. Penny, A.J., Olowin, R.P., Penfold, J.E. and Warren, P.R.: 1973, Monthly Notices Roy. Astron. Soc. 163, 7P. Rijf, R., Tinbergen, J. and Walraven, Th.: 1969, Bull. Astron. Insl. Neth. 20,279. Savonije, G.J.: 1977, preprint. Watson, M.G. and Griffiths, R.E.: 1977, Monthly Notices Roy. Astron. Soc. 178, 513. Wolfl", S.C. and Morrison, N.D.: 1974, Astrophys. J. 187,69. Ziolkowski, J.: 1976,8th Texas Conference on Relativistic Astrophysics, Boston, Mass. Zuiderwijk, E.J., Hammerschlag-Hensberge, G., Paradijs, J. van, Sterken, C. and Hensberge, H.: 1977, Asiron. Aslrophys. 54, 167.

J.A. van Paradijs Astronomical Institute G. Hammerschlag-Hensberge University of Amsterdam E.J. Zuiderwijk Roetersstraat 15 NL-1004 Amsterdam (The Netherlands) The ordinates give the differential magnitudes of HD 77581 with respect to the comparison star HR 3656

90

Lightcurve of HD 153919 193

Table 1 Photometric Observations ofHD 153919, relative to HD 153767 in 10log units

JD 2440000+ AV 3(1-8; HB-L) diB-l'J Attl-W) JD244000C + AV AlV- K HIB-L) A(B-V) A(V-WI JD 2440000+ AV Af V-B) A A(B-V) A(U-W)

9110.2» .1» .101 -.099 -.16' — 051 9013.22! .!•* .101 — 091 -.373 -.0*2 3019.323 361 .103 -.09- -.367 -.066 3110.201 .9?J .090 -.306 -. 36C —'0*9 3113.221 .S"2 .101 -.099 — 162 —-Of I 3019.32« 352 *10f -.042 -.364 1010.20' .916 • 102 — 112 -.369 -.«•« 3113.221 .353 .10* -.099 — 36* -.05! 3019.332 360 .1C2 — •MB -.366 —«63 3013.213 .39» .101 — 100 — 3<7 -.061 9115.175 3M .10*. -.098 ••964 — Okl 3010.216 •3»a .lie -.019 — 390 — 06* 9019.2*( .«9 .101 -.101 -.3*6 —059 3015.138 .11** -•097 -4 050 30II.I5O .393 .102 -.096 —96* — 0** 3019.2*4 .396 .191 -.103 -.365 -.062 3015.3W 38.5 .103 -.095 -.3*9 -.066 9111.262 .313 .102 -.099 -.969 — 090 1013.261 .960 .10' —10* — 176 -OJF 3015.943 3M • 100 — 08» -.360 -.0*5 9011.26' • 9^9 • 102 -.096 — 9«3 — 0*» 9119.261 .952 .0» — 093 -.161 -.0*1 3119.359 set -.091 -.965 -.0»* 901l.»l .39? • US •-0M —36d -.050 9019.111 .969 .097 —096 — 167 — Qr a 1015.362 3' 2 .110 -•096 -.1*9 — lfl 3111.176 .396 .102 -.096 — 161 -.061 3013.26* .353 .101 — 105 -.369 — 070 3019. 3« 359 .106 -.099. -.363 -•0t3

3IU.I61 .1» .101 -.109 -.171 —on 1013.17 .K* .10! — 112 -.369 -.«61 3K5.367 «5 .107 -.J97 -.165 — «1*9 9U1.206 .311 .100 -.100 — 966 — 060 9013.273 • ?»9 .101 -.100 -.37* — 06C 1815.970 .10** -.092 — 171 -.Of 8 -.101 3019.2'< .10' —n99 —3*6 -,'0F5 9015.373 397 .100 — 045 -.165 -.'07k itu.n* .3*1 .111 -.010 —356 -1-ojw -sr* 3019.376 3*7 .10? -.105 -.156 — 062 9111.217 .399 .106 -.092 -.391 —1*9 3013.21 .99* • 10 — 09- -.36* -.10*6 9015.378 3011.301 .36* .101 -.101 -.369 — 0*9 3013.26 .!*' .10' -.011 -.35* -•01S SU4.1U ser- .10*. -.491 — SM — •73 3013.2» .39' • It —093 -.35* -.071 3019.38k S*3 .10* -.044 -.167 -.099 9011.311 .301 -us -.102 — 971 —1066 2013.2» .396 .10 -.100 -.36' — 061 3019.997 39O .101 -.093 -.36? •.111 .193 -.360 —055 9015.340 1U1.9» .399 -.099 3013.29! .Sfr .111 — IK — 370 -.066 -.370 -. 07k 9(ll.32> .99» .100 -.«19 — 36? —0(3 9013.241 • 3f7 • 101 -.996 — 362 -.«' 9015.99? 3*5 .ICC -.09k -.169

1111.991 • 396 .100 -•111 -.366 — 06* 9013.291 .960 .10 -.093 -.362 -.0*7 9016.211 39>3 .099 -.092 -.360 — •54 JIU.996 .362 .091 -.lit — 36* —«5» 9H3.1K «»Q .10 -.101 -.171 -.0*6 3116.214 -.0*3 9011.960 .393 .107 ••010 -.369 — 0«3 3013.90 • 319 .09 -.097 — 1*3 —or* 3016.21'' 3*0 • 101 -O9Z -.3*1 — 0*1 1111.»• .392 .099 -.012 -.39' —'062 3013.90 .™« .10 — «»7 -.369 — »f7 S016.21O 36S • 1QG -.998 — 36k — OF" 1111.193 .31-3 • 0» -.069 -.161 —•061 5013.30 ..*•* .It S —Oil -.1*7 —«5F 301**221. 1*2 .101 -.089 -.360 — •61 —Ó?' 3H9.31 .151 .10 ! -.091 -.163 -.057 3016.22* 3f 2 — 1BB — 366 -,05= 1111.102 .300 .099 -.001 -.36* •••60 1013.11 • 35* .10 > -.091 — 36*. -.037 9016.22» 36* • 10k -.101, -.367 — OftF 9011.30* .399 .112 —019 —969 -.«69 9019.11 .3*9 • 1C -.090 -.369 -0*9 9016.231 362 .101 -.044 -.361 3011.926 .39* .102 -.016 -.960 -093 3016.296 373 .1112 -.not — 16k — 0f3 — 962 -.otr. 9011. in • 396 .101 "**** —'097 -.069 1H«.997 3*7 .107 -.109 -.375 -.075

30U.161 •397 .«90 —1» —170 — 069 9013.92* .3** • 100 —OM — Tf* —mi 901*.2*3 »2 .106 -.100 -.J6k — OM lilt.3M .9*1 .090 -.11* — J'O — 063 3013.39 .9"! .120 -.097 — 362 -.052 .102 -.092 -.1*5 -.Of 3011.912 .!"• .099 — 111 — 363 —066 1013.3*3 .!'? .109 —103 — 37C -. B*6 3016.2*' 3*2 .107 — 368 — OM 1111.39' .3*2 .10* -.191 -.96» — 036 3013.9*6 .99' .10 * -.099 — 370 -.0*1 9116.251 3(7 .10? -.09-•in9 -.170 — 0?2 HU.'K .397 .106 -.099 -.166 — 0F0 1013.9*1 .!•« .100 -.103 -.1*6 — 03» !016.25r !*«• .10» -.007 — 169 -.03* 3111.*!* • 39* • 099 — 017 — 309 —06* 9013.391 .356 .095 -.911 — 352 -.0*9 lOtl.tl» .961 • III -.199 — 371 —0*9 9013.959 .9*6 •IOC -.097 -.312 -.0*2 9016.260 362 • 107 -.1*2 -.371 — 066 9012. 369 .391 .10" — 101 — 171 -.'039 9013.196 .99* .101 —091 -.366 -.0** 3016.263 3*1 .110 -.10* -.376 -.O<3 9012.161 .9A« .101 -•111 — 371 — 06* 3013.159 * .3*3 .10 • -.096 -.365 — on 3116.26* 3(? .10C — IF? — «SU 9012.3» .W0 .10* — 10* — 979 — 0*0 3119.362 .!•<> .102 —012 -.36? — 0*6 9016.2*t ••? .101 -.09'' -.060

3012.377 .3SA • 011 — 097 — 9»! — 0*6 1013.36 * .3!f .191 -.095 — 363 — 056 3016.271 Wk •ld? -•099 -.373 — 0?* 301?. 301 .373 .016 —106 -.376 —023 3013.16' .HI .112 —10' -.177 -.062 3" 2 *iar 3011.30' .1» .019 —0M -.160 — 0*9 — at? me. 27* s 3013.361 .3*1 .101 -.101 — 166 9016.27H >7*o .141 -.146 — 369 — 0F1 1112.311 .309 .012 — 990 -•36 — 076 3013.172 .»» • 09a -.096 -.36* -orr- 331*.241 344 .10* -.847 -•171 -.ttk4 1111.119 .376 .017 — 101 —075 3113.375 .3?' .099 —069 — 355 -.H*7 3016.283 370 .112 -.045 -.367 .»• —n— 372i lllf.11* .109 —097 — OS* 3013.17* .3*7 .10* -.019 -.36? —«L6 3016.2-6 M* .111 -.09.» — 1*9 -•QkO IIU.'O* .3*' .09' — 101 -.37» -Of 3 3013.300 .?•» ' —ai* -.371 -.0** •016.2"4 317 .10* -.11*5 -.169 -.or* 9012.609 *9 .011 — 091 — 37f -.090 5019.3M .!•? .106 —097 -.366 — 0*6 — in* -.1*8 -.«*- 3019.213 .913 .10* -.017 ••36* — 053 3013.11• .361 .101 —096 — 3*6 -.0*7 •.u Uci •*itt -.266 -.Bf.7. 3013.216 .39" .103 — in — !6f -.0*7 3013.36a .3«r .1(1 —Oil — !*2 -.03» 3016.30k .3*7 .100 -.1-0

JD M-lUX".. + M .VI-0/ .VÖ-/.V AtB~Vt 4/f-»i JD244UÜUl-t- Al AlY-B) AiB-Lj AfB-Vi A(U-W) JD 2440000+ AV AtV-B) drfl-L> A(B-V) Aiu-m

1B1*.U3 .1*» .104 -,9« -.16? -0*4 9017.969 .341 .101 — 0O8 — 37* —«*3 9014.299 • 390 .10* — 049 — 166 -.050 3Btf.*t« .*•* .10* —13* -.3*' .«0^0 9«lT.?6- -.OS6 -•16t —05* 3011. 290 .150 .104 —090 -3T* -.'039 JOtt.31* .10 -.aas -.o#r 3117.3b* • 3*1. .15»- -.«95 -.173 1119.261 .346 .100 -.100 — 370 — 051 3116.322 .'*" .10 — ï*i 9817.968 • 33* .107 -.040 -.03* 3011.216 .195 .105 —in — 372 ïllt.'H .?*' — •*• — 0*3 3117.!7| • *** • lOO — 10? — 310 -.861 1011.26' .390 • 109 -.101 -.101 —«66 .103 -.oor -.IA» «817.171 .3k2 .IC 2 -.045 -.0*2 9011.26,1 .344 .104 -.096 — 367 —466 X.16.33? .3*7 • U3 -.103 -.572 --•'• IC17.Ï77 .103 — 04* — 17C — 073 9011.271 .159 .109 -.093 — 306 -.•08» .3*1 .IC -.14* -.366 -.Okl 3010.?"7 .746 .09? -•10? -.370 1011.27* .364 .11* — 090 — 166 —«30 7.016.13* .11 -.OOrv -.'6* -#04B 3011.rofl .Jk? -.102 1111.277 .091 .101 -.09' -.365 !01*.J*2 • D» -04D -.1M -.Okl 101•.747 ."•7 .10? —14* -.JM -.051 9011.201 .396 .102 -.099 -.36* — 050

301*.14k .JU .10 -04O — 163 -.e*6 9018.245 ..••7 .103 -..am -.3** -ÏJT 1114.113 .103 B .«93 -.044 —166 —«65 -•01*. Sk? • IC — lot -Idfi 3018.24" .3»» .099 -• V 1 — 3*1 — 03* 9011.205 .312 .102 — 999 -.36* — 0*3 101».i*e • **r .10 • -.fltU. — TO 90I>*.101 .1»? • 10* -.106 — BF6 9011.200 .3*9 .106 -.110 -.369 —-03* J016.393 • J**« .10 * -.04* — 57S -.0*0 901-.904 .•k7 -.16? -.0?4 r .ior 3014.211 .369 .106 -.111 — 370 —0*1 J0t*.M .«»* .10 — o** 901*.*0* • .11c — lfl* -.171 — 0?' 3011.296 .366 .110 — 091 — 3K7 — 051 Jtib.««" .3** -IC • -.0«* —3*3 -*0A1 9011.309 .343 — 101 — 365 — 068 9019.211. .992 .102 -.096 -.369 — 051 -3*« .10 L -.093 -.5*3 3014.'12 tl0k -•1O0 — S?3 -.0*1 3011.300 .3*0 .102 — »93 — 362 — fl*a 3H8.36* .»O • 10 I -.048 -.362 — •31 .351 .102 -.049 -.358 -.«47 3011.310 .311 .100 -.10* — 371 —«*? 1816.36* •3*- .10 ' -.802 — 16B -.0*0 90tf.917 .?*? .101 -.394 -.3*1 -.Of 4 9011.310 .392 .106 -.102 -.379 — 050 3016.371 .19- -IC • — B-9 -.365 -.«TT »!•..* 14 .3»" .049 -.04>, -.356 -.060 9011.315 .390 .10* -.101 — 971 — Of*

1316.77k .*** • 09 » -.993 —**Q — D5B 9014.322 • 3F0 .106 — 04« — 572 -4f3 3011.310 .393 .105 — 192 — 0F9 • J6>3 t — •«• -. 357 -!»2 3B16.377 .10 •81*.326 .101 -.102 — 1KB -.fff F .105 -.096 -.371 -.1093 .jojo bj -.044 3014.320 • 365 301*.180 .lfl — 160 .10- -.109 —0*4 .101 -.097 -.362 -.'061 • 7-*o 3014.926 .3?2 3816.38*- -10 -.043 -. ?6Q 301*.931 .J*f .11? -.lOf. — 377 -0k« 9114.927 • 350 .109 -.044 -.365 -.«60 .10 t —087 -••61 30U.999 .3'k .100 -.1*6 .103 -.099 — 36E — 15a .341 .10 -.04? — 367 3011.324 • 3*3 901F.2S9 -.058 901*.936 .7*4 .101 — «41 — «5I- -1B5O .101 —09« — 397 — 1*2 • 34» — Of 4 311ft. 339 iOli.332 .39' 3O17.;s> •09f ••046 • '•? .102 — 04* -•367 — 0*2 3014.139 • 100 -.092 — 362 -.073 T • -»** -.-«64 —«•7 • 353 301 .26P .ir? —102 .351 .100 — 364 -.0«3 3019.337 .366 .09? — 09' -.1** — 059 .13 ' —181 -.•66 .S»2 • ïor -.11" — 165 -.0*9 3019.340 • 35» .107 -.096 — 370 -.051 *7«* -.OW jott.m .3*k -.092 !*l'.2.« .11? — tt* "•'•' SS11.3U — 363 9014.96* .3«2 .09a —016 — 3*1 -.016

3017.2W • 10 - —101 -.Ifk -,«*.• 3018.351 ..34k .10' — 10C -.166 -.-Otfi 9019.34' .3*2 .109 — 04* — 16* — 05a • 7-r* nir'.it" .107 -.(144 — 169 -I<«* 301*.353 • i61 IlO5 -.10* -.343 — 093 3019.369 .351 .102 -.043 -.167 -05C -.159 • 34tv — 10» -.063 1017.243 .106 —146e 30U.39- .105 — 365 9014.392 .55f .102 — 043 —o*e 10l>.29' .344 .114 —10 -.J64 — 061 .107 — 2M. •••Of 4 3019.396 .351 .106 -.015 — 369 -.008 .367 311'.259 .110 —0« — 362 — 092 10m. 169 .8*» .107 -.0*l> -.1*9 — 0*1 3019.19' .3*3 tio? -.093 -.160 —'OM 911'.'61 • 39* .10 -.167 -.lib* 9018.367 .393 .103 -.359 — 065 9114.960 .590 .10" -.096 -.?*" .?•! -.1*4 — 9*0 1019.212 • 360 .100 -••48 — 049 3119.343 .35' .105 -.09* — 36* -.4*1 101». 20» • 09 — 362 -,•26 3814.215 • 193 .lik -.«67 3014.365 .097 -.960 -. 0T9 • 39>3 .357 901'. 112 .102 —049 -•367 -.0*0 381*.2l4 .3*2 .142 — 101 -•567 -«'9 3014.36' .395 .10' — oga — 367 — O*« 311».29" .3»« .10 f —045 -.360 -•*! 301O.222 • 3*? .103 -.04* — 971 -.069 3021.277 • 35* .106 — 102 — 369 —'0F9

901».20* -ü*4 .19? -.101 3S19.22k — 169 — 0*2 .3*2 • 106 — «48 — 3*7 — 0*3 2121.241 • "2 .199 -.107 -.373 -.on 301'.240 I«2 • 105 —100 — 396 ••060 3119.2Z6 .3*4 .19» — 1*7 —454 9021.261 .104 — 047 — 366 • —19» — Jak --'•TT • 36» -.0*9 1017. 91* 9119.231 .3*3 .lflk -1,043 — 5K —«49 3121.2«7 .36* .100 -.046 -.36* — 0*2 9117.31* •st» • 10" —101 -•U5 • 391 .106 — 149 — 059 .99« 9121.290 • 3f3 .115 — 102 — V* • 11 -.191 — «TO 3114.»- .3»* .103 —•99 --34-i' -.161 -.9111 Hl».."29 .1*4 * .102 — 10P — 1*9 -.097 •121.293 •39» .113 —OW —063 9021.116 -.096 -.311 -.099 lit».164 •39t4 -•84T* -,8T1 m*t»6 • 3*7 *.!•• —•44 -.036 , -l5ï 1121.Ill .346 • II* —097 — 9W -.*! 101».991 "l80 -.84* — 1» .10- -.106 -.171 -••57 1121.312 .353 .105 — 101 —1»0 — 050 9*1».'M •ra« .106 — tfl — 1*6 -#•**» in4.25« .391 • 107 — 3*4 1021.101 • O«2 .11* -016 -.312 — •62 .3" .18 -.042 -.14? -.04* 3017.997 5114. «2 •3*9 • 099 -•Hl '— 06ff 1021.300 .547 .11? —019 -.113 — 0*4 (4nGe/3)l/2alday]. undisturbed, e.g. between JD 2442470 and JD 2442480.

91

194 J.A. van Paradijs, G. Hammerschlag-Hensberge and E.J. Zuiderwijk

Table 1 (continued)

JD 2440000+ AV AtB-Lt AIB-U) AfU-W) JD 2440000+ AV A(V-B) MB-U A(B-U) A(U-W) JD 2440000+ iV AIV-B) MB-L) i(B-V) A(U—W)

3021*313 •392 .099 -.045 -.362 —8*7 SO£S. 3» .352 .090 -•090 -.354 -•>0f4 -.0*1 3011.319 .344 • 113 -.Hl -.571 —1*4 3021.304 .35* .094 -.9*2 -.160 3024.3S4 .3*7 .109 — 097 -•362 -.05» 3021.319 .10e —101 — T75 -.'056 1023.317 .35* .102 -•o-«89n6 -.365 -.05" 3024.33» .356 -.099 -•367 -.on im.ize .101 -.094 ••363 — 065 1123.309 .3»! .104 — 04? -.362 -.<*e* 9124.9*9 • 35» .105 -.096 — 365 — 03f 3021*324 •34* .103 — 044 —159 — 0*1 3023.915 .351 .it a -.095 -.161 -.057 3024.341 • 346 •102 -.OM -.357 -.f38 10H.32» • str .106 —044 -•362 —93- SQS3.310 .35» .«99 -«100 -.364 -.05' «024. SU • 350 .103 -.009 -.16* — 0*4 -.'04* 1023.322 .3*1 • 109 -••9S -.!"2 -.045 9024.340 .391 .103 — 090 -•365 — 062 1021.134 • 344 .104 -.043 -.361 — 037 3123.125 .3: f -IOC -.042 -.365 -.050 ! 024.332 .367 .102 — 090 1U1.33» .344 . .105 -.101 -•369 —'011 3023.32» .396 .099 -.an -.3*1 -.or 3 3024.955 .34* .101 — 9» -.35» — OM; 1021.3*9 .31* .10* -.101 — 371 -*T9 3023*331 • 372 • too -.Q4S -.366 -.076 9126.390 • 741 .106 —0«9 — 361 —e S3

3021.344 .3*7 • 099 -.101 -•360 -.071 3024.20* -3f* .187 -.102 -.369 -.052 3B24.3U .357 .106 — 100 -.143 -.028 3024.210 • 3«I .103 -•091 -.362 -.«52 "024*3(5 10U.»l .3*1 .096 -.0*3 ••3*3 — 04» ' 3024.214 • 391 .107 -.103 -.371 -.039 3025.290 • 367 • W -.tri -.1*6 —•«•e •103 -.049 — 167 — 052 3024.217 .352 .103 '%%tf -.361 -.041 3029.294 .3»" .10» — 494 -•369 —0*5 3024.22* .351 .it* -.W -•3Ï* -••3» 3029.297 .102 -.097 -.370 — 057 30». 361 -.366 — 047 3024.224 ' .9*1 -•093 -.361 -.03*. 3029.300 • 3«* .103 -. 06* — 369 -.044 1(21.34* •39* • 097 -.090 — SP» .194 -.0*2 3*26.226 ..'4* .100 -.095 -.162 — B*S 31125. 303 • 364 .102 — 040 — or*» 3121.1t« .103 -.096 -.363 -.•374 3024.229 • 3*9 .104 -.iflO -.366 -.Of 9 3025.306 • 364 .106 — 101 — !62 301.370 !s*2 .101 —04» ••169 302*.232 • 3*0 • 101 -.095 —359 -,o«e 3025.310 .3*7 .101 -.046 -.357 — 051 3022.20* ml"* .106 -.102 -.170 — 048 3024.239 • 3"B .10c -••04 -.363 -.064 3125.313 .3*0 .10' -.100 -,16<. — 078

3022.203 • 394 .110 — 103 -.369 —Of 5 30Z4.2S9 .350 • 103 -.0*2 -.360 — 04" 3025.315 • J6t .09' — 04*. —165 — 069 3022.206 .102 -.194 -•168 -.•0*0 3024.24Z .3*1 .100 -.0*6 — 3FS -. B31' 3025.319 !s65 .101 -.100 3022.1» • ﻫ .101 — 103 — 0F6 3024.2*4 • 952 .100 -••42 -•355 -.052 1029.322 .364 .104 -.046 -.36*. -.037 302Z.213 •39,9 .104 — 102 — 371 -.0*3 2024.247 .373 • lOfc -.100 -.166 -.0*1 30?9.324 .36* • 09t — 0«» — 157 —'Of* 3021.217 .»• .101 —HO — 366 -.062 «024.2S1 • !«2 • It* -.101 -.367 -.053 3125.32* .3*4 • 101 — O'l 3022.214 • 39* •102 —049 -.367 —<050 3024.253 .390 .101 -.362 -.BPB 3029.331 .3*4 .102 -.040 — 363 -•3- 9 3022.122 .39* -.104 -•?7fc -.053 9026*257 • 34» .102 -,o*« -.36' -.'0« 0 3029.131 .101 -.096 -.35» — 050 1022.226 .3*4 !lO4 — too -.366 — 058 9124.260 .«• .104 -•049 -•16« -.Of 3029.337 .360 .09' -.040 -.35» — 032 1022.220 .3*3 • 099 -.09? — 3*6 — O** 3024.263 .VI .10? -.046 -,3*« —•fit 2 3025.361 • 36* .Ut -.097 -.3*3 -??•: 1122.231 .35* .10-. -.106 -.176 — Of" 9024.26* .391 • 100 -.092 -.1*6 -.031 3025.344 .3*1 .09? ••"'" — Ifa.

3022.231 .54*» .09» -.0*1 -.360 — 075 SK4.269 .394 .101 -•04S -.160 -.036 3029.36» .362 .103 — 09. -•371 —'0*-5 3IZ2.Z3* — 09* -.36* -.044 S024.172 .?»* .099 ••096 -.161 — 0*9 3025. !51 .3*3 .102 -.046 -.361 -.070 3U2.14» -100 -.35* — t>49 3024.m .300 .099 -.101 — 3611 -.054 3025.353 .102 -.101 -.367 -.071 • ?•« • 10* —IP" —n*T 3024.279 • 337 .102 -.09? -•161 -.or' 3025.'57 .111 .106 -.096 -.366 -.029 S02ll245 •*•* • 102 -.09" — 362 —ot* 30*4.2» .356 • 104 -.0*7 -.362 -.11 n. 1025.366 .366 • 09? -. tO2 -.164 — 041 SOK* 249 .3*1 .100 —too -.360 —053 9024. fU • 3*C .105 -.049 -.36* — 055 3025.313 .3f7 • 111 — 104 -.371 — OfO 1022.291 .3** .104 -.102 2024.21* • 340 .16* -.09» — 36* -.0*2 3026.14» .344 •10* -.1*1 -.36* —H*» 3022.25* .3*1) • 102 -.100 -.165 -.0*3 3024.291 .346 • 104 -.095 -.363 -.HI 3126.192 .34» .102 -.043 — 350 — "48 1023.239 .101 -.103 -.«9 — Ofl 3024.294 .34? .10' -.094 -.359 -.0*0 3021.iO7 • 3*9 .10» — OM —1*9 — 048 3073.247 .344 .101 -.143 -.360 — 04» 3026.29ft .132 .007 -.044 -.36Q — 060 1026.210 .349 .103 -.94* -.366 —'0*7

3023.24« .34* .ie? -.141 -.3*1 -.•tl 3B24.294 .352 .100 -.091 ••361 -.032 3021.2K .3*9 .101 — 044 —1C3 -««2 9423.253 -3M .mi -.018 -.35e 3024.303 • 31* .106 -.84» -•1*3 -.0>3 3026.2K .166 .103 -.046 — 399 — 052 3023«29» •'*" .106 —047 -.367 -.050 3024.306 • 3*9 .112 -.364 -.0" 3021.221 • 369 • 100 -.040 -.356 -.052 3023.26* • 394 .101 — 04*' -.3»* — 05= 3024.309 • 35P .107 -.o-.15«4 — Ï7P —-OFF. 3026.224 • 344 • 101 -.•0*1 302).262 .3*2 .106 -•>»•* —36e -.041 3024.312 .34a • llf -.1B4 -.371 -.041 3026.227 • 3*6 .107 -.1*2 — 371 -.033 3023.2»* .3*4 .131 -.04» -.16*: — C5«- 3B24.J15 .349 .107 -.0*1* -•36* -.0*9 ;o2t.:si • !44 .106 -.101 -.369 ••*<•<* 30?l.Z41 • 3*1 • lit -.041 — **F- — a*e 3624.31* .3*" .103 -.041V -.36» — 0** 3026.233 .3*» .104 -.103 -.371 — 049 3023.294 •nz .1DZ -.0*4 — 361 3024.!22 .343 .»<> -.093 -.262 -OF 3 3026.23» .104 -.105 -.370 — OF 2 3023*24* • 3*7 .106 -.044 — W" -.'87* 3024. 3Z*. .3"? • C99 -•Bin -•'50 -.D73 1021.240 • 34* .097 -.0*4 -.15* —-043 3023.24* •w* -IC? -.144 -.166 9024.327 .391 e 104 -,0«T -.36*. -.060 3026.243 .36» .193 —046 — 361' — OF*.

JO 2440000+ AV A(l'-3) AfB-U AIB-VI S(V-W) JD 2440000+ 4r- i(V-B> &(B-L) ars-w AflMVj ID 2440000+ &(V-B) MB-L) 4ffl-W MU-W)

3U6.24T • 3*0 .105 — 1B1 — I7Z -.'05" 3020.316 .3*0 .104 -.091 —360 • —1*0 3029.111 .352 • 103 —096 —363 -16* 3Sf«.2*4 .350 .104 -.103 -.169 —«611 3120.319 .327 .105 -.040 — 361 —055 3029.315 • 3!6 .102 -.099 . —366 —•62 :i24.z-s • 34« .103 -.110 -.30» -.«f? 3128. !22 • 360 .101 -.093 —359 -056 3029.917 .353 .HO -.091 -.362 —465 302e.25ft • 34P .049 — on6 -.3*6 -.049 3120.326 .347 .100 -.041 -.369 —1*9 3029.321 .356 .103 — 097 -.367 —1057 3026.260 •I4« .09a -.095 -.3*9 -.0*4 3026.320 .344 .093 -.093 —3*0 -.452 3029.326 •350 • lai — 096 -.361 —«5* 3126.(«J .344 • 102 -.103 -.372 -.0*0 3028.331 .344 .099 -.006 —*i63 -.059 3029.926 •I4f .0» -•097 — 390 —.57 1126.26* •94* .103 -.1*2 -.373 — OM 3020.934 • 347 .101 -.09» -.359 —«65 3029.329 .360 .lit -.101 —360 —•55 3126.269 -S*5 .101 -.o*a -.364 —459 3020.337 •34» .109 -.046 —365 —1*5 3029.333 .397 .101 -.1(3 — 363 —«69 3l2fj.272 .34» .102 -.147 -.360 — 0*0 3828.366 .342 • UI —041 — 361 — 011 3029.335 .354 • 100 — fl'IS —35a —•071 30241.274 .34* -099 — 04Z — 160 —an 3828.342 •368 .107 —099 —360 — 063 3029.336 .344 .191 —on —950 —'171

3B26.27* .3*? .106 -.946 -.052 3024.346 .3*6 .095 -.091 -.360 —1057 3829.342 .394 .116 -.005 -.364 — 095 302R.Z8O • 351 .103 -.D43 -.363 -.055 3020.349 .Ml .097 -.199 —371 — 052 3829.344 .352 .090 -.090 -.354 —'0*7 3026.2*3 .Jtfct .104 -.101 -.367 -.076 3020.392 .347 .094 •.•«6 —360 —«*7 3029.3*7 .3*5 .111 — 194 — 360 —16% 3026.2** .**« .10.1 -.80* -.16* — 0*7 3028.356 • 367 .101 -.191 — 366 —•05* 3030.203 .;«> .«06 -.097 —171 — 052 3026. 2» -2«P .tor -.4*6 — 3«9 -.atv* 3029.288 .350 .183 -.095 — 360 —1*0 3030.206 .362 .112 -.099 —370 —-061 3026.Z4Z .?*a .102 -.9*4 -.262 -.«5* 3029.203 .344 .111 -.096 —964 —•!• 3030.210 .366 .101 -.099 -.359 — 06* 3026.249 .344 • 1B6 -••4ft -.366 -.0*3 9029.100 .351 .112 -.040 -.365 —«6* 3030.213 • 366 .103 -.096 -.361 —157 3029.214 .35." .112 — 091 —364 —«60 3030.216 .357 .110 —194 — 361 -.05* 30261 «1 .3*7 .190 — 941 — 3*6 -.O** 1029.21» .351 .009 -.091 -.357 —1*9 3010.219 .360 .10" -.092 — 362 —067 302*.3CL •3*a .10* -.046 -.362 —tlF4 3029a 229 -.«76 3030.222 • 360 • 101 -.092 — 364 —1060

3026.307 ,S*F .102 -.0*3 -.360 -.434 3029.226 .394 .099 -.100 — 313 —469 3030.225 • 361 • 101 -.091 — 363 —16* 3026.310 .101 -.102 -.163 -.051» 3029.226 • 353 • 105 -.097 — 367 —1*7 3090.220 • 367 .103 -•092 — 366 — 044 3026.313 .?•- .10* -.09* -.363 -.062 3029.229 • 350 .101 -.096 — 361 —1051 3030.23« .!« .104 -.101 —369 —1060 «2*. M* •3*« .100 -.14P -.170 -.051 3129.212 .356 .111 -.11* -.361 —157 1030.236 •366 .100 -.093 -.362 — 06* 9026.314 • 351 .09» -•0*4 — 3M> — Ofc* 3029.295 .357 •lie -.103 — 361 —«tl 3030.236 • 366 .106 -.096 —366 -.1*0 302«.92J -3«2 .0** -.042 — J«9 — 03» 3029.230 .392 -.100 —366 —11** .365 .115 -.102 -.371 -.165 r .100 3030.119 )«*..?!' .3*1 • F9I> -.1*3 — 16C ->O 6 3029.262 .152 • 102 -.099 -.366 -.«•» ~ 30iO.142 .360 .100 -.106 -.3T3 —150 3326.327 • ?••• .fl«a -.141 — 366 -.Of 3029.24* .105 — 1W —366 -.IS* 3138.2*5 • 370 .110 — 097 -.369 — 056 1026.33Z • 346 • 09' -.100 -.171 -.048 3019.2*7 •35a .101 -.111 — 364 —«41 3630.246 .364 • 105 -.899 —370 —•0*0 3926.331 .3» 3 .10* -.096 -.3M -.'Of* 3029.249 .351 .099 -.090 — 352 —«49 3030.251 .365 .100 —097 -.366 —1*3

•026.317 ««•n • C9' -on -.758 --OF 2 3029.293 .9*1 • 090 -.0*2 —300 -.'«44 3030.293 • 363 .102 — 096 — 361 — 05T 3"Z6.74I> • 09a -.BID -.159 -.07ft 3029.296 .36» . .101 -.199 -.317 —«11 3030.296 .365 .105 -.100 -.372 —11*9 3026.344 .100 -.11*1 -.!*• -.•*!. 3029.250 .353 .104 -.099 —361 -441 3030.260 .36* .097 — 090 —359 —«51 3026.347 .3d .10* -.041. -.36«i -.0*0 3029.261 .3*9 .100 -.095 -.31* —1099 3030.263 • 363 .102 — 096 — 356 —«16 !i)26.!4» •in -.0»l -.16* -.or; 3029.269 • 3*6 .10* -.095 — 312 —«»» • 367 • 109 — 310 —«SI 1026.!!1 r 3030.265 -.100 • ?f • 102 — BOB — 5F'i — B«f> 3029.267 • 35* .105 -.191 —365 —1*1 .3» 3 .100 -•51 3024.35A 3030.206 • -.04i —I» • 394 • 103 -.0*0 -.!«0 — 046 3029.170 .351 .103 -.101 -.365 —194 3010.2T1 • 362 .109 — 193 -.377 —162 3B2X.777 • 101 -.'#.7 — Of 9 3029.273 .367 .102 —045 -.305 — 196 • 361 .107 -.090 —374 -.10*7 •Mr-••4]- 3030.276 .1C* — «ft 3029.27» .393 • 112 -.102 — 370 —•53 3030.277 .365 • 102 -.097 -.319 —0*0 3020.74* .?** .09c -.19» -•?*•» — B«* 3029.279 .354 .099 -.Hl — 159 —45* 3010.201 .363 .055 -.091 -.35* — 0*5

3020.217 .3*7 .09» -.044 -.S62 —Hff 3129.202 •35* .103 —09* — 111 —•50 3030.263 •368 .104 — 091 — 312 -.«41 3t20.2t-a .34*. •101 -.047 -.3*2 — 0*A 3829.28» • 353 .101 -.091 —36* -.«56 3030.206 • 364 .103 ..090 — 36* —in 31t*,t4? • 34* .133 -.044 -.367 — *3* 3021.218 .1*2 .100 -.141 — 111 —»3 1011.29* • 3S3 .019 -.197 — 919 —145 30Ï*.296 .**• .10' -.047 -»*•" -.e» 3021.991 .351 .lit -.091 — 360 —162 1030.192 .161 .109 —196 —166 -.«12 3fl20.2«4 • 344 .101 —S49 -.362 -.(15 3129.199 .152 .HF — 099 -.30* —«61 3010.29* • 362 .116 —093 -.369 —.57 303P.301 • 3*# .102 -.0*3 -.342 -.0*1 1029.29» .994 -.111 — 301 —190 — 916 -.((44 .11* —157 3130.299 •aro .115 —111 T020.203 .m .106 -.36" -.023 1129.294 .995 -.094 — 911 — 113 . 1130.301 .3(6 .117 — OM — 371 -6*9 !020.31» -?•• .105 ".147 -.171 —on 1124.302 .1*3 .019 -.012 —359 — 919 -J4* .104 -.0*4 — 044 1010.104 .0*7 .109 -on —112 IIS*.J10 -.370 • 350 -.197 -.36* — 162 — 04» —111 .11- 3029.111 .113 3010.309 .166 .102 —«It 30211.311 • 111 ••103 -.373 •."•*• 1029.910 .942 -UI -.163 —.11 1010.M1 .1*1 .110 —111 —9» 92

Lightcurve of HD 153919 195

Table 1 (continued)

JD 2440000+ IUV-B) MB-L)UB-W 4/lMW JD 2440000+ AV UV-B) MB-L> &(B-U) w-m JD 2440000+ AV A(V-B) MB-L)&(B-U) A(V-W)

9030.31* • 9*9 .119 — 009 —959 -.10*0 3031.321 .33* .109 -.01* -.965 —«35 3039.317 .3«0 .195 — 102 — 367 —«*6 3131.333 .3*7 .090 -.011 -.353 -.06* 1033.3B8 .360 .103 -.092 -.367 -.030 1110.1» • 3U .019 -.002 -.39» -.IV» 3011.136 .3*1 .110 -.095 -.359 -.«73 3033-313 .399 • 101 -.093 -.362" -.OF* 3010.129 .10". -.WC -.366 — 050 3031.138 .9*0 .10* -.090 —35T ->06ii 3«33.319 • 111 -.S7n -.O¥C 9090.92» .9»* .1(1 —017 — 371 — (37 soto.ttt .3»» .1*1 — 090 -.170 -'0*9 3031.3*5 .3*5 • UI -.on — 17* —«'! 9033.322 .399 .103 -•092 -.357 -.0**) •111.132 .170 .10* —MS — 169 3011.3't .310 .10» -.091 -.306 -.on 3033.326 .399 • 096 -.095 -.151 -. 0*fl 101B.139 .9» .011 -.091 —151 —urn 3032.2" .39* .10* — 157 -.•0*5 3133.331 • 396 .10* — 1*10 -.360 -.DM 3030.33» .371 .110 —09* —367 — 029 3012.200 .312 .10* -.11* -965 -.0*2 1033.3» .39* .097 -.09S -o>352 -.0*6 3(3(.S*C .371 • 096 -.010 -.366 — 032 3032.203 .357 .101 — 09* -•365 — 0** 3033.339 •3*te .097 -.Q4a -.151 -.Oft

1030.3*; •3»» .1*1 -.07* —360 —«*6 3032.206 • 379 .102 — 095 — 365 — 0** 3033.338 • 3*9 .099 -.090 -.156 -.057 3010.3*0 .3?» .1(7 -.09! -.370 -0*7 3032.2*0 .952 .10* -.013 -.162 -•«SI 9*33.9*1 .3*7 .117 -.091 -.359 -.03? 1031.203 .3*3 .106 -.100 -.371 —'0*2 3032.991 • 3»* .099 —••» -.353 -.0*7 9034«Z5B • 393 .106 -.092 -.160 -.029 3(31.(1» .3*2 .1(9 -.093 — 361 -.«56 9(32.(17 .37* .((9 -.(91 -361 — 0*2 3031.(1» •9*5 .105 — ((5 — 366 — 01T 3032.2m .397 .101 — 005 -.963 — 036 SOI*.296 .362 .109 -.096 -.35* -.062 3(31.21» •3*» .102 —019 —399 —'0*9 3032.303 .1(3 -.092 — 966 —1*3 JO3*.358 .397 .10* -.042 -.15* -.Of 9 3031.220 .137 .UI —on -.390 — 051 3032.306 • 35* .101 — 013 — 3«l —052 3034.262 •367 • 112 -.10* -.167 -.'1*0 3011.22* • 33* .1*2 — OU -.361 —«*1 SOU. 910 .39* .1(9 -.00* — 357 — 0*1 9034.26*1 .39*. .107 -.098 -.373 -.Ob 3 1(11.2» •391 .1*9 -.017 — 36* —056 9032.313 • 39* .11C —on —36* —«o .3*3 • 106 -.09* -.366 -.iOf 2 1611.291 .3*» .10! -.893 —393 —«*0 303(.31* • 317 • 10* -.095 — 963 —1070 3834.269 • 3S7 .105 -.091 -.356 -.O3t>

3(11.23» .397 .091 -.09» -•351 —(56 3632.M9. .101 -.351 ' -.«55 3B34.27Ï .5*5 .107 -.092 -.171 -.022 3031.2» .911 .1(7 —097 -.162 —450 3032.323 .„, .191 099 -.372 -.«f3 303b.2T6 • SB* .102 -.096 -.370 -.03a 3031.2*9 .19* .KT —(16 —36* — (•? 90U.926 .39* .10* • 095 —366 —0*0 3034.Z69 .382 .C9r -.097 -.169 ..flic 3031. 2M .99» .10* —on -.390 — 0*9 3032.329 .3*0 .107 011 -.161 -.036 803*.. 292 • 3*f .101 -.01? -.!« -.0*8 1031.2*9 .3*8 •u» —011 —167 -.05* 1032.332 .35» .IC- 0*1 —J6t -0*3 3834.299 .376 • 099 -.Or)*. -.361 -.C23 9031.152 •991 .1*1 —on -.361 3012.331 • 3*0 .10f -.090 -.360 — 011 9034.29*> • 339 • 112 -.11 «7 -.362 -.'035 1131.219 .3*2 •u» -.0*1 —36* -.036" -.036 3011.300 • 3«7 ,10 F -.09k -.3*6 -.0*1 1031.(9* .3*3 .1(2 —on — 357 — 037 3032.3>2 .3*3 .011 -.092 — 361 — 0S7 3S3V.311 .966 .101 -.09* -.36? -.0*6 K11.2U .3»» .1(6 -.0*1 -.362 — 0** 3032.3*9 .3*2 .019 -.08* — 35* -061 3036.913 .377 .090 -.086 -.!« -.072 1091.161 .3*3 .11» —09» -.961 —IX 3013.»! «*•• .113 -.01» — 17C -.0". 303*1.316 • 366 .137 -.101 -.3T0 -.067

3031.201 .9*2 .107 -.on —366 —056 3033.2** .39* .103 -.101 - —370 —oer I836.!2e •3«7 .103 -.090 -.362 -.OFD — 067 JB34.322 • 3«C .tor -•093 -•369 -.OF I 3031.(7* •991 .113 —(98 —3f7 3033.251 • 35* .102 — 091 — 3*8 -.«5* 313**. 3» .3*0 • 106 -.0»* -.356 -.062 1131.2» .3*5 .1*2 —(93 —316 —«57 3033.2*3 • 10F -.016 — 361 — OKI 383*. 329 • SIP .110 -.DH2 -.351 -.072 (031.201 .10» — 017 —351 —«53 3033.257 .310 .105 -.090 — 362 -.051 3636.332 .3*3 .121 -.113 -.IBS -.03* •111.189 .3*2 .1(3 —09» —36» —'003 3033.260 .35* .107 — 101 -•361 — 0*3 9834.335 • 3»« .107 -.0H9 -.356 -.0E9 1011.20* .1*1 .1*3 —on —36» —'0*1 3033.269 .3*o .1(3 — 096 — 362 — OM 3034.334 • 343 .096 -.076 -.356 -.051 1011.210 •15* .1(0 —Hl -.351 -.0*5 3033.266 .3*9 .10? -.996 — 3»3 — or« SB39.199 .35* .103 -.10* -.362 -.0*» im.m .9*2 .1*2 —093 -.357 —039 3013.260 • 357 • 10* —(91 '.362 — 065 9B39.2B3 .390 .10? -.10* -.16C -.'0*9 1U1.I57 .9** .1*5 —(15 -.3» —.031 3013.172 • ?•* .«•• -.016 -165 -.*•? 3899.208 • 3*?fl .103 -.316 -.356 -.05?

3011.219 •9** .1*1 — 09» —969 — 0*5 3013.275 .J»« .100 -.095 — 367 -.01» 3(31.1(1 .1»* .1** -.(»» —157 —*»1 3033.27* • MI .115 -.013 -.36* -03« 3039.222 • 39k .110 -.103 -.369 -.0*9 lai.in .919 .1*5 -.10» — 3F6 —'05! 3033.191 .102 -.095 —161 •039.229 .3*3 .10* -.095 -.159 ini.it* • 9*9 .090 -.090 — 309 -.«33 3013.28* .!"• .01? —0«3 —3?7 -•'Of 6 1011.111 • 9*9 .1*5 —on —367 — •32 3033.207 .3*9 .106 -.093 -.362 — OM 3039.231 • 3»fi .106 -.122 -.3RT -.0«55 1*91.919 • S3t .11» -.153 e —Hl — 370 3033.290 .3*" .010 — 091 -.362 — 0f2 3B3S.2S9 .3-1 .09? -•OM -.! 2 -.0*9 •ai.iiT .3*6 .1*5 — 18» — 302 —'0*3 3031.213 • 3*5 .098 -.988 -.159 -.0*0 3B3S.23I .3«* •IDE -.09". -•^66 -.Of 3(11.12* •9»* .1*1 —0(7 — 957 — 063 3019.217 •SS! .100 -.090 -.166 3939.2U •sw .098 -.093 -.156 -.0S6 K91.9M .3*» .1** —(93 — 361 — •59 3013.219 .31* .01* -.009 -.35* -.0*6 9835.2*4 • 399 .102 -.09* -.363 -.860 1(91.3» .3*5 .UI —191 —963 —«33 3033.302 .355 .010 -.089 — 355 — 050 1035.2*7 .35* • 103 -.090 -.363 -.'0«a

JD 2440000+ &(V-B> UB-U i(B-U) btu-w) JD 2440000+ AV AfK-flJ A(B-U A(B-W A(V-W) 3(39.2» .9*2 .101 -.093 -.359 — 0*7 40*1.2S2 .J*7 .104 -.OtJS -.357 -.011 3015.99! .1*1 .101 -.1.2 -.351 -fO*l 3(,**.»5 .351 .102 -.o.B7 -.36* -.U>2 3037.20* .111 — 110 -.3» — 056 Jflfcl.Za» .JE2 .110 -.091. -,J59 -.0»7 3017.203 • W * .10' —*•» -.16* —oe* JB*1.Z92 .J53 .185 -.080 -.266 -.022 3017.20» .9» .10? -.193 ..371 -•«50 101».Zq* . J50 .1195 -.045 -.369 -. U6 .3»7 .107 -.163 — 051 JD*1.Z9? .316 .J*J5 -...44 -.259 -*C5x 3017.21mr. a*i .3*8 • 102 — 100 — 3F3 -.09e J0*1.5dl .JtJ ,d»7 -.093 -.2t7 -,)h3 3037.21» .991 — 09» — 361 -.0*9 J0*1.3B* .J55 .18* -.il»*> -.351 -.035 3037.220 .35* .101 — Q9ft —355 -.0** J0»l.i07 .358 .04* -.Old -,ilb -.057 38*0.206 .3*2 • 107 — 0"» —362 — 0*6 30*1.3111 .3*1 .it! -.0»9 -.161 -..2b

30W.210 .«5* .103 —993 -.355 — 0«2 30*1.3U .Str .181 -.085 -.366 ->OZb 30*».21» .105 -.096 —36ft -.«31 304Z.Z05 • 360 • IBB -.054 -• 366 -• 0%*> 3S*».21* .393 .102 -.095 -.362 — 055 lakZ.ZH .J6Q. .107 -.U9<( -.3» -.OJb 1M0.21* .393 .10* -.015 -.351 -.061 llïi.ill .US .G9« -.095 -.360 -.05* 30M.222 .351 • 11? -.09* —*oe -.02* JOiiZ.ZlS . iEZ .094 *.DS7 -.355 -.063 30*0.22« .7*9 • 105 -.189 —•03 -.0*6 3042.218 .J61 .183 -.DBS -.357 -.Q"»9 30*0.220 .3*F .101 —091 — 359 — 05» 30*2.

3060.242 .311 .101 -.0*1 -.161 —'03* 5i CBb -.J58 -.Mb 3060.2** .397 .101 -.011 — 175 -.0** J0-2.2J8 S* .099 OBb -.360 -.023 9(*(.2*> .10' — DB! — 17* -.016 JOU. 20b 57 .1*5 - 100 -.366 -.067 30*0.391 .391 .100 — 017 -.361 ..070 J0*J.ZlD . 5t> »Q9(* 04* -.36* 30*0.299 .312 .106 — 111 -.3** -.'051 3Q1J.4Ü* • S3 • lit* «.89 -.361 -.G** 30*0.296 • 392 .103 — 103 -.369 — 0*0 5b .103 - 009 -.36* -.0*0 10*0.251 • 3*» • 099 — 090 —353 -.0*5 30«1.220 58 .102 - (193 -.36* -.0*1 30*0.fe2 .101 -.090 —156 — 0*" J0M.22J .'. Si .101 au -.359 -.0*0 HM .Iff .3*1 .102 -.016 —365 -.017 55 .1BÜ 38*8.261 .310 • 1(1 -.363 -.0*3 15Z .10. t>9* -.399 -.053

10M.272 .«e • 10C -.096 — Ml -.'051 3fl*i3.23J . 55 .18» - 042 -.26- -.0»t 30*0.27* if «J* 235 . E6 •i«7 091 -.«0 30*0.27» • 3*1 .102 -.092 -.360 — 0*8 3060.201 .3*' .106 -.100 —370 — 03* S3 .101 097 -.'MB -.6*1 30U.201 .3*1 .011 -.091 — 36C -.0** .101 -.090 -.3(0 -.129 30*0.20* • 3*5 .112 — 091 -.361 — 031 30*0.211 .10* — 09» — 360 — OF' 3061.21* • 31C • UI -.091 -.35? —'162 J011.2Z2 .3C9 .103 -.100 -.163 -.066 30*0.197 .9*1 .101 — 081 -.0*2 3011.221 .366 .102 — g*1 -.360 ' —Oio

JDU.227 .1C7 .102 -.016 -.367 -.058 'HO.183 .3** .1(3 —on — 395 —«Jl 3011.230 .3» .100 —O» -.365 -.6.7 90*0.300 .312 .010 -.1(7 — 39» — 0*1 3011.211 .112 .019 -.006 -.J3t -.054 11*1.3(9 • 392 .(15 -.081 — 393 -.(ir 1011.21» .j?i ,U5 -..« -.lts ..t*7 UU.tU • 112 .11" — 812 — 35» -.(32 31*11.239 *ifj .106 —U?« -.901 -.052 IK».315 •95* .1*1 —(99 — 361 —-9» 3011.212 .1(2 .10* -.«I —968 -.(63 IMl.tTl •9"2 • 1*9 —OK — 3»» —(** 3011.21* .ilt .lit -.«9* '—|»6 -.0*2 3t*t.2T» .950 • UI -.((* —1*9 -.(*» ((6t.tr* .99. .13* — 1(0 — 13» —07* im.tn .9*9 .(«3 —M» — 903 — 010 93

196 J.A. van Paradijs, G. Hammerschlag-Hensberge and E.J. Zuiderwijk

-o.z 0.0 0.2 0.4 0.6 0.8 1.0 1.2 XRflY PHflSE

Figure 1 K-light curve of HD 153919. The zero-point shifts for the different observations are given below. The symbols denote observations by the different observers, viz.:

-0.2 0.0 0.2 O.C 0.6 0.8 1.0

Figure 2 The average V lightcurve of HD 153919. The points are average values in phase intervals of 0.1. The error bars denote the standard deviation per observed point. 94

Lightcurve of HD 153919 197

60° 62° 64° A

_ J .105 * .

AtB- U ...... _ _090

_095 Sjij*!;'-,-!»--1--

-.100 A(B-U) -.360 -/

-.365

_.370 AIU-W)

_.050 .01 - i.ti i -.055 Figure 4 Dependence of the light amplitude A on Jl and eclipse _O60 duration for a fixed value of q=0.05. The horizontal lines indicate - ' • the observed values of Aaa and Aos. The calculated amplitudes -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Ao j and Aoo are shown for eclipse durations 8,=50° + 12°. Phase An=0.0 denotes the value of Q for which the Roche lobe is Figure 3 Average colour indices in the Walraven system are filled.- At the top of the figure the inclination scale corresponding plotted against phase. The vertical scale is in '"log units. The to the curves for 9.=50° is shown. The two shaded areas show points arc average values in phase intervals-of 0.1. The error bars the error boxes- in which the observed and calculated values of denote the mean error of ihe distribution of the individual points. Aos and Aoo agree. These parameter ranges do not overlap.

0B2

0.01 °v • i - \\ vy /% \ aoo - \>^-óy -7 Vv. . 0.01 7 \ \ o / 0.02 / ^- o

0.03

t 1 I 1 1 t -0.2 00 0.2 0.4 0.6 0.8 1.0 phase Figure 5 Lightcurve of HD I539I9. Open circles denote the observed mean light curve. The full line is the calculated light curve 12 which fits the .amplitude -40, for ihe following parameters:

Astron. & Astrophys. 49, 321—323 (1976)

IF Letter to the Editor Photometric Variations of Wray 977 (3U 1223-62?)

G. Hammerschlag:Hensberge, E. J. Zuiderwijk and E. P. J. van den Heuvel* Astronomical Institute, University of Amsterdam, the Netherlands and European Southern Observatory, La Silla, Chile H. Hensberge

Astrophysical Institute, Vrije Universiteit, Brussels, Belgium and European Southern Observatory, La Silla, Chile

Received December 17,1975 Summary, uvby—photometric observations are wave with a period of 23+1 days. The A 1 supergiant presented or candidate stars for the X-ray source SAO 251905 inside the error box shows no significant 3 U 1223-62. The early B supergiant Wray 977 shows variations. light variations with an amplitude of about 0.06 magni- tudes in v, b and y. The variations resemble a double- Key words: X-ray binaries—uvby photometry

1. Introduction The 1 Ith-magnitude early B-supergiant Wray 977 was for HD 107944 (Q 60s. Each observation sequence was proposed by Vidal' (1973a) to be the optical counter- performed as follows: C-P1-P2-P1-C-P1-P2-P1-C. part of the X-ray source 3 U 1223-62. Photometric Table 1 gives the mean values for each sequence for the variations with an amplitude of about 0™l on a time brightness measurement of the star minus comparison scale of days were reported by van Genderen (1973), star. The errors (m.e.) in Table 1 denote the Itr-error Vidal (1973b). Mauder (1974) and Bord et al. (1975). levels of the sequence. A possible periodicity of 13.5 days was mentioned by We did not tabulate cl-values for Wray 977 as the errors Mauder (1974) and of 9 days by Bord et al. (1975). in the i/-channel were too large to enable detection of The A 1 Ha emission star SAO 251905, close to Wray periodic variations. This is due to the weakness of the 977 (at a distance of 1!5) is also an interesting object, and star in the ultra-violet produced by its large interstellar inside the 3rd UHURU 90%-conftdence error box. reddening [i.e.: E{B-V)it 1™8, Vidal (1973b), see be- For these reasons, we include these two stars in our low]. program of photometry of Southern X-ray Sources Considerable zero-point variations during the night performed at the European Southern Observatory, showed up at the reduction. This is probably due to the La Silla. Chile. absence of a cooling system for the photometer. For the differential magnitudes and colours, however, the errors induced by zero-point variations are less than 2. The Observations 0!"001 and can be neglected compared to the observa- The observations were made with the Strömgren tional errors (see Table 1: columns labelled m.e.). On the uvby-four channel photometer at the 50-cm reflecting other hand, these zero-point changes make an accurate Danish telescope. The photometer has a pulse counting transformation to the standard system rather difficult. system and is described by Gronbech el al. (1975). The For these reasons we only give here the colour differences stars were observed by E.J.Z. and G.H.-H. during the in the instrumental system, which enable one to ac- periods Feb. 16-March 14. May 27-June 8 and on curately establish the variations of the candidate stars. July 25. 1975. Figure 1 shows the differential magnitudes Av, Ab and We measured the differential luminosity of our two Ay for Wray 977 in the instrumental system. Figure 2 program stars with respect to the comparison star shows the same for SAO 251905. HD 107944. The integration time for one observation of In order to be able to transform some of the colours Wray 977 (P I) was 196 s, for SAO 251905 (P 2) 98 s and towards the standard uvby system, H.H. observed Wray 977 five times during three nights in January * Also at the Asljophysiciil Institute. Vrije Universiteit. Brussels 1975 on the ESO 50 cm telescope with a cooled ESO Belgium. photometer. These observations yielded the following 96

322 Photometry of Wray 977

Table 1. Journal of observations

HJD Wray 977-HD 107944 SAO 25I905-HD 107944 2442000+ Ay m.e. A(b-y) m.e. Ami m.e. Ay m.e. A(b-y) m.e. Ami m.e. Acl • m.e.

460.77 1449 .006 .814 .006 —.443 ,022 1.547 .013 —.316 ,012 — 086 .020 —.548 .015 461.76 2.475 .005 ,831 .006 —.462 .016 1.546 .008 —.310 .007 —.095 ,006 —.545 .010 462.76 2.496 .007 .814 .005 —.432 .014 1.546 .010 —.304 .013 —.107 .023 —.535 .019 463.76 1511 .006 .823 .004 —.472 .007 1.552 .006 —.314 .003 —.094 .011 —.552 ,010 464.77 2.495 .004 .820 .005 —.459 .014 1.553 .004 —.318 .002 —.095 .008 —.534 .011 465.78 2.496 .007 .825 .010 —.459 .018 1.550 ,003 —.312 .001 —.101 .007 —.535 .008 466.76 1465 .004 .819 .004 —.407 .030 1.534 .007 —.305 .006 —.110 .005 —.530 .006 467.76 2.448 .008 .813 .010 —.430 .026 1.536 .003 JQg .003 —.100 .007 —.549 .010 468.77 2.451 .008 .816 .010 —.449 .021 1.531 .007 —.307 ,009 —.100 .014 —.575 .025 469.78 2.484 .005 .807 .011 —.451 .023 1.537 .009 —.304 .002 —.115 .004 —.532 .012 470.77 1492 .005 .819 .009 —.485 .010 1.533 .019 —.298 .022 —.117 .020 —.538 .005 471.80 2.455 .008 .849 .010 —.495 ,021 1.538 .004 —.312 .004 —.096 .007 —.540 .018 472.76 1476 .011 .835 .013 —.483 .016 1.548 .004 —.316 .007 —.090 .010 —.527 .028 473.77 1473 .010 .835 .018 —.457 .026 1.543 .004 —.303 .002 —.106 .003 —.533 .010 474.79 1470 .003 .829. .005 —.485 .015 1.537 .008 —.296 .008 —.123 .013 —.519 .008 475.77 2.493 .005 .809 .010 —.434 .012 1.542 .002 —.303 .005 —.106 .006 —.532 .011 479.79 1446 .003 .816 .006 —.467 .009 1.537 .005 —.311 .003 —.105 .008 —.526 .012 480.79 1457 .004 .809 .008 —.447 .020 1.541 .003 —.318 .006 —.093 .008 —.532 .012 481.80 2.459 .007 .827 .004 —.462 .023 1.531 .010 —.306 ,005 —.100 .004 —.545 .007 482.79 1492 .005 .802 .005 —.439 .009 1.539 .008 —.319 .006 —.087 .007. —.555 .019 484.79 1502 .005 .804 .0G'/ —.431 .017 1.529 .004 —.301 .005 —.113 .007 —.539 .005 485.81 1490 .006 .816 .009 —.469 .015 1.537 .008 —.303 .011 —.107 .018 —.537 .017 486.80 1500 .003 .819 .009 —.461 .018 1.541 .004 —.309 .005 —.101 .009 —.538 .012 560.54 1491 .003 .808 .011 —.486 .023 1.530 .014 —.310 .011 —.084 .010 —.562 .014 560.57 2.483 .003 .819 .017 —.437 .007 1.541 .002 —.313 .002 —.100 .012 —.532 .036 566.57 2.535 .004 .807 .009 —.437 .026 1.536 .002 —.307 .002 —.103 .002 —.516 .010 567.59 1539 .007 .804 .005 —.431 .012 1.530 .013 —.313 .013 —.090 .020 —.554 .006 569.54 2.512 .004 .825 .007 —.469 .017 1.530 .006 —.301 .011 —.112 .015 —.543 .015 570.54 1457 .004 .833 .011 —.476 .011 1.535 .003 —.305 .003 —.109 .003 —.533 .009 571.52 1454 .003 .824 .002 —.454 .012 1.534 .003 —.298 .002 —.108 .001 —.553 .008 572.51 1463 .005 .821 .005 ^.478 .012 1.538 .002 —.304 .005 —.105 .006 ^.552 .002 619.52 2.482 .008 .788 .010 —.423 .015 1.531 .008 —.310 .004 —.103 .006 —.531 .016

~~» 1 1 Wray 977 - HO Idtau ' «y SAO 251905-HD 1079*1 •\ A • • 151 - 250 • V '• • 252 122 251 U< 1b AV 318 11 131 • 93 "• "••'• " • • DO \ A ./"\ 1 " • 131 at -16 -H • • « • Av • • • • • • • • • " U2 -.12 • « • 2U :\. /'•". •/ \ • -.10 • • JD 2U2000 • Fig. 1 u, B, b and y observations of SAO 251905, in the instrumental system. No significant variations seem present «5 ('0 *75

G. Hammerschlag-Hensberge et al. 323

3. Results and Discussion Wray 977 is a B 1.5 la star whereas HD 77581 is a B 0.5 Ib star. Typical radii for such stars—with masses Wray 977 shows definite magnitude changes on a time around 25 Mo—are ~45 and 30 RG, respectively scale of days. Our observations in the v, b and y channels [adopting effective temperatures of 23000 and 27500 K, suggest a periodic variation with a double wave in a respectively, cf. Lamers and Snijders (1975)]; assuming period of 21—23 days. The double wave behaviour is both stars to be almost filling their Roche lobes, and to suggested by comparison with light curves of other have companions of about 1-2 MQ, one finds that X-ray binaries, e.g. HD 77581= Vela X-l (Jones and indeed binary periods of about 2Ü and 10 days are to Liller, 1973b), HD 153919=3 U 1700-37 (Jones and be expected, respectively. So, the spectral classification Liller, 1973a; Penny et al., 1973), HDE 226868= of Wray 977 seems in reasonable agreement with the CygX-1 (Lester et al., 1973). Both in van Genderen's binary period derived from our observations, adopting (1973) and our observations one of the two minima per the photometric curve to be double-peaked. cycle is quite outspoken, while the other one is less well defined and subject to large and irregular variability. Acknowledgements. E. J. Zuiderwijk acknowledges support by the This behaviour is very similar to that of the lightcurves Netherlands Organisation for the Advancement of Pure Research of HD 77581 (Vela X-l) and HD 153919 (3 U (Z.W.O.). H. Hensberge acknowledges support by the National 1700-37). Foundation of Collective Fundamental Research of Belgium (FKFO) under No. 10303. When we combine our observations with those of van Genderen (1973), which were made during the period July-August, 1973 when he very frequently observed References the star, a period of around 23+1 days appears to give a good fit to the observations. Remarkable is that the Bord,D.-J., Mook,D.E., Petro,L., Hiltner.W.A. 1975, Workshop papers for a symposium on X-ray binaries, Ed. Y. Kondo and mean intensity of the star has changed by 0i"03 from E. Boldt, GSFC, Greenbelt, Maryland, preprint X-66O-75-285, the period February-March to the period May-June, p. 363 1975. These variations are intrinsic to the star, as such a Crawford, D. L. 1975, Publ. Aslron. Soc. Pacific 87,481 variation is not observed for SAO 251905. This might Crawford, D.L., Barnes,J.V. 1970, Astron. J. 75,978 be due to changes in the amount of gas around the Genderen, A. M. van 1973, Inf. Bull. Var. Stars, No. 856 Granbech, B, Olsen, E. H., Strömgren, B. 1975, Astron. & Astrophys. B star; similar changes have also been found in other Suppl. Series (in press) B-supergiants (Sterken, 1976). A more extended se- Jones,C Liller,W. 1973a, Astrophys. J. 184, L65 quence of observations, covering several periods, how- Jones,C, Liller,W. 1973b, Astrophys. J. 184, L121 ever, is needed to confirm our results. Lamers,H.J.G.L.M., Snijders,M.A.J. 1975, Astron. & Astrophys. The colour difference A(b-y) as a function of phase 41,259 Lester.D.F., Nolt,LG, Radostitz,J.V. 1973, Nature Phys. Sci. was studied and no colour variation was found. The 241,125 scatter o(A(b-y))= PHH2 (one measurement) is not Mauder, H. 1974,1.A.U. Circ. No. 2673 larger than that expected from photon statistics. Penny,A.J, Olowin,R.P., Penfold,J.E., Warren,P.R. 1973, Monthly As Fig. 2 shows, SAO 251905 has no significant magni- Notices Roy: Astron. Soc. 163, 7p tude or colour changes (i.e. not larger than ±0!n01 in Rappaport,S., McClintocM. 1975,1.A.U. Circ. No. 2833 Sterken,C. 1976, Astron. & Astrophys. (in preparation) the v, b and y channels). Vidal,N. V. 1973a, I.A.U. Circ. No. 2569 Our results imply that the B 1.5 supergiant Wray 977 VidaLN.V.. 1973b, Astrophys. J. 186, L81 seems to be the best optical candidate for the X-ray White,N.E, Huckle,H.E., Mason,K.O., Charles, P. A_ Pollard,G., source 3 U 1223-62 More photometric observations Culhane,J. L, Sanford, P.W. 1975,1.A.U. Cire. No. 2870 and high dispersion spectroscopy are highly needed. Recently a short periodic variability in the X-ray G. Hammerschlag-Hensberge intensity of 3 U1223-62 of 11.64 min was reported by E. J. Zuiderwijk White et al (1975). This makes this system quits similar E. P. J. van den Heuvel to that of Vela X-l, which also consists of an early-type Astronomical Institute supergiant (HD 77581) and a slow (283 s) pulsar (cf. University of Amsterdam Rappaport and McClintock, 1975) with an orbital Roetersstraat 15 Amsterdam, The Netherlands period of 8.96 days. The rather long binary period of Wray 977 seems in fair agreement with the fact that H. Hensberge this supergiant is of a somewhat later type than the Astrophysical Institute companion of Vela X-l: according to Vidal's classifi- Vrije Universiteit Brussel cation, and confirmed by one spectrum taken by us, A. Buyllaan 105 B-1050 Brussels, Belgium 98

ASTRONOMY Astron. Astrophys. 61, L19—L22 (1977) AND ASTROPHYSICS

1G

Letter to the Editor Evidence for an Accretion Disk in SMCX-1

Jan van Paradijs and Ed Zuiderwijk Astronomical Institute, University of Amsterdam, Roetersstraat 15, 1004 Amsterdam, The Netherlands

Received July 20, 1977

Summary et al. (1977) on spectroscopie grounds, that An analysis of five-colour photometric ob- Roche-lobe overflow is the dominant mode of mass servations of Sk 160 (SMC X-l) gives evidence for transfer in SMC X-l. the existence of an accretion disk around the neutron star in this system. This supports the 2. Theoretical Light Curves suggestion by Hutchings et al. (I977) that the In order to interpret the observations, we mass transfer in SMC X-l occurs through Roche- calculated light curves for Sk 160, using a pre- lobe overflow. viously described light curve synthesis programme Key words: X-ray binaries - Roche-lobe overflow (Zuiderwijk et al., 1977). As input data for this programme we use the mass ratio q = Mx/M„p£, the 1. Introduction projected semi-major axis of the orbit a sin i = a^ sin i (1 + q), the luminosities L^ andL t of The binary X-ray source SMC X-l was identi- the two components, the inclination i of the or- fied with the early-type supergiant Sk 160 by bital plane and the potential parameter B (Kopal, Webster et al. (1972) and Liller (1972). The X- 1959) which determines the degree of filling by ray emission is pulsed (Lucke et al., 1976) and the primary of its critical lobe. the radial velocity curve of the X-ray source has The adopted ranges of values for these para- been determined by Primini.et al. (I976). The op- meters are given in table 1. The values for q and tical radial velocity variations were obtained by a^ sin i have been adopted from Hutchings et al. Hutchings ct al. (1977), who found masses of 0.95 (1977) and Primini et al. (1976). Following the and 15.1 MQ for the compact object and the early- results of Hutchings et al. (1977) we assumed type supergiant, respectively. that the primary co-rotates with the orbital angu- We discuss the light curves of Sk 160 in the lar velocity and fills its Roche lobe. However, Walraven VBLUW five-colour system, as obtained by in order to estimate how critical the latter one of us (JvP). The observations were made with assumption is to our results we allowed the prima- the 90 cm telescope at the Leiden Southern Sta- ry also to underfill its Roche lobe by 10 percent tion, during 26 nights in 1976. A detailed des- (in radius). cription of the observations is given elsewhere (van Paradijs, 1977). The average light curves Table 1. Parameters adopted for SMC X-l are shown in figure 1. Earlier (but less extensi- ve) photoelectric observations of Sk 160 show the "best value" range same main characteristics as our data.(van Gende- ren, 1974, 1977; Petro et al. 1975; Penfold et 0.063 .055-0.070 al., 1975; Hiltner and Petro, 1977) q 0 a„sin i 1.61 10lz cm On cursory inspection the light curves show 5.60 1038 4.0 1038-8 .0 ,038 erg/s the type of variation expected for a tidally dis- 38 39 L 8.80 ,O38 5.0 10 -l .4 1O erg/s torted early-type star, heated on one side by opt X-rays. A detailed study of the light curve shows, however, that it cannot be understood from ellip- The inclination was derived from the X-ray eclip- soidal variations arid X-ray heating alone. The se duration, which, within the framework of Roche major discrepancy is that the observed heating geometry, is a function of q, i and SI. The UHURU effect is much smaller than expected from the ob- and SAS-3 observations of the eclipse durations served optical and X-ray fluxes and the separation agree very well, and give an average of 0.605 - of the components (Whelan and Wickramasinghe, 0.01 days (Schreier et al., 1972; Primini et al., 1976; Milgrom and Avni, 1977). We show that this 1976). The X-ray luminosity was adopted from the discrepancy can be consistently described by the data of Giacconi et al. (1974) and Ulmer et al. presence of an accretion disk in SMC X-I. This (1972), taking for the distance of the source supports the suggestion put forward by Hutchings 65 kpc (Gascoigne, 1974). The optical luminosity was derived from the observed visual magnitude Send offprint requests to: F. Combes (UBV-Systen) V = 13.25 mag., an interstellar red- 99

L20 J. van Paradijs and E. Zuiderwijk: Accretion Disk in SMC X-l J. v

I i 1 1 r penetrating the star are converted into internal ths energy far below the stellar photosphere. This of energy causes an increase of the local effective Cot 10 temperature and ultimately escapes as radiation. et AV Following'the results of Milgrom and Salpeter. bir (1975) we adopted for the albedo the value 0.35. wit It is not clear, a priori, that this deep 00 heating approximation is justified, as Milgrom 4. H 1 1 1 1 1- and Salpeter (1975) have shown that in systems resembling SMC X-l a large temperature inversion 10 occurs in the higher layers of the stellar atmos- phere, due to the absorption of the soft X-rays. can In our case, however, the approximation can be but justified as follows: For the system parameters ste 00 (table 1) the ratio Fx/Fopt 0 is about 1.0 for an cur 1 1 1- H 1- average heated point on the'surface of Sk 160. to 10 Comparing the models of Milgrom and Salpeter tra (with F /F j, 0 • O with the models we use in AL x O t> at our light curve synthesis program (Kurucz et al., jor 1972) we find that the outward temperature rise vis 00 starts near log Tj^ = -0.7. Consequently, we do not not expect the visual continuum to be much affec- but ted by this temperature inversion. giv of 10 3. Comparison with the observations AU cur With the above-given system parameters we dua calculated light curves for Sk 160 in the five passbands of the Walraven system. A comparison 00 tudi with the observed curves, calculated with the ave: H 1—H 1 1 1 "best values" in table 1, is presented in figure 1. disl He fitted the light curves at phase 0.0, i.e. at de AW X-ray eclipse, since at this phase deviations due due to the presence of the X-ray source will be ab- mett 20 sent. It is clear that the theoretical light cur- ves do not fit the observations. This conclusion holds for all light curves, calculated with para- Tal meters in the ranges given in table 1. 00 Superimposed on the ellipsoidal variations the following characteristics are seen in all magi 3 0 2 1. & .8 .0 2 passbands: - The minimum at phase 0.5 is filled in due to the Phase heating of the hemisphere facing the X-ray Figure 1 source. The amount of heating, however, is smaller Light curves of Sk 160 in the Kalraven VBLUW than expected (see also Whelan and Wickramasinghe, bands. The variations in brightness (relative to 1976; Milgrom and Avni, 1977). phase 0.0,i.e. X-ray eclipse) are given in mag- - The minimum at X-ray eclipse is in all cases nitudes. The points represent mean values in much narrower than predicted by our calculations phase intervals of 0.1 period, derived from 646 and this is independent of the assumed system pa-, observations. The error bars denote the mean er- rameters. A similar situation in Her X-l has been ror of each point. interpreted as being due to an additional contri- The continuous line is the theoretical light cur- bution to the light curve by a disk-like component ve, including the effects of ellipsoidal varia- near the X-ray source (Strittmatter et al., 1973; tions and of X-ray heating only. The dotted line Gerend and Boynton, 1975). This component is like- represents the light curve, including the direct wise eclipsed and, upon becoming visible, increa- flux contribution of the disk and a reduced hea- ses the total optical brightness of the system, ting effect, due to shielding of X-rays. Notice -25.0 thereby narrowing the minimum at phase 0.0. additional absorption effects around phase 0.6. We propose the existence of such an additional disk-like source in the system SMC X-l. From here on we will call this source "the disk". dening correction of 0.3 mag. (Osmer, 1975; Wal- It is attractive to identify this optically emit- raven and Walraven, 1971) and a bolometric correc- ting disk with the material that is responsible -2M tion BO-2.7 mag. The latter value was derived for the apparent X-ray absorption in the direction from data given by Code et al. (1976) and is sup- of the primary star as is required for explaning ported by a theoretical calculation using the too small observed heating. line-blanketed model atmospheres (Kurucz, 1977; The possibility of an emitting disk in SMC X-l tub, 1977). was suggested before by Milgrom and Avni to pro- For the heating by X-rays we used the simple duce the observed large amplitude of the light "deep heating" ""approximation, i.e. we assume that curve. Figui a part of the incident X-ray flux is reflected at - Near phase 0.6 a rather strong dip appears in disk the stellar surface and that the remaining X-rays the light curve-'Such dips have been found in ted : from 100

L22

J. van Paradijs and E. Zuiderwijk: Accretion Disk in SMC X-l L21 the optical, ultraviolet and X-ray light curves We made an absolute calibration of the photo- of several other X-ray binaries (cf. Conti and metric data by comparing VBLUW data with absolu- Cowley, 1975; Hammerschlag and Wu, 1977; Eadie tely calibrated energy distributions for stars et al., 1975). We interpret this as due to absor- included in Breger's (1977) catalogue of stellar bing material, in the line of sight, rotating spectrum scans. Except for the L band, as the with the system and trailing the X-ray source. corresponding wavelength interval, containing the higher members of the Balmer series, is not nor- 4. Properties of "the disk" in SMC X-l mally included in stellar spectrum scans. Using this calibration the magnitude differ- ences can be transformed into absolute fluxes of Information on the emission from the disk the disk by relating them to Che total magnitude can be obtained by subtracting the stellar contri- of Sk 160 (corrected for interstellar extinction). bution from the composite light curve. Fot this The results are given in table 2 and are graphic- stellar contribution we use the theoretical light ally represented in figure 2. The most interes- curve. To get no confusion with problems related ting feature of this energy distribution is the to uncertainties in the heating affect, the sub- increase in brightness toward the ultraviolet. traction was performed just outside X-ray eclipse, at phases 0.15, 0.20, 0.80 and 0.85. Then the ma- b. Possible_exglanation_for_the_disk_sp_ectrum jor part of the Roche lobe of the secondary is Free-bound processes, producing a Balmer visible, but the heated side .of the primary is continuum in emission offer a good explanation not. This procedure is somewhat model dependent, for the shape of the disk spectrum. Then it is but variation of the system parameters within the reasonable tö correct the observed log Fv(3625) given ranges (table 1) shows that the existence for the fact that half of the U band is situated of an additional light source cannot be doubted. longward of the Balmer jump. This correction, In the subtraction of the theoretical light approximated by a factor 2, has been included in curves from the observed data points the indivi- 2 figure 2. Taking the observational errors into . dual data were weighed according to l/o , where account, the fit of the spectrum to a Balmer con- o =• /a| + (JQ0 is the error of the observed magni- tinuum in emission is quite reasonable. We will tude difference between phases $ and 0.0. The therefore pursue the hypothesis that the disk average magnitude differences attributed to the emission is due to recombination. disk are given in table 2. The errors also inclu- As the spectrum is not black body the disk de a contribution from the theoretical curves, should be optically thin, at least at the long- due to the allowed variation of the system para- wavelength side of the Balmer limit. In the fol- meters. lowing calculation we assume that the disk is optically thin also at the short wavelength side of the Balmer limit (and chec'* this afterward) Table 2. Flux contributione from "the disk" and that the gas is homogeneous, at an electron temperature Te and electron density n0. magnitude band differences log Fv The Balmer continuum emission received from +0.09 the shortward side of the Balmer limit amounts to AV = 0.055 ± 0.0Ï2 -25.96 -0.11 3.3*^ 10~26 erg cm^sec^Hz"1. At a distance of +C.20 65 kpc this corresponds to a total emission of AB » 0.025 + 0.015 -26.16 -0.40 '•7-0"? '°ZZ er8 sec~1Hz"1. From the observed value of the Balmer jump Q.og(Fv_/Fv+) = 0.7 + 0.3] ÏC = 0.016 ± 0.012 we derive, using the data given by Osterbrock +0.16 (1974), a disk temperature between 12000K. and AÜ = 0.038 ± 0.017 -25.92 -0.26 30000 K and an emission measure /n| dV - n| V +0.14 between 4.4 1O60 and 3.5 106lcm"3. ÏW = 0.168 ± 0.057 -25.24 -0.20 We assume that the disk is circular, with a z l 1 radius R and a thiebness d = 0.l R . An upper limit Fv in ergs cm~ sec~ K2" . to the radius is set by the condition that the gas is confined to the Roche lobe of the seconda- ry. For q = 0.063 this yields R<0.2a,where a is the distance between the two stars, i.e. R < -K00 4 10*'cm. Taking for R this upper limit we derive the electron densities given in table 3. 109

T(3646" ) per- s n (cm"3) pendicular to in orbital 3.50 3.60 3.70 orbital plane plane logA(A) 12000 1.6-2. ,6 13 1 - Figure 2. Spectral energy distribution of the 10 5.0- 12.7 4. 6.5 20000 2 13 disk emission. F is in ergs/cmzsec Hz . The dot- .2-3, .510 1.2- 3.0 5.6- 8.9 v 25000 13 ted line has no theoretical significance, apart 2.6-4, .1 I0 0.8- 1.9 6.5- 10.2 30000 13 from suggesting the Balmer continuum emission. 2.8-4, ,1 10 0.5- 1.3 7.0- 10.9 101

L22 J. van Paradijs and E. Zuiderwijk: Accretion Disk in SMC X-l

We calculated this optical depth at the shortward REFERENCES side of the Balmer limit, assuming L.T.E. This crude approach seems justified as the deduced Breger, M. 1976, Ap.J. Suppl. 32, 7. electron density is quite high. The results indi- Code, A.D., Davies, J., Bless, R.C., Brown, R.H. cate (table 3) that the observations easily allow 1976, Ap.J. 203, 417. an optically thin disk. Conti, P.S., Cowley, A.P. 1975, Ap.J. 200, 133. For disks with R<4 1011 cm the optical depth Eadie, G., Peacock, A., Pounds, K.A., Watson, M., scales as R' * ; for a fixed value of R the optical Jackson, J.L., Hunt, R. 1975, MNRAS 172, 35P. depth of the disk is invariant to changes in Gasgoigne, S.C.B. 1974, M.N.R.A.S. _Hi6_, 25P. thickness of the disk. Smaller disks may remain Giacconi, R., Murray, S., Gursky, H., Kellogg, E., optically thin at the Balmer limit if they are Schreier, E., Matilsky, T., Koch, D., hotter. Tananbaum, H. 1974, Ap.J. Suppl. 2]_, 37. Our data are not sufficiently accurate to Genderen, A.M. van 1974, M.N.R.A.S. ^67, 57P. determine the size of the disk from the shape of Genderen, A.M. van 1977, Astr. Ap. 54_, 307. the light curves. The difference between a "point Gerend,'D., Boynton, P.E. 1976, Ap.J. 209_, 562. source disk" and one that completely fills the Hammerschlag-Hensberge, G., Wu, C. 1977 (in press) Roche lobe can only be noticed between phases Heuvel, E.P.J. van den 1975, Ap.J. (Letters) 0.04 and 0.10 and between phases 0.90 and 0.96. 198, L109. The narrowing of the minimum is determined by the Hiltner, W.D., Petro, L., 1977, preprint. total light contribution of the disk, not by its Hutchings, J.B., Crampton, D,, Cowley, A.P., size. However, the data in table 3 show that hot Osmer, P. 1977, Ap.J. 2J2, 186. and large disks will more easily obey the optical Kopal, Z. 1959, Close Binary Systems (Chapmann thickness constraint. and Hall, London), p. 125. Since we require the disk to absorb the Kurucz, R.L., Peytremann, E., Avrett, E.H. 1972, X-rays emitted into the orbital plane, it should Blanketed Model Atmospheres for Early-Type be optically thick for X-rays in that plane. Stars, Smithsonian ^p. Obs., preprint. A lower limit to the X-ray optical depth is given Kurucz, R. 1977, private communication. by neRuT , where a^ is the classical Thomson Liiler, W. 1972, I.A.U. Circ. No. 2469. scattering cross section. We find that this Lub, J. 1977, private communication. requirement is well satisfied (table 3). Lub, J., Pel, J. 1977, Astr. Ap. 54, 137. Lucke, R., Yentis, D., Friedman, H., Fritz, G., 5. Conclusions and Discussion Shulman, S. 1976, Ap.J. (Letters) 206, L25. Milgrom, M., Salpeter, E.E. 1975, Ap.J. \9±, 583. The observations of a too small heating Milgrom, M., Avni, Y. 1977, Ap.J. (Letters) 212, effect and of a contribution to the light curve of Sk 160 by a "third light source" can be consis- Osmer, P. 1973, Ap.J. Jji^, 327. L17. tently described by an emitting "disk" close to Osterbrock, D.E. 1974, Astrophysics of Gaseous the compact object. The derived energy distribu- Nebulae (W.H. Freeman and Co., San ' tion shows that in the direction perpendicular to Fransisco), Ch. 4. the orbital plane this disk is optically, thin to Paradijs, J. van 1977, Astr. Ap. Suppl. ^9_, 339. optical radiation. In the orbital plane the disk Penfold, J.E., Warren, P.R., Penny, A.J. 1975, is optically thick to X-rays. A size of the disk M.N.R.A.S. \7\_, 445. comparable to the Roche lobe of the neutron star Petro, L., Feldman, F., Hiltner, W.A. 1973, and an electron temperature of about 25000K give Ap.J. (Letters) JJ54, L123. a good fit to the observations and to the optical Primini, F., Rappaport, S,, Joss, P.C., Clark, G., depth constraints, but other combinations of disk Lewin, W., Li, F., Mayer, W., McClintock, J. parameters are possible. 1976, Ap.J. (Letters) ^1£, L71. The existence of this disk supports the idea, Savonije, G. J. 1977, preprint. put forward by Hutchings et al. (1977) that Roche Schreier, E., Giacconi, R., Gursky, H., Kellogg, lobe overflow dominates the mass transfer in E., Tananbaum, H. 1972, Ap.J. (Letters) 178, SMC X-l. This is not in agreement with the stan- L71. dard idea that binary X-ray sources with an early Strittmatter, P.A., Scott, J., Whelan, J., Wickra- type component are powered by stellar wind-accre- masinghe, D.T.,Woolf, N.J. 1973, tion. However, Ziolkowski (1976, 1977) recently Astr. Ap. 25, 275. suggested on theoretical grounds that short-period Ulmer, M.P., Baity, W.A., Wheaton, W.A., Peterson, massive X-ray binaries are powered by Roche lobe L.E. 1972, Nature Phys. Sci. 242^ 121. overflow. Evolutionary calculations by Savonije . Walraven, Th., Walraven, J. 1971, in: The Magella- (1977) show that a hydrogen burning star of 16M 0 nic Clouds, ed. A.B. Muller (D. Reidel Publ. with_a 1 Mg companion can transfer mass at a rate Cy, Dordrecht), p. 117. < 10 8M /yr for several 101* years. 8 Webster, B.L., Martin, W.L., Feast, M.W., Andrews, If Sk i60 is such a star, the existence of an accretion disk is a quite natural consequence. P.J. 1972, Nature Phys. Sci. 24£, 183. Whelan, J.A.J., Wickramasinghe, D.T. 1976, 2 Acknowledgements M.N.R.A.S. JjMi 9' Ziolkowski, J. 1976, Ap.J. 204, 512. It is a pleasure to thank E. van den Heuvel, Ziolkowski, J. 1977, Proc. 8th Texas Conf. on T. de Jong, H. Henrichs, S. Savonije and R. Takens Relativistic Astrophysics (in press). for fruitful discussions. E.J. Zuiderwijk acknow- Zuiderwijk, E.J., Hammerschlag-Hensberge, G., ledges support by the Netherlands Organisation Paradijs, J. van, Sterken, C, Hensberge, H. for the Advancement of Pure Research, Z.W.O. 1977, Astr. Ap. 54, 167.

105

(Reprinted from Nature, Vol. 259, No. 5544, pp. 547-549, February 19, 1976) II A Mass determination for the Table 1 Journal of observations X-ray binary system Vela X-l Plate no. JD244OO0O+ phase* VradCkmS"1) m.e. O-C THE 6.9 mag B0.5 Ib supergiant HD77581 has been identified G3834 1773.626 0.480 - 8.64 7.79 + 8.00 as the optical counterpart of the X-ray eclipsing binary system G3842 1774.608 0.590 -18.02 3.18 + 4.77 1 2 G3848 1775.582 0.699 -22,03 3.22 + 1.76 3U09OO-4O (Vela X-1) - , which eclipses with a period of G3858 1776.583 0.810 -11.00 3.36 + 9.25 8.95 ± 0.02 d. The discovery of regular X-ray pulses in Vela G3866 1777.613 0.925 - 7.72 4.14 + 3.93 X-l has also been reported3, with a mean pulse period of G3879 1779.535 0.139 + 16.74 5.24 + 3.11 282.9 s, modulated because of the radial velocity variation of G3896 17S0.632 0.262 + 13.85 3,35 + 2.68 G3909 1781.631 0.373 - 2.37 3.11 + 2.18 the X-ray pulsar in its orbital motion. This makes Vela X-l G3923 1782.556 0.476 -20.48 3.51 - 4.18 the third X-ray binary system in which the orbits of both the F1684 2169.522 0.636 -32.65 3.33 - 8.88 optical and the X-ray component can be studied, and the F1694 2170.522 0.747 -26.57 3.46 - 3.76 following orbital parameters have been derived', ex = F1702 2171.477 0.854 -14.37 4.06 + 3.25 0.15 ±0.05, w = 157°±24° and X = 268±12 km s">. F17O9 2173.593 0.090 + 5.68 5.52 - 2.80 x x F1717 2174.581 0.200 +14.16 4.58 - 1.39 Analyses of the light curve of HD77581 have shown that the F1727 2175.594 0.313 - 3.27 4,94 - 7.56 heating effect is too small to be detected*. Furthermore, the F1739 2176.559 0.421 -13.00 6.06 - 2.36 star is bright and the spectral lines are not very broad. This F1750 2177.492 0.525 -11.60 6.31 + 8.22 means that here the first relatively accurate direct mass F1765 2180.463 0.856 -12.23 7.00 + 5.23 G6480 2439.647 0.763 -27.27 4.80 - 4.98 determination of both the X-ray and the early-type supergiant G6491 2440.710 0.882 -23.62 6.72 - 8.12 components of an eclipsing X-ray binary becomes possible. G6497 2441.734 0.996 - 8.92 3.82 - 5.24 Earlier studies of the radial vetocity variation of HD77581 G6505 2442.684 0.102 + 12.98 4.23 + 3.03 have given contradictory results'-'. For the semi-amplitude K G6511 2443.658 0.211 +22.75 5.54 + 7.51 1 G6519 2444.729 0.330 + 3.80 3.72 + 2.08 of the orbit, values between 19 and 40 km s" and for the F3116 2560.509 0.243 + 1.18 5.44 -11.90 F3124 2566.531 0.915 -18.34 4'19 - 5.73 * Phase zero corresponds to mid-eclipse time JD244144g.54+nx 8.966 d.

predetermined expectation of where lines should be found. Lines of HI, He I, OIL NIII, Nil, Si III and Si IV were present in at least half of the spectra. From the measurements of the radial velocity of the interstellar Ca II K-line, we found Ven = 16.1 ±0.6 (m.e.) and 13.7±1.0 km s"1 for the 12 A mm"1 and the 20 A mm"1 spectra, respectively. To increase the homogeneity of the data we reduced the measurements of the 20 A mm"1 plates to the 12 A mm"1 system, by applying the correction of 2.4 km s"1. To get an impression of the internal accuracy of these -40 measurements five plates were measured twice. The differences 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 in the mean velocity obtained from two such measurements of 1 Phase one plate vary between 0.3 and 4.2 kms" ; the s.d.m. per line for one plate varies from 8.0-11.5 km s"1. Fig. 1 Radial velocity curve of HD77S81 = Vela X-l for a In the analysis we used mean values of the radial velocity as period of 8.966 d. Phase zero corresponds to mid-eclipse time. The points denote mean values of the measurements of lines of obtained from the He I lines and from the lines of heavier ions. He I and heavier ions. Mean errors per plate are indicated by the These average radial velocities are given in Table 1. A full table length of the vertical bars. of all individual line radial velocity measurements will be published elsewhere. eccentricity from 0.00 to 0.54 have been found. According to With the computer program 'Orbit', based on a program Wallerstein', the radial velocity data of HD77581 do not allow of Wolfe et al.', the best fitting radial-velocity curve through a consistent solution of the orbit, because of mass transfer in the points was computed. This was done for all lines of He I the system. Here we show that a consistent solution can be and the heavier ions together. Also separate solutions for the obtained, however, provided that the lines of hydrogen- Hel lines and the heavier ion lines were made. The radial expected to be most sensitive to gas motions in the system- velocity measurements were weighted according to wt = 1/tri", are excluded from the analysis. Our analysis of the radial where of is the s.d.m. of the measurements. The average orbital velocity variations of HD77581 is based on 26 coudé period P determined in these solutions is 8.966 ±0.005 d, spectrograms, obtained with the 152-cm telescope of the which agrees well with Hutchings' result*(P = 8.966±0.001 d), European Southern Observatory, La Silla, Chile, in 4 observing based on radial velocity determinations by several observers, runs between April 1973 and June 1975. The spectra were taken over a time interval of 17 yr. We therefore subsequently used on IIa-0 emulsion, over wavelengths from 3,600-4,950 A. this period as a fixed parameter in our calculations. The The dispersion of the plates is 12 A mm"1 or 20 A mm"1. The 5 orbital parameters derived from all lines together—except the plates obtained in the first observing period have been hydrogen lines—are given in Table 2. The errors quoted in remeasured independently for use in this analysis (Fig. 1). Table 2 are la (68% confidence) limits. The separate solutions The spectra were measured for line positions with the Grant for He I and the heavier ions are in good agreement with the comparator of the Kapteyn Astronomical Laboratory of the mean solution (see Table 2), and give good agreement with the University of Groningen. All absorption features visible in the X-ray pulsar data, which for convenience are also given in spectrum were measured, without selecting beforehand a Table 2. In particular the values of the eccentricity and thr particular set of lines. Some very weak lines were thus missed angle of periastron, which should be 180° apart for the optical on some plates, but on the other hand, especially for the weak and thé X-ray solution, agree well (within the quoted accuracy lines, it was considered an advantage to measure without a intervals). 106

Table 2 Orbital elements for HD77S81 = Vela X-l .Optical observations Mean values for He I Heavier ions X-ray pulsar He I and heavier elements PU) 8.966 8.966 8.966 8.96 Ko(km, ) -7.97±0.82 -8.45±0.64 -7.16±1.06 KQms--) 19.81±1.19 2ft.54±0.99 21.19±1.42 268 ±12 e 0.20±0.06 0.23 ±0.04 0.22±0.07 O.15±O.O5 a(deg) 10±17 18±11 2±19 157±24 a sin(i) (km) 2.4±0.2xl0' 2.5±0.1 x 10" 2.6±0.2xl0» 3.27±O.12xl0'

In our opinion this agreement lends confidence to the orbital 22±7 and 30±10, respectively; these values, although not very character of the optical radial velocity variations; the nön- accurate, are consistent with the presently determined value of orbital (gas streams, stellar wind fluctuations) component does 21.2JKQ ±2AJto). Therefore, the early-type supergiant in this not seem to have much effect on the results from He I and X-ray binary system does not seem to be particularly under- s 91 heavier elements. Using aopI sini = 2.5 ±0.2 10 (la) as a com- massive for its spectral type (as has been suggested for promise value, we find the following values for the system Cygnus X-l). parameters E.J.Z. acknowledges support by the Netherlands Organ- ization for the Advancement of Pure Research (Z.W.O.). mass ratio: JtooJJix = (ax/"opi) = 13.1 ±1.65 J. A. VAN PARADIJS total mass: (Jlo„ +Jlx) sin'O) = 2U6±X2J(@ G. HAMMERSCHLAG-HENSBERGE 3 -/trxsin'(|-) = I.52±0.22^rGand^op, sin (i) E. P. J. VAN DEN HEUVEL From a detailed analysis of the optical-light variations, Avni R. J. TAKENS and Bahcall' have found that the inclination i should be > 74° E. J. ZUIDERWUK to get a consistent picture of both the observed light curve and Astronomical Institute, the duration of the X-ray eclipse. Taking 74° and 90° as lower University of Amsterdam, and upper limits of the angle of inclination we get Roetersstraat 15, Amsterdam, .#x = 1.61 ±0.27^0 and^? = 21.2±2.6^e. Tha Netherlands, and opI European Southern Observatory, All quoted errors in the mass parameters are 90% confidence C. DE LOORE limits. This result shows that the compact component is very Astrophysical Institute, probably too heavy to be a white dwarf. Free University of Brussels, If it is a white dwarf, its evolutionary history implies that it 10 Adolph Buyllaan 105, should consist mainly of carbon and oxygen ; the upper mass Brussels, Belgium, and limit" for such white dwarfs is ~ I.4.//0. Its most probable •European Southern Observatory, muss of I.6L/A- is just consistent with the presently allowed La Silla, Chile theoretical masses of neutron stars'-.^// s=1.6.//a). Received October 10, 1975; accepted January 13,1976. The mass determination of the supergiant allows a test of the 1 Hiltner. W. A., Werner, J., and Osmer, P., Astrophys. J. Lelt., 175, L19-22U972). 2 Jones, C, and Liller. W., Astrophys. J. Lett., 184, L121-122 (1973). theoretically computed evolution of massive stars, through a J Rappaport. S-, and McClinlock, J., IAU Clrc. No. 2794 (1975). . comparison with theoretical evolutionary tracks. The luminosity < Rappaport, S., and McClintock, J., IAU Clrc. No. 2833 (1975). ' Zuidcrwijk. E. J., van den Heuvel, E. F. J., and Hensberge, G., Astr. Astrophys., of HD77581 can be inferred in two ways. The spectral type and 35.353-360(1974). luminosity class (B0.5 lb) provide, in principle, the absolute « Hutchings, J. B., Astrophys. J., 192, 685-689 (1974). ' Wallerstein. G.. Astrophys. J., 194,451-457 (1974). magnitude M,, bolometric correction BC and effective tempera- • Wolfe, R. H., Jr, Horak, H. G.. and Storer. N. W.. in Modem Astrophysics 13 (edit, by Hack, M.), 251-273 (Gauthiers-Villars, Paris, 1967). ture Tclt. Using the luminosity calibration of Blaauw or ' Avni, Y.. and Bahcall, J. N., Astrophys. J. Leu: (in the press). Kccnan" we derive M, — 5.9 ±0.4 mag. For the bolometric 1» van den Heuvel, E. P. J., in Astrophysics and Gravitation, Proc. 16lh Solmy Conl. 15 1 Physics. 119-130 (Brussels University Press, 1974). correction, values between 2.4 and 2.6 mag have been given - '. • l Hamada. T.. and Salpeter, E. E., Astrophys. J., 134, 683-698 (1961). 12 Cameron, A. G. W., and Canuto, V., in Astrophysics and Gravitation, Proceedings This gives MM -H.4±0.5 mag. For the orbital parameters 4 of the 16th Solvay Conference on Physics, 22Ï-267 (Brussels University Press, given here and by Rappaport and McClintock , and assuming a 1974). 1 • > Blaauw, A., in Basic Astronomical Data (edit, by Strand, K. A.),383-420 (Univer- minimum observed eclipse angle of 34", Avni and Bahcall sity of Cnicago Press, Chicago and London, 1963). derive for the radius of HD7758I R —- 30 R&. For the effective "Keenan, P. C. in Basic Astronomical Data (edit, by Strand, K. A.), 78-122 (University of Chicago Press, Chicago and London, 1963). lemperalurc. values ranging from 22,000 K (ref. I7)-29,OOO K I' Morton, D. C, and Adams, T. F., Aslrophys.J., 151, 611-621 (1968). '• Schlesinger. B., Aslrophys.J., 157. 533-544 (1969). (rcf. IS) have been given for early B-type supergiants. Adopting " Osmer. P.. Aslrophvs. J., 181, 327-348 (1973). TcU 25,000 I 4,000 K. we find MM - -9.0±0.75 mag. >< Auer, L. H.. and Mihalas. D., Astrophys. J. Suppl., 24, I93-24Ó (1972). 19 •« Simpson. E. E.. Astrophys. J.. 165, 295-316 (1971). From a comparison with evolutionary tracks -" we then find » Str'hers, R., Astrophys. J.. 175, 431-452 (1972). 21 Trimble. V., Rose, W. K., and Weber, J., Man. Not. R. astr. Soc., 162, 1P-3P the following values of the evolutionary mass: Jl\«Uis> = (1973).

Prlnitd in Gf»l Briuin by H«nrr Ling Ltd., il the Doiul Titu. Dotchnltr. Ponct 107

ASTRONOMY 222 Astron. Astrophys. 57,221—227 (1977) AND

ASTROPHYSICS logW 2.50

2.00 II B Systematic Distortions of the Radial Velocity Curve of HD 77581 (Vela X-1) Due to Tidal Deformation

J. van Paradijs, R. Takens and E. Zuiderwijk

Astronomical Institute. University of Amsterdam, Roetersstraat 15, NL-1004 Amsterdam, The Netherlands

Received October 10, revised December 3, 1976

Summary. The effect of the deformation of the primary Analyses of the orbi's aid mass determinations have star in the Vela X-1 X-ray binary system (HD 77581) on been made by van Paradij» -' J. (1976) and Rappaport et its radial velocity variation has been studied, using al. (1976). The orbital pa? ^meters as obtained from the X- theoretically predicted line profiles and radial velocity ray emitting object and the optical primary were found to curves for lines of several ions, computed for a range of be in good agreement (ex«eopI;

222 J. van Paradijs et al.: Effects of Distortion on the Radial Velocity Curve of HD 77581

3. Numerical integration over the visible part of the stellar surface is performed using a network of 1730 points, distributed uniformly over the surface. Quantities needed at each such point (e.g. continuum intensity, limb- darkening coefficient, line strength) are obtained by interpolation in pre-calculated tables, which were made using the grid of model atmospheres of Kurucz, Peytremann and Avrett (1972; KPA). 4. In the calculation of continuum and line data we 25000 30000 35000 have throughout assumed local thermodynamic equilib- Teff rium. Fig. I. Comparison of theoretical equivalent widths W as calculated For the KPA models with 12O0OgrtfrS3500OK from the KPA model atmospheres (logg=4.5) for flux (crosses) with profiles of the lines O il A4367, Si iv A4089 and He I /.4387 average observed values for main sequence slars (from Kamp, 1973) were calculated at a number of ju-values (/t=cos0,0 being, pulse profile, which changes as a function of the orbital the angle at which the radiation emerges from the stellar phase. atmosphere). For the calculation of the ionization and Even though at present no detailed calculations of excitation equilibria through the model atmosphere we this effect are available, it makes it less evident that the used subroutines from Kurucz's computer programme good agreement between the X-ray and optical orbital ATLAS (1973). We assumed a depth-independent mic- parameters is a strong argument that what we observe is roturbulent velocity of 10 km s~'. In the calculation of real orbital motion. the damping constant we included radiative damping It seems of interest to have an estimate of the (dominant at the low gravity values applicable to HD magnitude of the systematic effect due to distortion on 77581) and damping due to collisions with electrons the mass determination of the compact objact in the Vela (quadratic Stark broadening). The relevant data for the X-l system. radiative damping were taken from Wiese et al. (1966, For this reason we calculated radial velocity curves, 1969) and for the collisional damping from Griem( 1974). fully including the variation of line strength with effective b) Check on the Reliability of the Model Calculation temperature and gravity, for a system with parameters A check on the basic correctness of the calculated profiles fitting Vela X-l, and assuming a circular orbit. These can be obtained from a comparison with 'observational calculations were made for lines of Hei, OH and Siiv, data. We made such a comparison for the case of the Si iv which have a quite different behaviour as a function of temperature around spectral type B0. A4089 line. The observed values of the equivalent widths were taken from the compilation made by Kamp (1973). Differences in these theoretical radial velocity curves As stellar equivalent widths refer to the total flux, and not show us the effect of line-strength variations across the to specific intensity, our calculated equivalent widths— stellar surface. from the KPA models—refer to the total flux. In Figure 1 Theoretical Line Profiles and Radial Velocity Curves we show the result of the comparison. The observations have been made for main-sequence stars; therefore, we a I Models and Assumptions made the comparison for the log

109

J. van Paradijs el al.: Effects of Distortion on the Radial Velocity Curve of HD. 77S81 223 224

i 1 1 1 1 1 AlogW D ^ SMV\ 0.00 050 - / '.ogg=3 /f / \\Hel rad -0.50 0.25 / • -__V lagg=i ' 1 \pll 10 i 1 1 i i 20000 25000 30000 20000 25000 30000 35000 Teff T-ff 20 - Fig. 2. Temperature variation of the equivalent width ratic D Fig. 3. Temperature dependence of the equivalent width H'for the lines =IO8(KNITE/WLTE). as calculated for the cases of NLTE and LTE He 1*4387,0 H/.4367 and SÜV/.4089, calculated from the KPAmodels (Kamp, 1976) for two values of logg for perpendicularly emerging intensity

logs=3 the use of LTE input data in the calculations of In these expressions i denotes the surface elements, Aaf is radial velocity curves will underestimate the effect of line their size, /(,ïs the cosine of the angle between the normal strength variations across the surface of the distorted to the local stellar surface and the line of sight, LC'(/J) is the Fig. 4. The primary star. It is clear that the assumption of LTE limits limb-darkening coefficient for continuum intensity, rc{fi) line Si lv the scope of the present results. However, as we have is the central depth of the spectral line, L2(n) is the limb- corrcspom c line represi made the calculations for lines with very different darkening coefficient for the product I J0, n)rc(fi) and », is 77581. Onl temperature behaviour (see Fig. 3), we think that our the radial velocity of surface element i. The functions around i/i = results give a good representation of the effects of the Ll(n) and L?(pi) are also dependent on wavelength and relative variations in strength of different lines across the effective temperature. S(AA) is the line-shape function. stellar surface, and are at least indicative of what is to be The net radial velocity of the primary has been obtained expected from the distortion of the primary. from the expression

c) Computation of the Theoretical Radial Velocity Curves From a table of line profiles (35 KPA mo'dels, 12 /i- values) we have constructed simple ad hoc interpolation rad

subroutines giving: Ao is the rest wavelength of the spectral line, r(A-A0) the 1. Central line depth for perpendicularly emerging relative depth at wavelength A. radiation as a function of Tclt and logg. We performed the calculation of the radial velocity 2. The limb-darkening law for the continuum in- curves for a model, representing the Vela X-l system, tensity, and for the product continuum intensity times with a primary mass of 21.2 MQ and a mass ratio q central line depth (a function of Teft and A). =0.076(van Paradijsetal., 1976). As the luminosity is not 3. A line-shape function, depending only on the well known due to the uncertain distance, we did the central line depth; this approximation is not too bad, as calculations for three values of the luminosity, cor- 20 the damping wings are not strongly developed in the responding to absolute bolometric magnitudes Afb0,= spectra of low-gravity stars like HD 77581. —8.4,-9.0 and—9.6. An important quantity determin- A composite line profile is then obtained by adding ing the final results is the amount of distortion of the the contributions to the total flux of all network points primary. In the Roche geometry this distortion is conve- on the stellar surface (visible to the observer) at a number niently described by the dimensionless potential param- of closely spaced wavelengths (JA=0.2 A) eter Q (Kopal, 1959). From the analysis of photometric variations of HD 77581 Avni and Bahcall (1975) and Zuiderwijk et al. (1976) have concluded that the star is FiB. 5. flu Each such contribution is shifted in wavelength due to nearly completely filling its critical Roche lobe. We have the radial velocity of the surface element, arising from done the calculations for three values of Q, one of which corresponds to the critical Roche surface. For the orbital motion and the assumed co-rotation of the Results, primary inclination i we adopted the values 90° and 7S°, in accordance with the results from optical and X-ray Some re brightness variations (Avni and Bahcall, 1975; Figures Zuiderwijk et al., 1976). velocity i Roche li produced by high reddening (cf. Crawford and Barnes, the value E(B-V)= 1!"8 as derived by Vidal (1973b).

110

224 J. van Paradijs et al.: Effects of Distortion on the Radial Velocity Curve of HD 77581

0 -

"rad rad rad

10 10

20 20

_8.4

Fig. 4. Thsoretiail radial velocity curve of the HD 77581 model for the Fig. 6. Theoretical radial velocity curve for the line Si IV J.4089, for Q line Siiv /.4089. for AfM=_8.4 and-9.6 and i=90". fl= 1.885 = 1.885 (complete filling of the Roche lobe) and O=1.96 (underfilling of corresponds lo complete filling of the critical Roche lobe. The dotted the Roche lobe by~6% in radius). The bolometric magnitude Mb= line represents ihc radial velocity variation of the center of mass of HD -9.0. the inclination 1=90° 77581. Only half the radial velocity curve is shown, as it is symmetrical around q>=n.5:\'r[)= — Vr(l-"/>)

riation with the luminosity of the primary. For all values r 1 i i i of the luminosity a hump appears on the radial velocity curve just before and after phase 0.0 (phase 0.S taken at

0 . - X-ray eclipse), as was also found by Wilson and Sofia (1976). This hump is caused by the dominant contri-

rad bution of the relatively bright back-end side of the primary, which has a radial velocity amplitude much \ / larger than that of the center of mass of the star, and is

10 _9.B rapidly approaching us after X-ray conjunction (phase 0.0). After quadrature the radial velocity is somewhat smaller than the orbital velocity, due to the larger apparent surface ,on the side of the star facing the 7 compact companion, a factor which outweighs the 20 / temperature difference. 01! For increasing values of the luminosity the hump on vV/ n.1.885 i=90° the curve becomes less pronounced. This is due to the fact that theeffective temperature at each point of the surface is raised (the size of the star remains fixed). This causes 1 1 i 1 1 1 the variation of the equivalent width over the surface to a .2 J, S shift to another portion of the temperature equivalent phase width relationship of the Si iv line. As the increase in FIR.5. ilic same as l-igure 4: for the line()II /.4.167 equivalent width is largest on the cooler side of the star, the contrast in the relative contributions of different parts of the stellar surface is decreased. Results, Discussion and Conclusions In Figure 5 we show the same result for the O il A4367 line. This line reaches its maximum strength at a lower Some results of the calculations urc summarized in value of the effective temperature than the Si iv /.4089 Figures 4-8. In Figure 4 we show the apparent radial line. At the highest luminosity value the hotter parts of velocity curve for the Si iv /.4089 line in the case that the the stellar surface fall already on the decreasing branch of Roche lobe is completely filled, together with its va- the temperature-equivalent width relationship. This is Send

111

}. van Paradijs et al.: Effects of Distortion on the Radial Velocity Curve of HD 77S81 ' 225

1 1 1 1 1 1 I 1 I 1 1 1 Ti ci

ü - « , - 0 •

rad \V' rad Ei \ H 10 10 1.96 O

7S\ \ • y—' V Si 20 20 Oil Si IV M =-9.0 Ei 1.885 b = Q 90° b u 9 r/ n= 1.885 H

1 I i i i 1 1 1 1 1 H .1 .2 J A .5 phase phase Fig. 7. The same as Figure 6. for the line O il A4367 Fig. 8. l heretical radial velocity curves for the line Si iv A4089, at fixed Mta,= —9.0 and 0= 1.885, for inclinations i=90° and 75°. In order to compare the two curves the one for i=75° has been scaled up by l/sin75° V H reflected in the theoretical radial velocity curve by the a distinction. We have investigated this point by analyz- O disappearance of the hump at high luminosity, and a ing the theoretical radial velocity curves for orbital suggestion of a reversal in the phase dependence of the solutions, using the computer programme ORBIT, writ- appearance of a hump, due to the fact that the line profile ten by one of us (RT). This programme is based on a Si is dominated by contributions from the cooler part of the global least squares fit to input radial velocities, and will stellar surface. be described.elsewhere (Takens, 1976). Of special interest Theeffecl of varying the degree of filling of the Roche are the eccentricity e and the velocity amplitude K, as lobe is illustrated in Figures 6 and 7. where the radial these are directly related to the asymmetry of the radial velocity curves for Si iv A4089 and O n are shown for velocity curve and, hence, to the mass determination of different values of fi. For Siiv the spike decreases the compact object. In Table 1 we present the results of strongly when the star becomes somewhat smaller than these solutions for e and K. Inspection of this Table its Roche lobe, although the asymmetry of the radial shows that in some cases large spurious values of the velocity curve is still present. In the case of O n A4367.the eccentricity can be caused by the distortion of the bump disappears completely, and the radial velocity primary, and furthermore, that the radial velocity curve becomes quite symmetrical. These di fferences show amplitude may be increased by up to 30%. Due to the that for a quantitative discussion of these systematic strong sensitivity of these results to the assumed effects the variation in equivalent width of the spectral luminosity it seems premature to quote best values for line over the stellar surface should certainly be taken into the spurious eccentricity and for a correction factor to account. Changing the inclination of the orbital plane be applied to the observed radial velocity amplitude. from 90" to 75" results in a softening of the spike (see Fig. The possibility of proving the existence of a spike in 8). This can be understood as a result of the moderating the radial velocity curve will strongly depend on the effect due to the radiation from the constantly visible deviations of this curve from a fitted orbital solution. relatively hot pole of the star on the contrast between the These deviations should show a systematic variation with front and back-end side. phase. A typical example of what may be expected for a It would seem that the appearance of a spike on the large spike on the radial velocity curve is shown in Figure radial velocity curve would make it in principle possible 9. It appears that even for a large distortion effect the n to distinguish between the asymmetry in radial velocity amplitude of the deviations never becomes larger than n produced by the tidal distortion, from that due to orbital about 3 km s~': in most cases calculated here they are n eccentricity. Also the differences in the behaviour of the smaller than 2 kms~'. It seems that these phase de- k radial velocity curves of lines with a different equivalent pendent deviations are on the verge of detectability for width versus temperature dependence would add to such the following reasons. o b Send offprint requests to: F. Combes (UBV-aystem) V = 13.25 mag., an interstellar red-

112

226 J. van Paradijs et al.: Effects of Distortion on the Radial Velocity Curve of HD 77581 J. van Pai

Table 1. (Spurious) orbital parameters for distorted radial velocity Jones,C, v curves (circular orbit assumed) rad /\ A Kamp.L. Kamp.L. -9.0 -9.6 **!»! = -8.4 -4 \J Kopal,Z. 125 0.0 0.5 . 00 KuruczJ Eccentricity, i=90° phase Model He i 1.885 0.066 0.013 0.031 Specia Fig. 9. Deviation between the theoretical radial velocity curve and the 1.92 0.034 0.031 0.030 Kurucz,! fitted orbital solution, as a function of phase. The theoretical curve is 1.96 0.023 0.030 0.011 Atmos for Si iv A4089, Af = -9.6, Q= 1.885 and i=90° (see Fig. 4) On 1.885 0.318 0.232 0.022 M Obser 1.92 0.234 0.144 0.050 McClinti 1.96 0.174 0.051 0.033 Clark, Si iv 1.88S 0.473 0.365 0.268 Primir 1.92 0.412 0.266 0.185 distortion effect in radial velocity data. Again, the Milgrom 1.96 0.326 0.182 0.132 approximations used in the present calculations (es- Eccentricity, i=75° pecially that of LTE), and the strong sensitivity of the • Hei 1.88S 0.051 0.002 0.037 results to variations in the system parameters (e.g. 1.92 0.026 0.010 0.033 luminosity of the primary) make it premature to consider 1.96 0.014 0.036 0.016 the numerical results derived here as more than just OH 1.885 0.277 0.201 0.030 examples. However, the following general features of the 1.92 0.203 0.127 0.052 1.96 0.153 0.044 0.036 present results, which may be checked observationally, Si IV 1.885 0.412 0.315 0.233 are worth mentioning. 1.92 0.345 0.227 0.161 — Independent of the system parameters (Z., i, Q) we 1.96 0.264 0.159 0.120 find for the radial velocity amplitudes K of the different Velocity amplitude', i=90° ions the relation KHci

1 Thecircularvelocityamplitudeofthecenterorrnassoftheprimary equals 20.17 (i=90°) or 19.48 (i=75°) kms"' References Avni.Y., Bahcall.J.N.: 1975, Astrophys. J. Leners 202, L 131 1. Their amplitude is small. BahcalUN.: 1976, Lectures at Enrico Fermi Summer School on the Physics and Astrophysics of Neutron Stars and Black Holes (North 2. A very good phase coverage is needed to follow the Holland Publishing Company, Amsterdam) rather rapid variation with phase of the deviations. Batten.A.H.: 1973, Binary and Multiple Systems of Stars, Pergamon 3. Well determined average radial velocities using Press, Oxford many plates taken within a short time interval during one Code,A.D.: 1975, in Multicolor Photometry and the Theoretical HR Diagram, Dudley Observatory Rept. No. 9, p. 221 night are sometimes systematically shifted due to erratic Forman,W., Jones,C, Tananbaum.H., Gursky.H., Kellogg,E., night-to-night variations with an amplitude of a few Oiacconi,R.: 1973, Astrophys. J. Letters 182, L 103 km s"' (van Paradijs et al., 1976b). • Griem.H.: 1974, Spectral Line Broadening by Plasmas (Academic Investigation of systematic differences between the Press, New York and London) Hiltner.W.A., Werner.J., Osmer.P.: 1972, Astrophys. J. Letters 175, L orbital parameters, obtained from different ions seems to 19 be a more promising way to discover the presence of the Hutchings,J.B.: 1974, Astrophys. J. 192, 685 cue stellar surface and that the remaining X-rays the light curve. 'Such dips have been found in

113

S. van Paradijs et al.: Effects of Distortion on the Radial Velocity Curve of HD 77581 227

Jones,C, Liller.W.: 1973, Astrophys. J. Letters 184, L 121 Paradijs,J.A.van, Hammerschlag-Hensberge.G.H., van den Kamp,L.W.: 1973, Astrophys. J. 380,447 Heuvel,E.P.J., Takens,R.J„ Zuiderwijk.E.J., de Loore.C: 1976a. Kamp,L.W.; 1976, NASA TR R-455 Nature 259, 547 Kopal,Z.: 19S9, Close Binary Systems, Chapman and Hall, London, p. Paradijs, J. A. van, Takens, R. J., van den Heuvel, E.P. J., Zuiderwijk, E. J., 12S Hammerschlag,G.H., de Loore.C.: 1976b, to be published Kurucz,R.: 1970, Atlas a Computer Program for Calculating Stellar Rappaport,S., Joss,P.C, McCiintock,J.E.: 1976, Astrophys. J. Letters Model Atmospheres, Smithsonian Astrophysical Observatory 206, L 103 Special Report No. 309 Takens, R.J.: 1976, to be published Kurucz,R., Peytremann.E., Avrett,E.H.: 1972, Blanketed Model Wiese,W.L., Smith,M,W., Glennon.B.M: 1966, Atomic Transition Atmospheres for Early Type Stars, Smithsonian Astrophysical Probabilities, I, Natl. Standard Ref. Data Series NBS-4 Observatory (preprint) Wiese,W.L„ Smith,M.W., Miles,B.M.: 1969, Atomic Transition McClintock.j.E., Rappaport,S., ' Joss,P.C, Bradt,K.. Buff,J., Probabilities, II, Natl. Standard Ref. Data Series NBS-22 Clark,G.W., Hearn,D., Lewin.W.RG., Matilsky.T., Mayer,W., Wilson,R.E., Sofia,S.: 1976, Astrophys. J. 203, 182 Primini,F.: 1976, Astrophys. J. Letters 206, L 99 Zuiderwijk.E.J., Hammerschlag-Hensberge.G. h., van Paradijs.J., Milgrom.M., Avni,Y.: 1976, Astron. Astrophys. 52, 157 Sterken.C, Hensberge,H.: 1976, Astron. Astrophys. 49,321 ted line has no theoreticaïsignificanceraplrt "°°° 2"f~H10!* 0>8" U9 6-5-10.2 from suggesting the Balmer continuum emission. 30000 2.8-4.110" 0.5- 1.3 7.0-10.9

114

1977, Aslrvn. Astrophys. Suppl. 30, 195-211.

II C THE SPECTROSCOPIC ORBIT AND THE MASSES OF THE COMPONENTS OF THE BINARY X-RAY SOURCE 3UO9(XMO/HD 77581

J: VAN PARADIJS, E.J. ZUIDERWIJK, R.J. TAKENS, G. HAMMERSCHLAG-HENSBERGE Astronomical Institute of the University of Amsterdam, The Netherlands and European Southern Observatory, La Silla, Chile E.P.J. VAN DEN HEUVEL Astronomical Institute of the University of Amsterdam and European Southern Observatory, La Silla, Chile, Astrophysical Institute of the Free University of Brussels, Belgium and C. DE LOORE Astrophysical Institute of the Free University of Brussels, Belgium .

Received March 28,1977

Radial velocity measurements are presented of the B0.5 Ib supergiant HD 77581, the optical counterpart of the binary X-ray system 3UO9OO-4O(Ve1aX-l). • ' A description is given of a new computer programme for the determination of orbital parameters of sp^sLoscopic binaries from both radial velocity and pulse-time delay data. New orbital parameters for the Vela X-l system wf-ie determined from spectral lines of different ions as measured on 82 high-dispersion spectrograms. The results for all lines together yield: P =«.9681+0.0016 days e =0.136±0.046 K = 2l.75+I.l5kms ' «0=355 ±20 This leads to the following mass parameters:

mxsin*i= 1.67+0.12 m* m,T, sin' i=20.5+0.9 m„ All quoted errors ure la. The differences between the orbital elements obtained from lines of different ions are in some cases not insignificant. The small discrepancy between the orbital parameters of HD 77581 and those derived from X-ray data is still within the range expected • from the distortion of the radial velocity curve of the primary due to its tidal and rotational deformation. Clear evidence is found for correlated night-to-night variations of the radial velocity with an amplitude of up to 5 kms~'. The implications of these non-orbital effects on the mass determination are discussed.

Key minis: X-ray binaries radial velocities supcrgiants - orbital solutions for spectroscopie binaries

1. INTRODUCTION Several X ray binaries contain a pulsating X-ray source. From the optical spectrum and the Doppler delays of the arrival times of the X-ray pulses it is possible, in principle, to derive the radial velocity variations of both components in the system. Of these "double-lined" X-ray binaries the systems Vela X-l and SMC X-l are the only ones for which at present reasonably good classical mass determinations have been made, (van Paradijs et al. 1976. Rappaport et al. 1976, Hutchings et al. 1977). For Vela X-l van Paradijs et al. (1976) found masses for both components which are in reasonable agreement with expectations generated from the theory of stellar evolution. The mass of the primary (21.2 m„) may be somewhat low for its spectral type and luminosity class (BO.S Ib). For the compact object a mass of 1.61 me was found, consistent with the. theoretical upper mass limit of non-rotating neutron stars (Malone et al. 197S, Bowers et al. 1976).' The radial velocity variation of the compact object was determined by Rappaport et al. (1976). Radial velocity data for the primary star were obtained by Hiitner et al. (1972), Zuiderwijk et al. (1974), Hutchings (1974), Wallerstein (1974), Petro and Hiltner (1974) and van Paradijs et al. (1976). It is known that non-orbital effects 115

196 J. van Paradijs el al.

may affect the radial velocity curve of the primary, such as gaseous streams in the system and the deformation of the primary due to rotation and tidal forces. In order to improve the accuracy or the radial velocity data of HD 77581 and to investigate the possible presence of the distortion effect predicted by van Paradijs et al. (1977), and to possibly correct for it, we analyzed new spectrograms obtained during two recent observing runs at the European Southern Observatory, which increased the total number of plates available for analysis from 26 to 92.

2. OBSERVATIONS AND REDUCTION This radial velocity study of HD 77581 is based on 92 blue spectrograms taken with the 152 cm spectro- graphic telescope of the European Southern Observatory. All spectrograms are on Kodak IlaO plates, developed in MWP-2 under standard conditions. The plates have reciprocal dispersions of 12 and 20 A/mm, and a useful wavelength range from W 3700 to 4900 A. With very few exceptions ail spectrograms were widened to at least 0.5 mm. The observations were performed in five observing runs between April 1973 and May 1976. Basic data on the spectrograms are given in table: 1. One of us (JvP) measured spectral line positions on all plates in three separate measuring runs, with the Grant Comparator of the Kapteyn Astronomical Laboratory (University of Groningen). In the last two runs a number of plates were measured for a second time, in order to obtain information on- the accuracy of the individual measurements. The spectral line positions have been converted into wavelengths using a cubic dispersion relation, based on the positions of 32 lines in an Fe-arc comparison spectrum. The accuracy of the wavelength determination of these Fe comparison lines is typically 0.01 A. Stellar lines from the following spectra were measured: HI, Hel, Nil, NIII, Oil, Silll and SilV. Table 2 lists the spectral lines used in the radial velocity study. The position of a line was always determined by setting on the slopes of the line proiile, each measurement being the average of two settings. The plates were always measured in the same direction. As the lines in the spectrum of HD 77581 are rather wide due to stellar rotation this setting on the line position was sometimes - difficult, especially for the fainter lines. The heliocentric radial velocities of the individual absorption lines are given in table 3. When a spectro- gram was measured more than once the average value of the derived velocities is given.

2.1. Accuracy of the Radial Velocity Data We have estimated the accuracy of the radial velocity of a single spectral line in two ways. First we compared the results for the plates which were measured twice. We found that the mean value A per plate of the differences 5 between the two results for one line vary from 0.2 to 13.6 kms"1. A typical value thus found is A = / =7.2 kms"1. The summation extends over all plates that were measured twice, N is \ N their total number. This corresponds to a typical accuracy for the average radial velocity as obtained from one plate of l 1 /iv/2x7.2=5.1 kms" . The standard deviation a of the distribution of the differences 5 per plate varies between 6.4 and 22.3 kms"1, with a typical value a = / = 12.6 kms"1. Again the summation extends over V N all plates measured twice. From this we get a typical error in the measurement of a single line of V2x 12.6=8.9 kms-1. Another method to obtain information on the accuracy of the radial velocity from a single line measurement involves the comparison (for all plates) of the results for a particular line with the average radial velocity of the plate as derived from all lines. The standard deviation of this distribution gives a good estimate of the accuracy of a single velocity measurement. 116

The Orbit and Masses of 3U090O-40/HD 77581 197

For different lines these standard deviations range from 7.52 to 19.7 kms"1. These values are generally larger than those obtained in the first estimate, as not only the accuracy of a line measurement on one plate is involved but also variations from plate to plate. It is this determination of the accuracy of the radial velocity from a single line which will be used below in the estimate of the accuracy of the mean radial velocity.

2.2 Mean Radial Velocities per Plate For each spectrogram we determined the mean radial velocity for the lines of HI, Hel, OH, SilH and SilV separately, and for. all lines together (except the hydrogen lines). We noticed that for some individual lines the systematic deviations from the mean are quite large, up to 20 kms~'. A comparison with the detailed line identification list of e Ori (BOIa) (Lamers 1972) shows that a reasonable explanation for these large systematic deviations is the disturbance of the line profile by a neighbouring spectral line of comparable strength. In thé calculation of the final mean velocity of a plate we corrected each line for the systematic deviations. This is a permissible procedure, as the mean error of these systematic deviations, averaged over all plates (1-2 kms"1) is much smaller than the error in the results for an individual line. In this way we obtain a better determination of the accuracy of the mean radial velocities per plate, not affected by systematic effects (such as whether or not a particular line has been included in the average). We estimated the accuracy a of such a mean radial velocity per plate from the expression: 2 2 S + PS/y/N+P /N <7= (1)

In this expression S is the standard deviation of the distribution of individual radial velocities and P is the mean accuracy of an individual radial velocity measurement per line: P—y/Yff/N, where the summation extends over all lines in the group over which the average is taken. These values of P are given in table 4. Expression (1) for a gives a realistic estimate of the accuracy of the mea/i radial velocity: for a small number of lines the errors in the individual line measurements dominate, whereas for a large number of lines the accuracy is controlled by the standard deviation of distribution of radial velocities of individual lines. In this way we introduce a reasonable bottom value P/y/N and avoid unreasonably small errors in the case where only a small number of ILÏS is available (e.g. for the two SilV lines), which happens to give very concordant results. In figures la to le the variation of the mean radial velocity as a function of phase is shown.

3. DETERMINATION OF THE ORBITAL ELEMENTS 3.1. Method The orbital elements, given in this paper were derived with a computer programme that searches for the best possible solutions from data with observational scatter and produces realistic error estimates. The parameters derived by the programme are: P binary star period (days) e eccentricity II periastron phase (5 periastron position l Vo system velocity (km s~ ) K radial velocity amplitude (or delay amplitude) (kms~') P. pulsar period (seconds) I . , . ,. , . t, f- J • i- r L i • J } (only in delay mode) v } } Pp time derivative of the pulsar period I ' In order to fix II the programme needs, apart from the observational data, a zero point of phase. For (nearly) circular orbits only a combination of ri and c5 is meaningful; this situation is properly recognized. The programme analyzes either radial velocities or pulse arrival-time delays. The basic equations are well known: 117

198 J. van Paradijs et al.

Vr= V0+Kre cos a+Kr cos (v+a) (2) with _ 2TC a sin i

delay = zero point + Kt sin (£+O)/c (3) with 2 2 'i.d=asia iy/l—e cos ca and tg O = where u and £ are the true and eccentric anomaly, respectively. With given P, II and e thé epoch of an observation is transformed to either v (for radial velocities) or E (for delays). Then a direct least squares solution is possible for the elements co, K and VQ (or delay zero point). The mathematical formalism of this solution is given in the appendix to this paper. This solution also gives a value for L, defined by:

L=-Lg,(O-C)f/Lgt (4) The explicit expression for L can be differentiated directly with respect to P, IT and e. This gradient is used to find a minimum value of L. Then the programme is used in a mapping mode, to find out whether the minimum is sufficiently unique. In order to improve the performance of the programme, grad L is calculated with respect to a Riemannian geometry: de2+e2dll2 y ds2= (i-e)2 +PidP2 (5) Reasons for this choice of the metric are: 1. The poor definition of II at e«0 does not inhibit rapid convergence. 2. The eccentricity never becomes negative. The jump in II needed in this case arises naturally. 3. e=1 is at infinite distance and cannot be reached. 4. The factor y is a complicated function of K, L and the timespan of the observations, and is defined so as to make the scale of structure in the function L(PM, e) comparable in all directions. The factor y is checked at every step, but is adjusted only if the deviations become too large. The reason for this is that in that case the tables with information of previous steps (s, P, etc., and their gradients) have to be transformed. It should be kept in mind, that the assumed geometry (equation S) influences the path along which one reaches the final solution, but that the solution itself is independent of the geometry.

3.2. Error Estimates

The error estimates are based on L. Let Lo be the square sum of residuals for the final solution. Then one defines: 2 •. ' H-M (6) n—mj Here n is the total number of observations, and m is the number of parameters determined in the final solution. All solutions giving L

118

The Orbit and Masses of 3U090O-4O/HD 77S81

The correction for this difference is always a questionable procedure. 2. The method is correct for linear problems; this means that the meaningfulness of one parameter does not depend on the value of another parameter within its confidence limits. In our problem this complication arises for example for e and II. For very small eccentricities II loses its meaning. Now one wishes to give limiting values of e between which the true solution is expected to be located with 90 percent probability. Then somehow one has to count the possible solutions. If 10 values of n are counted for every e, then the circular solution (only one possibility) is counted 10 times. In order to avoid this, a straightforward solution would be to define a metric like equation (5), and to sample the possible solutions per volume element. It is clear, however, that the resulting confidence limits depend on the metric defined in parameter space. An extreme example of this dependence is equation (S) itself: an orbital solution with Lo^0 does not differ at any confidence level (>0) from a constant radial velocity. (This arises from the behaviour at e=>l). Our confidence limits have been derived by taking the extreme values of a quantity over the confidence region with L

3.3. Solutions for the Orbital Elements Using the observed pulse-arrival times given by Rappaport et al. (1976) we have determined the orbital elements for the compact object. The results are given in table 5. This solution differs slightly from the original solution given by Rappaport et al. (1976), due to the inclusion of Pp as one of the parameters of the system. The value Pp derived here corresponds to a spin-up of the compact object, with a time scale />,//>, = 1500 years. Using the radial velocity data for HD 77581 we have made a solution for the elements P, e, 55, and K for the lines of Hel, OH, SilII and SilV.separately, and for all lines together. In order to increase the homogeneity of the input data, we used the results from the 12 A/mm plates only. Each plate gives us one average value of the radial velocity as determined above, which is weighted according to g=l/a2 (see equation (1)). It appears, however, that the radial velocities obtained from plates taken during one night do not deviate from the fitted orbital solution in a random fashion, but show correlated deviations. For this reason the treatment of all plates independently will give a wrong estimate of the errors. Therefore, we have lumped together the data obtained during one night, making a grand average for that night: 7=T.gtVi/Zgt, with weight 0=20,-. This leaves us with 29 independent radial velociiy data. In figure le we show the phase variation of these nightly averages (taken for all lines), together with the best-fit solution. In table 6 we present the orbital elements P, e, K and a> for the different groups of lines, together with their error estimates. We did not use the hydrogen lines in obtaining the orbital elements, as some previous radial velocity studies of HD 77581 (Wallerstein 1974, van Paradijs et al. 1976) showed rather discordant results from these lines. The hydrogen lines are expected to be particularly sensitive to the presence of large-scale gas flows in the system, as contributions to the line profile can be made over a large volume of space by recombinations and cascade processes. Contrary to previous results, the present hydrogen line data furnish us with orbital elements which agree quite well with those from the heavier elements (P=8.9683 days; f=O.I89; K=23.50 kms"1; S=29°). This somewhat variable behaviour of the hydrogen line results may reflect long time-scale variations of the gas flow parameters in the Vela X-l system. But perhaps a more mundane explanation in terms of statistical fluctuations is to be sought. The most obvious way to investigate this point is a long-term study of the time variation of the Ha profile in the spectrum of HD 77581. ijbiiinuvu, witiwit auuuiu us 1DU aval i tut lllG upuual on some plates, but on the other hand, especially for the weak and the X-ray solution, agree well (within the quoted accuracy lines, it was considered an advantage to measure without a intervals).

119

200 J. van Paradijs et al.

4. POSSIBLE NON-ORBITAL CONTRIBUTIONS TO THE OBSERVED RADIAL VELOCITY VARIATIONS Before using the orbital parameters in table 6 for a mass determination we have to investigate whether they represent real orbital motion, i.e. to what extent they may have been influenced by non-orbital effects on the radial velocity curve due, for example, to deformation of the primary, stellar wind, and erratic variations of the primary. We will discuss each of these effects separately.

4.1. Effects of Deformation of the Primary In a previous paper we presented a numerical study of the effect of the deformation of the primary on its apparent radial velocity curve (van Paradijs et al. 1977). Appreciable effects on the apparent eccentricity and the radial velocity amplitude were found for a.reasonable range of system parameters. In the case of a circular orbit a spurious eccentricity of the apparent orbit can be produced, which may vary considerably from one ion to another and e.g. for an orbit based on lines of SilV can be as high as 0.45. The apparent radial velocity amplitude can in some cases increase by up to 30 percent, thereby increasing the apparent mass of the compact object by approximately the same amount. These theoretical deviations of the apparent orbital motion strongly depend on the assumed parameters for the system, especially on the luminosity of the primary and its degree of filling of the critical Roche lobe. Independently of these quantities we find the following general theoretically predicted behaviour of the distortions of the radial velocity curve: a) For both the eccentricity and the radial velocity amplitude the deviation from the real orbital values is largest for the SilV lines and smallest for the Hel lines; for the Oil lines it is intermediate in between these extremes. b) The apparent orbit as derived from Hel lines is not much different from the real orbit; in this case the orbital parameters are not much affected by the distortion of the primary. Inspection of the results in table 6 shows that the observational evidence for the presence of the predicted distortion effects is not'very strong. Comparing the X-ray orbit and the optical orbit (as derived from all lines together) we find: t 1) ö)„pl-cöx=166±25 '. 2) The eccentricity of the orbit of the primary is slightly larger than that derived for the orbit of the neutron star. The X-ray radial velocity curve is expected to give a nearly undisturbed picture of the orbital velocity of the compact object (Milgrom and Avni 1976, Milgrom 1976). 3) The expected differences between the values of the eccentricity as derived from lines of Hel, Oil and SilV do not show up. Also the radial velocity amplitudes do not clearly show the predicted effects. The amplitude derived from Hel lines is somewhat smaller than those derived from both the Oil and SilV lines. However, the result for the Silll lines is unexpectedly deviating. Because Silll lines have about the same temperature sensitivity as the Oil lines (Underfill! 1966) we expect the apparent Silll radial velocity amplitude to agree with the OH amplitude. Contrary to these expectations the Oil and SilV lines give the same result for the amplitude K, whereas Silll deviates upward by some 4 kms"1. Inspection of the radial velocity curve for Silll lines shows that this difference is due to large upward deviations of just a few plates around phase 0.0 (see figure lb). In brief, the apparent distortion of the radial velocity curve does not show up to the predicted extent. However, there is still much room to reconcile theory with the observations. Some of the possibilities are: 4.1.1. Distortion effects in an elliptic orbit It is possible that the combination of an elliptic orbit with the distortion due to tidal deformation of the primary produces the observed results. In order to investigate this we calculated radial velocity curves for a deformed primary in an elliptic orbit with eccentricity e=0.15, and S running from 0° to 330° in Printed in GIMI Britain by Hra» Ltal Lid., ti lilt Donel hui, DoicMittr, Donel

120

The Orbit and Masses of 3U090O-40/HD 77581 201

steps of 30°. We assumed instantaneous co-rotation of the primary and took the deformation correction to that radial velocity equal to the value calculated for a circular orbit, at the same value of the true anomaly. As the distortion effects on radial velocities in eccentric orbits are still unexplored, this seems an appropriate first approximation for estimating these effects on vhe apparent radial velocity curve. The calculations show that the relative values for the radial velocity amplitudes for lines of Hel, Oil and SilV do not change appreciably by the introduction of a non-circular orbi'. In the case of Hel the contribution of the deformation of the primary to the apparent eccentricity is small compared with the orbital contribution. So the spurious eccentricity is to be considered as a small pertur- bation of the orbital eccentricity. For typical values of the system parameters (A/bol=—9.0 and complete Roche lobe filling) we obtain values of e in the range 0.06 to 0.19. On the other hand, in the case of the SilV lines the distortion of the radial velocity curve dominates the effect of the orbital eccentricity. Starting with a spurious eccentricity (for a circular orbit) of 0.36 we obtain values of e in the range 0.25 to 0.48, depending on w. We see, therefore, that due to the ellipticity of the orbit a significant decrease of the spurious eccentricity is quite possible. There is a tendency also, to bring the values of e, as deduced from lines of different elements, closer together than in the case of a circular orbit.

4.1.2. A modified "Barr effect"? A further interesting result of these trial calculations is that due to the deformation of the primary the radial velocity curve tends to have the asymmetric shape characteristic for orbits with WK90° (see van Paradijs et al. 1977, figures 4-8). In the case of a small distortion of the radial velocity curve, e.g. for the HsI lines, the distribution of 55 is peaked around 90° and 270°; for a strong distortion of the radial velocity curve like for the SilV lines w never deviates more than 35° from 90°. This tendency resembles the classical Barr effect (Batten 1973), but differs from it by producing an excess number of orbits, not with w«0°, but with ro«90°. However, we feel that the reality of the classical Barr effect is to be doubted. Using Batten's (1967) catalogue of spectroscopie binary orbits, and following his advice by taking into'account only orbits qualified A, B or C, we find no trace at all of the classical Barr effect, but instead, a marginally significant excess of the number of orbits with 55 values around 90°. This, of course, is not a proof for the existence of a modified Barr effect, rotated over 90°, but it certainly shows that one should be careful in using a large, inhomogeneous set of data for deriving systematic effects such as Barr's.

4.1.3. Effects of the luminosity of the primary From our calculations it appears that the observed results can be reconciled with the theoretical predictions easier for large values of the primary's luminosity. In that case the spurious eccentricity due to the distortion of the primary is so small as to be a small perturbation of the orbital parameters. This could then explain why the observed values of the eccentricity tend to be only slightly larger than the X-ray eccentricity of 0.096, and are-to within the observational accuracy-not much different from one element to another. For MM= -9.6 for example, we expect the observed eccentricity-derived from the Hel and Oil lines not to deviate from the real eccentricity by more than a few times 0.01. The eccentricity for the SilV lines is expected to be in the range from 0.15 to 0.35. For this high value of the primary's luminosity the apparent radial velocity amplitude is not much affected. In the case of a circular orbit the Hel lines yield a small underestimate of the amplitude K, by between 0 and 10 percent, the OH lines yield an underestimate by between 0 and 8 percent and the SilV lines give values of K between 99 and 108 percent of the true amplitude.

4.1.4. Deviation from co-rotation Another possibility is a deviation of co-rotation of the primary, which is one of the basic assumptions in our simulation of radial velocity curves. The observations available up to now give rotational velocities from 90 to 135 kms"1 (Wickramasinghe et al. 1974, Zuiderwijk et al. 1974), whereas the expected co-rotation 121

202 J. van Paradijs el al.

velocity is around 180 kms~'. As the distortion of the radial velocity curve is primarily due to phase dependent non-cancellation of the contributions of the different parts Of the visible stellar surface to the average radial velocity, we expect a smaller distortion in the case of a slower rotation of the primary. We conclude that although the agreement between theory and observation is not as expected, there is sufficient room in both the observations and in the assumptions entering the calculations, to accept their consistence.

4.2. Effects due to Stellar Wind In many bright early-type stars a strong stellar wind has been observed, producing mass loss by up to 10~6 m„ per year (cf. Hutchings 1976). In case the wind is strong enough some spectral lines will be formed in the outflowing part of the atmosphere, thereby gaining an appreciable net shift in radial velocity. This effect is particularly visible in the radial velocities of the Balmer lines: the radial velocity increases along the Balmer sequence, and converges toward the stellar radial velocity for the higher Balmer lines ("Balmer progression"). When the stellar atmosphere is spherically symmetric no differences in the velocity stratification will exist in different directions. However, in case the wind parameters are not uniform across the stellar surface (which is not implausible for a deformed star) the Balmer progression my vary, and also other spectral lines may have a different radial velocity when observed from different directions. For a binary star this will res Ji in a change of the radial velocity curve. There are no indications for a really strong wind in the spectrum of HD 77S81, but a small differential effect of a few km/sec is already of importance to the determination of Kopi. We have looked for indications of a non-isotropic stellar wind by comparing the radial velocities of individual Balmer lines with the mean value per plate. In ten phase intervals, each one tenth of a period wide, we averaged these differences for each line. We found no phase dependent deviations, indicative of a non- isotropic stellar wind, except for Hp. For this line a deviation of —15 kms"1 (with a mean error of ±5 kms"1) was found near phase 0.5. Such a systematic shift in radial velocity was found before by Zuiderwijk et al. (1974). The lines from the heavier ions, which we used for the determination of the spectroscopie orbit originate in much deeper layers than Hf), as shown 1>y the radial velocity studies of stars with a strong stellar wind (see e.g. Hutchings 1975). As the deviation occurs near a piiase where the orbital radial velocity is about zero, we expect the effect on the spectroscopie orbit, if any, to become visible in u, and possibly in e, but not in Kopi. We conclude that non-isotropy of the stellar wind in HD 77581 is not present at a sufficiently significant level to influence the determination of the orbital parameters.

4.3. Erratic Variations of the Primary We find in our data indications for correlated systematic variations of the radial velocity with respect to the average radial velocity curve. — For the 13 nights in which more than one plate was obtained, eight nights give results which deviate by more than la (mean error) from the average radial velocity curve..On statistical grounds about 4 are expected. These deviations are a property of the stellar velocity: they are not correlated with deviations of the radial velocity of the interstellar Gall K line. A plot of the average deviations for the inter- stellar line against the deviations of the stellar lines in one night reveals a scatter diagram. — During the May 1976 observing run one complete orbital cycle of HD 77581 was covered, and after nine nights observations were made at the same orbital phase. The radial velocities for this phase (

The Orbit and Masses of 3U09MM0/HD 77581 203

of HD 77581 are due to a semi-regular pulsation of this star, as is also seen in many other early-type supergiants (Underhill 1966, Sterken 1977). It is not a priori clear what will be the effect of the correlated variations on the orbital parameters. If we adopt the hypothesis that they are erratic on longer time scales, i.e. that the correlation length is not much longer than one orbital period, their influence on the average radial velocity curve should cancel, provided we have a sufficient amount of radial velocity data. The total number of independent radial velocity measurements (equal to the number of nights, so 29) is probably not large enough to feel com- pletely safe in this respect, especially not since the amplitude of the correlated deviations is some 5 kms"1, i.e. 25 percent of the orbital radial velocity amplitude. In order to investigate the influence on the apparent radial velocity curve of correlated variations that are erratic on longer time scales, we performed the following simulation: In each of the 29 independent radial velocity phase points we generated radial velocity values defined by the best fit solution for all lines plus a randomly chosen velocity deviation; for the amplitude of this random distribution a value of 5 kms"1 was taken. Each such set of 29 velocities was subjected to an orbital analysis. Taking together the results of 100 of these synthetic radial velocity curves we find that the average amplitude increases by only 0.04 kms~' to 21.79 kms"1, with a standard deviation of the distribution of K values of 0.8 kms~'. Also, the average eccentricity increases slightly from 0.136 to 0.143, with a standard deviation of 0.032. This small increase is to be expected since, for a circular orbit perturbed in this random fashion, we will always end up with an eccentricity >0. In the case of an eccentric orbit we also expect an increase, but one that is smaller for higher eccentricities. We conclude that: a) the radial velocity amplitude is not significantly affected by the erratic variations; b) the observed eccentricity of 0.136 may quite well contain a contribution due to a superposed pulsation- like variation of the radial velocity.

4.4. Summary of the Possible Non-orbital Effects In view of the many complicating factors it is not at present possible to make a really good estimate of the size of the individual non-orbital contributions to the observed orbital parameters. However, the absence of any indication for a strong systematic distortion of the radial velocity curve leads us to conclude that the amplitude of the radial velocity curve is not under- or overestimated by more than about 10 percent.

5. MASS DETERMINATION From the orbital elements, obtained from all lines together (table 6) we obtain the following masses for the components in the Vela X-I system: 3 mx sin i = 1.67±0.12 m. 3 mop, sin i =20.5 ±0.9 ma The errors are lcr limits, determined as described above. This result implies a 2a (95 percent confidence) lower limit of 1.43 JIÏ„ which is larger than the Chandrasekhar upper mass limit for a white dwarf (Hamada and Salpeter 1961). This shows that the compact object is almost certainly a neutron star. For an estimate of sin i we use the results obtained by Avni and Ba! call (1976) and Zuiderwijk et al. (1977). which show that the inclination should certainly be larger than 74°, in order to be consistent with the optical light curve of HD 77581. It is not easy to combine this estimate of the lower limit of / in a formal way with the errors found 3 3 for mx sin / and /n,,pl sin i. If we assume either a uniform probability distribution for i in the interval from 74" to 90". or one which varies as sin2 i (all directions of the system's angular momentum vector equally probable), we find in both cases an average value for sin3 i of 0.96. Taking this as the "best value" for

| 123

204 J. van Paradijs el al.

Wicknui sin3 i we obtain as "best values" for the masses: m =1.74 m. and m =21.3 m . The allowed range in Zuiderw x opf a Zuiden» inclination angle gives a pseudo lcr range for mx between l.SS and 1.87 0?» and for mopl between 19.S and 22.4 m,. J. van P The errors given here have been formally derived from a least squares analysis of observational data. E.J. Zui The results of the discussion of the orbital parameters show that there are no strong indications that the R J. Tal G. Han present determination of mx contains a systematic error larger than 10 percent upward or downward. The E.P.J. v effect on mop, of possible systematic errors in the optical data is, of course, much smaller. C. de L The present result for mx is consistent with theoretically predicted values of the upper mass limit for neutron stars, and a stiff equation of state for high-density matter is favoured (Bowers et al. 1976, Malone et al. 1976, Pandharipande et al. 1976). The mass of the early-type component is rather low, as compared with the value expected from stellar evolutionary tracks, and from the luminosity of the star. For the bolometric magnitude of HD 77581 a value — 9?0±0?75 has been derived (van Paradijs et al. 1976). According APPE to recent evolutionary tracks by Stothers and Chin (1977) for blue supergiants this corresponds to masses A between 30 and 60 ma.

ACKNOWLEDGEMENTS We gratefully acknowledge the hospitality enjoyed at ESO, La Silla, during many observing runs. The calculations referred to in this paper have been performed with the CDC Cyber-73 of the Stichting Academisch Rekencentrum Amsterdam (SARA). E.J. Zuiderwijk acknowledges support by the Netherlands Foundation for the Advancement of Pure Research (ZWO).

REFERENCES Avni. Y.: 1976. Aslrophys. J. 210.642. Ballen. A.H.: 1967. Publ. Dominion Aslrophys. Oba. 13,119. Bullen. A.H.: 1973. Binary and Multiple Systems of Stars, Oxford University Press, Oxford. Bowers. R.L.GIeason. A.M.and Pedigo.R.D.: 1976, Aslrophys.J. 205.261. Conti. P.S.: 1977, Asinm. Aslraphys.(in press). Tl Hamada. T. and Salpeter. E.E.: 1961, Aslrophys. J. 134,683. P sin Hiltncr, W.A.. Werner, J. and Osmer. P.: 1972. Aslraphys. J. Leners 175, L19. Hutchings. J.B.: 1974. Aslrophys. J. 192.685. are sii Hutchings. J.B.: 1975. Aslrophys. j. 200.122. Tl Hutchings. J.B.: 1976. Aslrophys. J. 203.438. Hulchings. J.B., Cranipton. D.. Cowley, A.P. and Osmer, P.: 1977. preprint. Lamcrs. H.G.J.L.M.: 1972. Asiron. Aslrophys. Suppl. 7.113. Malnnc. R.C.. Johnson. M.B. and Bethe, H.A.: 1975. Aslrophys. J. 199,741. In McClinuick. J.E.. Kappapon. S.. Joss. P.C.. Bradt. H.. Buff". J., Clark, G.W., Hearn. D., Lewin, W.H.G., Matilsky, T., Mayer, W. and Primini. F.: 1976. Aslrophys. J. Utters 206. L99. Milgrom. M.. 1976. private communication. Ir Milgrom. M. and Avni, Y.: 1976. Asiron. Aslrophys. 52.157. main Pandharipandc. V.R.. Pines. D. and Smith. R.A.: 1976. Aslrophys. J. 208.550. Paradijs. J.A. van. Hammerschlag-Hcnsberge. G.. van den Heuvel. E.P.J.. Takens, RJ.. Zuiderwijk, E.J. and Loore, C. de: I976. Nature 259. 547. Paradijs. J.A. van, Zuidcrwijk. EJ. and Tukens. RJ.: 1977. Asiron. Aslrophys. (in press). Pctro. L.D. and Hihner. W.A.: W74. Aslrophys. J. 190.661. Rappapori. S.. Jo-». P.C. and McClinlock. J.E.: 1976. Aslrophys. J. Leners 206, L10S. Sterken. C.: 1976. thesis. Free University of Brussels. or: Stothcrs. R. and Chin. C: 1977. Aslrophys. J. 211.189. Underbill. A.B.: 1976. The Early Type Stars. Reidel Publ. Comp. Dordrecht. Holland. Wallerstein.G.: 1974. Aslrophys. J. 194.451. ucai Roche lobe is completely tilled, together with its va- the temperature-equivalent width relationship. I his is width vi

124

The Orbit and Masses of 3U090O-40/HD 77S81 205

Wickramasinghe, D.T., Vidal, N.V., Bessell, M.S., Peterson, B.A. and Perry, M.E.: 1974, Astrophys. J. 188,167. Zuiderwijk, E.J., van den Heuvel, E.PJ. and Hensberge, G.: 1974, Astron. Astrophys. 35,353. Zuidewijk, E.J., Hammerschlag-Hensberge, G., Paradijs, J. van, Sterken, C. and Hensberge, H.: 1977, Astron. Astrophys. 54, 167.

J. van Paradijs Astronomical Institute E.J. Zuiderwijk University of Amsterdam RJ.Takens Roetersstraat IS G. Hammerschlag-Hensberge NL-1004 Amsterdam (The Netherlands) E.P.J. van den Heuvel

C. de Loore Astrophysical Institute Vrije Universiteit Pleinlaan 2 B-1050 Brussels (Belgium)

APPENDIX A number of measurements x, and y,- are given, with weight a,-. We need a least squares solution for a, p and y, according to the relation y=a+psm(x-y) (Al) Define the following quantities:

/t sin x,)/Zgt ( =(Sft sin D=(Zgicos2x,)/Z.g( (A2)

The solution is in terms of these sums: _2£(i4F-B£)-[^C-B(l-D)]+y[C£-F(l-D)] (A3) tgy ~ 2F{AF-BE)+lBC-A(l+D)]-Y[CF-E{l-hD)] a 2JAF-BE) (A4) [£(1+D)-FC] siny + [F(l-D)-£C] cosy a= Y+p(F sin y.-E cos y) (A5) The simplest way to derive these equations is to transform equation (Al) into a linear equation in a, p sin y and p cos y. The ratio of f) sin y and p* cos y gives equation (A3). Then equations (A4) and (A5) are simply derived. The value of Lo for the solution is: 2 L0=(Sg, (O-C) )/£a,=Z-aY+P(fl sin y-A cos y) (A6) In order to find confidence regions for this solution we use: . (A7) In our applications ct is always an "uninteresting" parameter, so in determining the confidence region we maintain dh/da=0 by eliminating a between equations (A5) and (A7). The result is:

-1 + i-(Z- Y2)+ ?Ë[(fl-FY?Ë ) siny-(A-EY)cosy] + z^-[(1 -E2-FJ)+(2£F-C) sin 2y (A8) +(F2-E2-D) cos 2y]

2 \i=at + P(a2 sin y+a3 cos y)+P (a4+as sin 2y+a6 cos 2y) (A9) u can be identified directly with p2/(n-m) in equation (6). width versus temperature dependence would add to such the following reasons. be

125

206 J. van Paradijs el al.

The limiting values of y in the confidence region follow from:

— (AIO)

The surprising fact that this solution contains at and u in other combinations than (at — \i) only, is a consequence of a relation between the coefficients of equation (A9), viz.:

2a1aiai+ala6-alafi-a\at.-alai+4al(al-al-al)=Q (All) •5 The extreme values of f) and other functions of (3 and y in the confidence region are determined through o an iterative interpolation procedure.

Is o 1

sis Figure 2 A problem determined by two parameters is considered. If one is interested only in the limits on the value of a. one needs the single-parameter confidence limit. This is the coarsely hatched area: b can have any value. If one is interested in a and b simultaneously, the extreme values of a and b are determined by a confidence region, bounded in the direction of both a and b, but with o the same total probability inside. This gives the finely hatched area. Now the confidence limit on a has increased and the value of L(pj increases with the number of interesting parameters.

tt a S

» 5 s; Table 1 Observational dala Table 2 L. .-. used for radial velocity measurements Plate E\po- 1 Plate Expo Obser. num- Dulc UT sure Phase' num- Dale LT sure Phase • \ id X id. Id » id • ber' lime \er _ ber' time vcr * Gl»3k 1971 AM 01 09 ill «0 O.k72 «OH G730k 1)75 NO» oa 07 k9 15 0 .516 G19k2 1971 •PR «2 02 35 5a 0.562 «OH '.7J15 1175 Hilt oa oa 07 15 9 3734.37 H I H II 4120.80 a* 1 st III CJJk« 1971 AP>« 11 91 50 52 0.691 «OH 572C6 1976 1O« «a 01 23 11 0.539 3994.99 4552.65 GH9a 19T3 AM J» 02 00 100 o.aol «OH 175C7 1475 NO» «a oa 19 13 0.SkO 11 I 4009.27 Ha I 4143.76 He 1 4567.87 si III 51166 1979 AM 19 12 k2 ai 1.917 «OH G720S 1175 NOV oa oa 56 13 0• 5kS 3750.15 G3179 J.V71 AM 07 16 SI 21 0.112 «OH «J7S70 1176 HAY to oc 27 27 ! .020 3770.63 H I 4026.20 H» I 4253.90 0 11 4574.77 SI III GH96 1171 APR aa 19 19 2U 1.262 «HH 57579 1176 HAY 10 on 56 2> 0.022 G3909 1471 AM 99 01 oa 26 C.166 «OH '.7560 1176 «AY 19 01 19 la 9 .02k 3797.90 H I 0 II 4340.47 fl 1 4641.81 0 II GJ12Ï 1973 AM to 11 20 27 O.k61 «OH 57591 1176 HAY 10 23 35 20 0.120 L 4075.87 fi»a» 197k HAY 12 19 29 f a.u; VDH (7592 11 10 01 19 1.130 I 3819.60 H» I 4088.86 Si IV 4349.43 0 11 4661.64 0 • II 3835.J9 H I 4097.37 If III 4366.90 0 11 4676.23 0 II F169k 197k HAY 01 OC 10 Ik .1.75a «OH ',7593 1176 HAY 11 Oj 25 19 a.111 I, f»7M 197k HAY 93 23 5k 2a o.ais «OH 5719k 1976 H«V 11 09 59 21 i .131 I 3889.39 H I 4101.74 H I 4387.93 H. 1 4713.20 H» I '1709 117k HAY 06 02 12 101 0.071 «OH G7<>0k 1176 RAY 11 23 10 i .2kO L '1787 117k HAY 48 02 11 13 0.296 «OH G7&QS 1176 HAY 12 00 la 20 c.2kl L 3964.73 He I 4116.10 Si IV 4471.50 1 4861.33 H I '1719 197k HAY 09 01 2k 11 O.kC2 «DM 576(6 1176 HAY 12 oc kk 2u .2k5 I a* ' 175» 117k 1»» 99 21 k7 17 (.506 «OH '•Tilt 1176 1AY 12 23 36 la 0 .359 1. '1765 197k HAY 12 23 (6 a O.ai7 «OH G7ÓU 1176 HAY 12 23 57 16 » .356 L G6k&9 1175 JAN 27 09 36 2a 0.710 L 57*19 1176 HAY 11 00 20 IK 0• 35* L G6k91 1975 IAN 2a 09 00 21 a.«si. G7S31 117» HAY Ik 02 Ik 69 .k7k L G6»97 1175 JAN 29 05 12 ia 90 2a 5.970 ""* 1*76 HAY Ik 03 • • kOO I

G65C5 1175 JAN 14 Ok 21 2a 0.076 576M 1176 HAY Ik 23 29 2k 0 973 I S.S 58511 1179 JAN 11 05 kk 22 4.165 -.71kO 1976 HAY Ik 23 52 25 0 57S L Table 4 Adopted accuracy p of a radial velocity Table S Orbital parameters for G6519 1975 'ca 11 OS 25 111 0.10k 1176 HAY 16 a» 26 95 9 .576 L •2 S '1116 1975 HA» 10 00 19 a J.»3» G76k2 1976 HAY 15 01 oa 35 0 601 I measurement of a single spectral line 3U0900-40» ']12k 1975 JUM 41 0( kk Ik o.ao6 <*Tt>k3 1176 HAY 19 01 kll 23 0 593 I r.7115 1979 NO» 9* 01 «0 102 J.092 G7 jkfc 1176 <1A» 15 02 15 31 0 5S6 L 57136 1179 110» 99 «7 22 !2 0.199 r,'1,145 1176 HAY 15 92 k7 29 'J 919 I 282.89138 G71J7 1479 NU» 09 17 57 11 0.2*2 575k6 1)76 KAY 15 03 22 36 0 591 L spectral p (km/sec) G71S1 1979 NIW 99 •6 92 11 0.205 5?65k 1976 HAY 15 23 21 21 0 6Bk L 1500 i 5715» 1175 NO» 06 06 21 1C O.ICk 57655 1'176 «AY 15 23 57 23 0 <«7 L line I'AI 0 0.096 -t 0.019 G7159 1175 W>« 06 06 59 90' 0.307 57656 1976 HAY 16 09 22 21 1 6B9 L G7169 1975 NOV 06 07 29 2k 0.309 C76S7 1976 HAY 16 10 50 2k 0 691 I "a 161° i 071*1 UTS HOD 16 67 k9 21 0.111 1.7654 1976 1AY 16 12 47 au 0 700 L 15° «7161 1975 NO» 06 oa 97 16 0.119 r.76S9 117S HAY 16 01 ka 25 a. 705 I 0 II 15.67 6716* 1975 NO» 16 oo 60 16 0.316 r.76611 1I7J HAY 17 21 29 22 9 909 L s sin 1 (32.83 i O.45)106 ka Gnat 1975 NO» 97 06 55 13 O.klO 57669 1976 HAY 14 00 11 17 Oi 911 L ' Si III 1^.38 G7111 1975 NO» 07 97 19 15 O.kSO 57670 1176 HAY ia 11 59 Ik 0. 91k L a o.iri i 0.048 G7102 1975 NO» 07 17 31 Ik 0.421 r.7672 1176 HAY 10 01 kk 30 0. 916 L G71B] 1975 NO* 07 07 46 Ik 0.4ËJ 57673 1176 HAY la 02 17 2a 0. 921 L Si IV 9.09 5710k. 1975 NO» •7 •a Ok 13 U.k2k 57676 1176 HAY 16 03 Ik 29 0. 925 L 'Constraints: /•=8.9681 ±0.0016 (this He I 13.50 paper) mideclipse at JD 2442611.89 ± j, G71OT 1975 NO» 07 a» 13 U.W9 S7677 19'6 HAY ia 03 k5 26 a. Ml I G7H6 1975 NO» 47 OS S7 11 9.k2C -.7696 1976 HAY 19 Db 27 2a 0. L H I 11.78 0.0S7 (Rappaport el al, 1976). G7Ü7 1179 NO» 07 oa ft 111 0.429 G7689 1176 HAY 19 01 kl 20 1. 010 L Errors given are la. srsti 1975 HO» 10 16 55 Ik 0.532 1176 HAV 19 02 2a 26 0. 031 L sd-1 linea (except H) 14.03 G72ie. 1975 110» 1)0 07 13 15 0.511 G7692 1976 HAY 19 02 56 22 1. 03! L «7201 1975 NO» «6 07 32 Ik 0.515 07692 1176 HAY 19 92 56 22 0. 03! L

Notes to table I: i * plate number F series: 20 A/ram 'S G series: 12 A/mm * phase calculated according to Table 6 Orbital parameters for HD 77581 * (JD-244I446.54)/8.9681 5 H: G. Hammerschlag 0 II si in Si IV He I all lines VDH: E.P. J. van den Heuvel L: C. deLoore period (days) 8.9682 ± 0.0022 8.9699 1 0.0027 8.9676 ± 0.00i2 8.9676 ± 0.0021 B.968I ±0.0016 P: I. van Paradijs eccentricity < 0.105 0.171 t 0.035 0.145 ± 0.037 0.178 ± 0.058 0.136 ± 0.046 K (Ion/a) 22.81 ± 1.75 26.22 1 1.92 22.35 ± 0.85 20.77 t 1 .35 21.75 ± 1.15

in undefined 310° ± 26° 21° ± 13° 16° ± 20° 352° t 20°

' Errors given are I o~.

M rj J\I r J N s| -J-M -JN ^ 'n S ril Ï » f * t S M PiPPliliii iiiiiiilii MMM 127

208 J. van Paradijs et al.

Table 3 Heliocentric radial velocities for individual spectral lines IJO • JO -ZIUIIOI 4061 «Ml 4102 3869 3035 1797 1770 8750 171» 1779 1773,626 -20.* -6.9 -21.* -13.6 -21.3 -*.O -1S.1 272*.613 -5>.7 -*0.1 -4.0 -39.4 -31.2 -22,2 -14.7 -27,5 -27,7 1774.6110 -27.9 -0.9 -12.2 -0.* -2.a -16.5 -*l.2 272*. 825 -72i 177) 1775.582 -23.6 -5.9 -1>.7 -1*.6 -9.7 -17.9 -10.2 -11.6 272». H7 -5S.11 -i. J.I -6.8 -33.6 -22.4 -23.6 -19.6 -26.0 -37.2 177! 17T6.f69 -23.7 -21.9 -1.6 -11.9 -22.1 -16.2 -19.2 -19.9 -36.a 272«.K*a -*9.* -36.Ï -13,»-41.1 -37.5 -22.3 -26.S -6.B -51.0 1771 2724. Ml 1771 1777,613 11.9 3.3 9.2 *.* -2-1 -2.* 2.9 0.S -1.2 -64.4 -15.9 -18.6-25.1 -0.4 -12.9 -10.5 -16.3 -27.0 177! 1779.S39 -5.1 ii,3 33.9 25.1 11.6 6.* *2.2 11.1 272»,071 -66.7 -36.2 -H.2-35.7 -11*7 -24.3 -2B.3 -30.1 -21.0 17U,632 12.3 26.2 13.7 12.0 6.2 23.1 12.3 *.2 2931,519 -1.2 -2.U 23.3 20.4 0.5 10.6 4.» -12.5 13.2 1781 1711.131 -7.1 1.* 22.6 -2.5 C.I 13.1 11.6 *.9 2939.539 l|.9 9.9 16.1 15.6 9.5 -2.5 29.5 6.5 22.0 1701 1782.556 -29.* -30.3 -1*.6 -2*.S -29.* -31.6 -15.3 29ns,555 3.4 2.7 17.1 170! 2169.522 -19.1 -31.1 *.O -2*.7 -*7.9 -2.9 -a.C 11.2 Q4 •*.4 13.6 17.7 23.7 2161 2171 -1.5 a. 3 21.5 2S.6 2170.922 -1.2.2 -61..9 -9.6 -22.2 -17.6 -26.0 -30.2 -5.a -3S.7 2999.511 34.» 0.1 Ik.k 11.2 2171 2171.477 -16.6 1.3 7.4 *1.6 14.4 17.6 14.2 13.1 3.5 2173.943 9.7 *.9 56.* a.6 tO. 5 13.6 -31.3 *5.1 27.5 2999,535 -0.1 15.5 39.3 22.4 10.0 217: 217».511 -27.2 6.6 17.9 9.3 5.8 -*0.3 15.1 2a.3 26.6 2910.492 -8.2 6.5 22.0 2171 2175.51". -39.6 -26.* -1*.6 -10.* -5.9 2B.1 -1,7 -2B.* 2913.511 3.1 4.3 27*7 -2.7 -5.1 7.9 11,8 9.3 1.6 217! 2176,999 -33.0 -30.1 6.* -12.0 1.7 -35.3 -15.2 3.a -*a.a 291C5.U 7.7 15.5 35.8 BO 12.6 7.9 17.1 -5.0 2171 2177.492 -79.9 -39.1 -16.9 -19.B -3.6 29.5 -20.0 10.3 2911.495 -22.9 3.3 0.6 -27.3 -23.6 -10.5 -1,6.9 -6c J 217) 2180.463 -1*.6 -2*.* 6.S 2".9 -5.6 -ia.9 -19.0 a.5 2911.490 -25.4 -26.o.9a 15.4 •17.4 12.3 2101 2*39.6*7 -70.6 -37.9 -16.3 -16.9 -*0.6 -97.5 -2*.2 -21.5 2911.517 2B.6 33.» -23.7 -16.9 -14.8 •20.2 1419 2MI.7U -62.7 2912.592 -k».1 -16.k 1*40 -56.* -2*.6 -16.1 -25.1 -16.1 -71.6 -4k.3 -19.2 -i«3. a -22.1 -30,9 -28.3 -27.0 1441 2441.734 -50.7 •21.5 11.9 -35.a -11.9 -5.8 8.6 -9.9 2912,638 2442.684 -6.T 31.* 31.4 2913.472 -79.1 •36. f -l.k •40.5 -19.5 -26.0 -37.9 -27.7 -22.0 24«! 2«»3.658 -9.9 l*.a 36.2 10.3 23.1 16.1 1.0 :a.9 2913.49» -»4.1 -25.1 -5.4 -46.7 -19.1 -16.1 -27.9 -»0.4 24*3 2**4.729 -39.» 9.2 -*.B 2911.517 -58.7 -31.0 •6.5 •15.5 -19.7 •18.6 -11.4 •la.a -34.3 24M 2969.919 -11.2 •14.6 a.i a. 5 -23.2 -9B.B 2913.547 -27.5 -11.7 •22.9 -25.5 -20.9 -*g,5 -20.3 -32.1 2501 2566.531 -23.9 -6.7 2913.569 -26.» 2.7 -17.6 -26.3 -32.6 -11.6 -«1.9 2561 2720,636 2.5 -30.2 37.1 11.2 11.6 11.6 15.2 6.3 27.0 2913.594 •27. « -1S.4 -21.0 -26.8 -14.5 -3S.6 -32.2 2720 2721.105 9.1 10.3 33.9 15.6 10.2 21.2 25.2 1*.5 2913.616 -26.7 -19.1 -28. 2 -9.B -27.B -19.1 -*3.6 2721 2721,630 29.9 30.6 16.5 -1.5 15.0 2413.640 -28.6 -4.2 2721 7.* 39.2 *7.* 2.0 16.3 29U.474 2721.69* 11.* 31.9 3*.3 16.3 3*.a 25.* ia.0 16.5 -16.9 -18.9 -35.0 -22.2 -23.B -24.7 -35.5 -35.1 2721

2722,763 -0.5 2722 2722.765 -23.1 0.3 -2.9 12.I -16.B 291». 515 -»3.2 -33.6 -5.9 2722 2722.606 2.9 2914.535 -37.7 •30.9 -12.2 -«7.3 -1B.0 -30.0 -25.4 -33.7 -28.4 272! 2722.62* -17.7 -0.5 15.5 13.9 «.2 291».616 -12.8 -26.5 -7.9 -37.9 2722 2722,958 -1.0 19.9 >.* -lo.a 2.9 1.1 1*.9 -13.1 291».658 -45. a 272! 2722,672 -5.7 0.* 2916.474 -31.4 -15.1 -18.1 -4.3 -16.6 -6.7 •11.1 -19.7 2722 2723.767 -39.2 -*.» -8.2 -15.7 •15.6 •7.6 -5.5 -27.5 291a.522 -34.2 •12. a -15.4 -1O.B 7.» 0.3 •19.9 2723 2723.000 -40.5 -21.3 -1.3 -20.9 -19.0 •22.* 0.3 9.6 2916.517 -24.2 •9.5 2723 2723.612 -23.3 -17.1 -29.3 -(.» -7.7 -12.2 -19.3 -19.2 2916.572 -21.1 -22.1 2723 2723.823 -19.6 -21.7 -19.B -19.* -17.* -5.9 0.4 -27.* 2916.595 -19.1 -15.9 2723

2723.835 -*7.2 -12.2 -0.7 -21.6 -17.3 -14.* -11.2 -2.9 2916.635 9.9 2723 2723.0*7 -49.6 -2*. 5 ,656 IB. 5 272! 2723.690 -«6.7 -21.7 -8.2 -20.6 -11.a-12.8 -14.6 -20.7 -2t.5 2917.519 -16.9 -7.4 2.7 -IC.3 (.5 272! 2723.666 -29.2 -2*.l -1.1 -28.1 -17.9•22.2 -8.* -16.1 -26.3 2917.576 -14.5 -7.9 13.9 3.3 0.3 2723 272».707 -67.2 -38.9 -17.7 -38.5 -19.a-26.9 -16.1 -33.4 -22.3 2917.603 -23.1 1.3 19.7 27M 272t.aoa -50.9 -39.* -1.5 -27.0 -21.1-36.2 -16.7 -19.3 -*1.0 2917.622 -17.5 14.9 272*

H X H* I M£ I HE I HE ME I HE I f E X HE I IJO -24400C1I HE X HE I HE I HE I HE I HE I HE 1 HE X HE I (JO - 19 1964 «-S69 4PZ6 412B 414)3 1*387 4471 4713 301? 396» 4009 -4J26 4120 41»! «ia? 4*71 4713

17-M.62fi .2 -35.9 7.5 5.7 •26.3 -39.2 -26.9 272». Bil -21. 6 -4. 1 -16.7 -25.2 -46.4 -25. 7 -16.1 -3».2 -34. 7 1773 — -36.6 -1.3 -Zl.7 -17,2 -15.1 2724.B25 -19 2 9. 3 -32.3 -7. -26. 9 -22. 5 -21. 0 177* 177'ï.^l? -I .7 -13.5 -14. Z -se.* -8.9 -13.6 -Z3.4 2724. 817 -26. 2 -7. a -24.7 -24.» -37.2 1.9 -19. e -»2. 3 -23. 6 1775 1775.53? .2 -a.i -H.7 -77. -ZO. 2 -3.it -15.7 22.9 272».848 -10. 1 0.3 -24.U -26.7 -7. 3 -29. 2 -23. 7 1776 177r.f,ll - .1 15.7 21.4 -11.2 -Z5. IS. 4 -15. Z -5.3 -7.5 2724.85» -11. 2 -21. 5 •25.1 -34.6 -26. 3 -1B.0 -24. 6 •9. 9 1777 1771. 5*5 • .5 29*6 58.4 17.8 14.7 2724.871 -2» 0 -31 2 -21.0 -26.3 -39,1 -20. 8 -15. 1 -37 0 -25. 1 1779 tra-..«i3 .2 16.1 40.3 17. b -£.1 3H.S 12.2 16.6 23.6 2103.519 -5 1 2.6 -12.7 -0. 6 -*. 1 8. 8 19 4 1790 1711.631 -e tl.. -3.Z 2.C- —31.' 6.7 -5.2 1.» 15.6 2900.539 12. 3 15.6 19. 2 2. 6 15 8 38 6 1701 17**."ï 5* -1 „5 5.3 -22.3 -34. -4»fc -19.6 -ït.l -2.4 J1IÜ.5S5 1. 1 -11.7 6.2 -11.7 19. 9 11 * 13. 0 10. 9 1702 2111-5?? -31. 1 -17.3 -21.6 -12. -15.4 -35.1 -45.9 2919.493 ! 5 19.2 -21.4 15.4 *2 1 IB 6 21 1 34. k 2169

217J.522 __, .0 -3 l.i" -tC. 6 -Z3.5 -15. -9.4 -20.1 -19. a 2909.501 17. 2 19 9 12.5 -18.0 36 1 12 5 11 0 2179 21M.477 —P -1S.S o.l -24.4 -7. 13.C -64.4 -19.9 -30.2 2939.517 16.1 13.0 17.0 35 6 2* 9 16 1 29 1 2171 2171.591 -12.1 -2.6 23.3 2"*99.535 19 2 16.4 19.6 11 2 6 5 16 k 25 k 2171 4.9 4.6 2110.492 a.i 23 1 21.9 3.9 -24.0 5 0 17 5 7 9 2174 2173!s9fc 13.1 -e.A -«. 15.9 -11-8 -Z1.9 2910.513 6 1 4,7 -18.9 21 0 17 9 12 1 11 3 2175 J91i.SU 1» 9 7,5 30.5 0 9 16 6 6 5 14 0 2176 •177.49Z -56. Z -14.1 -22.2 -3S.9 -8.8 2411.495 -9.0 -15.9 -3B.S 15 1 26 5 -30 2 35 7 2177 ïi*'*«^63 -3Z.S ie.o -16.9 2911.498 -16 3 -21.7 -26 B -7 7 -2 1 2181 -3 2111.517 Z4 3*1.647 • 0 -59.6 -36.4 -ZZ.6 -38.2 •15.0 —23.7 —21.» —3.3 2439 244..71' 3.". -4Z.1 -Z«.4 -7.2 -41.2 -4B.3 '412.S92 -2» 9 -32 2 -14.7 -5». 9 -28 1 -23.3 -31.1 -33.4 -20.4 2440

2*41.711. -4.1 -3.9 -15.4 -7.4 -2S.2 2912,630 -37 3 -3k.9 -11 a •35 0 -31 .1 2a.a 9.7 9.6 2913.k72 -12 4 -20.4 -57 5 -16.8 -21 8 -6 7 2k»i 244.1a%5A .2 2Z.3 19.* -Z1.4 35.6 18.3 -25 7 -2 6 2 * 1.9 < ïz.a 2913.494 -21.8 -2!. 4 -19.5 2k»3 2»>4-«.72 * -5.1 11.4 17.5 C.5 23.1 -0.5 -21.9 8.2 2913.517 -23.9 -16.3 -39.1 -14 1 -5 * -ZO 8 -21 .2 1 .2 1Z.9 27.6 -1Z.3 2913.547 -3! 2 -16.7 -42.6 -7 2 •15 6 -32 t ï 0* 2563 2*$*j.531 -1Ï.2 -11.9 -1.7 -32.6 -53.6 -Z9.fl -22*2 -27.9 •17.9 2913.569 -12 7 -15.8 -07.3 -9 6 •16.8 -22 e 1 a 2566 J7Z*t.*1* 3 -6 «4*9 4.7 -14.8 -t.G 14.7 14.6 H.7 2113.594 -31 3 -31.9 -22.7 9 3 -20.3 -19 6 -6 .8 2720 2721.6"5 • 1 é.h -12. 11.6 16.7 -2.9 2911.616 -36.9 -47,6 -38.5 •17.9 -17 9 -10 .9 0 .3 2721 27Z1.S16 .5 44.9 12.3 14.6 -=.9 lB.fl 19.Z 14*4 -1.5 !913.64C -39,1 —kl. 3 -28.3 -28.2 -19 3 -2* »7 _k .6 It 7.1 2721 :72l.B36i • 0 -15.1 31.5 46.2 16. 0 26.9 2914.474 -31.7 -5».O -35 5 -16 3 -10 • 8 -19.5 2721

srzz.ru ' .2 -8.3 o.s -3.1 7.3 10.0 -6.0 Z-6 2914.494 -3».7 -9.0 -31.4 -60.6 -41.8 -11 0 -26 .6 •21 .7 27 i; 27ZÏ.78* a.1 14.7 7.5 19.0 Z.B .1 241»,515 -27.4 -90.5 -10 9 -2* -33 .5 -24 • 9 i .5 e 2722 2722.80*. -5.(1 7.3 1.6 17.! 3.0 5.5 1.7 291».535 -35.6 -26.6 -1 4 -16 .5 -34 .8 -1* .2 2722 2722, «ï?*, .5 1.* -3.8 4.4 -12.3 -Z.4 1 • 1 14.7 3 -29 • 6 : -35,1 -37.7 .-17 •19.1 2722 27Z7.458 241».65K -35 • 3 -30 .6 1 12*2 2712 2723.47? .9 6.6 6.0 11*4 5.L • 3 5 5 -1* 3 -17 .1) 0 .7 T 7.6 2916.474 -11.5 -10.9 —4.2 -34.» 2722 2 23»7S7 -3.6 -12.6 -Z.4 -9.-» •5£.J -Zl.7 -4.0 -i k.t -7.7 2916.522 -7.0. -14.» -19.5 -1 2 12 • 5 -11 .8 -17 .2 2723 2723.41P -11 • O —11.5 —tt. 6 -11.3 -9.6 -3 -8.4 2916.537 -7 5 -7.9 .3 -* * -12 .1 -6 .6 2723 zrL'i.siz — .3 -5.7 -IS.* -34.* -5.6 -14*7 -2 • ft -J.7 2916.972 2 7 2.0 -15.6 -52.7 2 .1 -11 .2 -17 .0 5 .1 -IS .2 2723 1*23.123 -7.7 -Z4.7 -11*3 -31.7 -0.7 • Z -8.1 2916.595 -13 6 6.8 -6.a -lk.l -1 .3 -5.1 •9 • 0 4.5 2723 2723.415 -6.3 r.i -9.9 -13.1» -14.; -3.6 -6.4 -1B.5 15.1 2915.635 -15.0 -23.0 -0 .9 -5 • * •12 • 3 29 .1 2721 2723.847 -12 -*».* -2Z.

The Orbit and Masses of3U0900-40/HD 77581 209

Table 3 (continued)

IJ» -(««((((: o n 0 II a ii 0 II 0 II 0 II 0 II 4(79 4(99 «949 «266 46«1 4661 «676

-36.4 2724.613 -39.5 •7.0 -16.3 -56.1 -52.7 1773.6» -«5.1 -»1.« -63.9 -18,9 177».616 -11.6 -«8.9 2724.625 -27.6 1775.592 -9.3 -97.4 -22.5 272».«37 -34.6 -11.1 -9C.2 -3».9 1778.513 -32.4 -9.» -(7.2 -21.1 -6.6 7.9 T724.64B 6.5 -33.9 1777.(13 •15.7 -17.2 12.3 -31.7 '••72». 631 -2«.9 -50.0 . -2».O 1779.919 79.5 i, 72». 871 -28.8 -9.3 -««.0 -35.2 1789.692 ll.( 10.» 0.6 91.0 i! 906.519 28.3 3.7 1.2 ».3 1908.539 «9.9 -26.» 1701.631 (2.5 •j.a -0.5 1916.555 3». 9 -30.» 17(2.996 -(.5 -11.6 -29.3 T999.483 11*9.522 -6.7 -«7.1 -62.6 -50.1 13

2170.512 -*2,( -65.5 -35.0 •17.2 2909.501 -19.2 22.4 2171.477 -9.1 -«2.4 -0.9 -40.1 12.7 2999.517 31.9 9.3 2173.513 -7.6 2999.535 -11.5 35.4 -11.1 18.2 - 9.2 2919.492 -2.1 2174.901 27.3 99.2 16.6 2910.513 15.0 (179.994 —26.( -7.1 -«•9 9.3 -12.2 2910.531 5.4 2178.599 -94.0 -23.0 9.1 29U.465 2177.492 -73.6 2911.498 -3»Ir 2100.4*9 2911.517 (419.U7 -71.0 •««.0 2912.992 2440.7» 4.6 -47.9 7.6 -22.1

(441.734 17.7 -(.6 -9.6 2912.636 2». tktilat» 29.0 -33.0 2913.472 -7».5 24*9.*9* 56.2 2913.494 28.» -7.9 -25.8 -12.3 2644.T» 7.9 -10.9 2913.517 -13.1 -««.6 25(9.5(9 -2o.a 2913.547 » -57.7 2566.931 -56.4 -53.0 -50.5 -78.» -91.5 2913.569 -39.9 2720.63» 6(.( -22.9 2913.S94 -31.3 (.6 4.7 1.9 2913.616 17.C -«3.8 (721,(05 10.7 2913.640 -7.6 -52.» 2721.0» -9.2 62.4 22.5 231«.«7« -59.6 (721.(94 (9.2 -6.9

27(2.7*9 6.9 -1.1 11.4 17.1 2914.494 -5.0 -52.8 -48.9 2722.7(9 -2.9 -31.4 -4.0 19.9 -20.1 291».515 -3». 3 -9.5 -tS.I 2722.(16 -5.6 291«.535 •26.6 2722.(24 -l'.i 9.6 -3.1 -10.4 »!.« 291t.616 -45.8 2712.919 7.9 1.7 -15.9 2914.650 -36.» -2V.» 2722.672 -15.7 -16.9 30.2 12.1 2916.474 -33.6 -29.6 2723.7(7 -7.» 5.5 12,6 -6.6 6.6 2916.522 2729.(09 1.3 -24.9 -7.5 -11.6 2916.537 -2«.6 2723.(12 -19.6 -26.3 3916.572 -39.8 -14.6 2729.(29 -19.6 -29.6 -24.2 2916.595 -16.3

2719.(35 34.9 -12.» -1.2 12.9 -21.9 -7.4 2116.635 -10.7 2729.(47 •19.0 -(.6 -9.5 -12.2 2916.656 -12.2 13.8 2723.858 -1«I» •99.7 -16.9 -7.8 12.5 •6.9 •12.4 2917.519 -7.7 2723.968 -6.9 -94.3 -17.C •6.1 -2a.2 -20.3 2917.57» -27.2 2724.7(7 -95.4 -96.6 -4.9 -91.9 -42.9 2917.693 23.8 -5.2 (724.(00 -99.1 -22.2 -47.7 -18.0 2917.622 12.6

(JO -24*90001 N II H III SI III 31 lit SI III SI I» SI I» (JG -Sli«0000l H II N til SI III SI III SI III Zl IV SI IV 1995 4(97 4552 4967 4S74 4069 «116 3915 »!17 «552 »567 »57» «CM «116

1773.626 63.7 •8.5 6.6 2721.813 -15.3 -11.2 -17.5 -26.1 -23.0 -10.6 -15.1 1774.698 9.9 13.9 -11.9 -5.9 -16.0 -2.7 -6.1 272».«25 0.» -27.2 -22.1 -1.8 -13. C -19.6 1775.592 -3.4 7.4 (.1 •25.1 273».837 -5.fi -27.9 -32.9 -13.7 -16.5 1776.583 -16.9 -9.5 -6.5 -21.6 -66.4 -14.1 27>a.t«>l -8.1 -25.7 -15.3 -7,r -10.6 -7.9 1777.613 -2.9 11.9 7.9 -22.5 4.5 -«. 272»,859 -22.7 6.7 -23.9 -21.3 -l».l -30.6 1779.535 23.9 l«.l 19.0 32.1 39. 272».671 17104632 14.9 9.6 11.4 32.6 21. 2918.519 3». 9 It. 7 fl.7 -2.0 3.9 17(1.631 21.7 9.6 3.7 -0.6 6.9 10.2 20. 2

2179.522 -»7.7 1.2 -35.9 -24.9 -17.3 -11. 2919.511 3C.3 10.9 2». 3 25.1 22.3 2171.677 -21.2 •6.3 •2a.« -9.3 -1.7 -3.( •10. 2999.917 17.6 29.» 3t.O 28.9 31.9 2171.593 6.4 05.0 16. 2919.535 23.2 5.0 19.6 29.9 31.5 2174.561 -1.9 16.5 7.4 29.3 2910.492 21.5 -1.9 6.8 22.1 1«.9 2179.S94 -5.6 -7.1 •8.1 -5.7 30.6 5.0 2919.513 25.9 26.6 23.4 5.6 22.» 31.% 2170.559 3.5 •11.5 2)11.531 39.7 15,5 13.1 »5.6 27.7 30. » 2177.492 6.2 -31.1 -36.a 19.6 1.6 2911.485 49.? -lk.6 •«.9 C.6 18.7 2161.463 -30.0 -6.2 -7.1 2911.41» 26.» -24.6 26.6 -0.» 32.5 2439.647 -17.3 -12.7 -0.9 •1«.6 2911.517 21.7 -36.7 30.1 -10.9 10.5 2449.7U -62.2 -16.2 •(.1 3112.592 -21.6 •26.3 -11.6 -28.9 -13.9 -11.1

2««1.73« -17.3 9.9 9.5 -17.1 9.6 (.6 2912.618 -21.4 -29.1 -12.7 -19.9 -38.k 2»«2.68« 31.0 -16.4 11.6 20.2 2913.472 -33.9 -D.2 -16.9 -11.9 -10.3 2«43.658 95.1 (0.6 26.6 21.2 2913.694 ' -6.1 1.7 -9.5 -2S.5 -16.» -19.6 2»4».72<1 la.a -2.5 14.0 (.( 2913.517 3.5 -»6.9 -25.6 -11.9 1.0 2569.509 -29.1 •3.1 0.9 -1.0 -9. 2911.5«7 2.6 -15.9 -3.6 -13.8 -ie.7 2566.931 -10.4 -7.5 •27.6 -2*.l -8.6 -21. Z313.561) 3.» • 19.7 -1.» -7.5 -19.3 2720.03a 17.4 3(.2 25.9 16. 2911.59» -15.0 -13.7 -21.4 -12.8 2721.(95 17.9 16.7 19.6 6.9 29. ( 20. 2911.ill -11.1 -29.» -38.7 -29.1 -21.1 -27.3 2721.030 23.7 17.9 2(.a 29.1 12. 2913. WC. 21.4 -40.2 -30.7 -16.0 -9.0 Ï73I.B5» 10.3 4a. a 19.2 16. 2

27.i.763 22.0 1.0 a.) -15.7 10.6 25.9 2914.494 -3k.7 1.» -29.6 -15.3 •2«.O -15.6 2722.795 -10.1 6.2 6.9 9.1 18.6 15.( 19.4 291».515 -29.7 -5». 7 -11.2 -92.9 -16.7 2722.006 16.6 6.4 •6.6 ;t.i 1.» (.4 2914.5S5 -1«.8 -31.5 -«3.7 -30.4 •12.0 -23.6 2722.024 -7.3 7.9 -0.8 2.9 16.1 9.2 2914.616 -12.9 -11.3 -27.6 •16.9 1C.6 2722.1» 11.» 19.0 9.5 1.0 (.7 (.9 291».650 -58.1 -*9.a 2722.072 3.7 6.0 -a. 9 (.« 24.9 2916.474 -4.3 -1C.U -30.9 -6.6 3.0 2721,7(7 2.9 19.8 -11.» •2.6 -13.» 19.1 -7.9 2916.522 9.7 -2.6 •31.2 -16.6 7.2 13.1 2723.(10 -7.7 16.6 •••• -19.7 (•7 2416.937 9.6 -(.« '6.5 0.6 9.6 2723.(12 29.3 •21.7 -12.9 -2.% •2.* 3916.972 3.7 -u.•16.a4 -12.* 10.4 . 6.4 2723.(23 4.» 3.6 -4.1 •5.3 -1.1 -2.9 2919.595 -1.5 -0.6 -19.4 •2.8 -4.3

2723.(39 1.6 11.9 -10.7 •(.( 9.9 «.a -8.6 2916.615 17.6 3.0 15.1 -4.6 a.3 27t3«(«7 -16.1 14. t •••4 -12.2 -».* •9.9 2916.(56 26.5 -9.4 -a. 5 (.9 •9.6 2723*(S( 13.6 «.9 -16.2 •(.» -4.» (•3 1.2 29>7.519 16.6 5.4 l.i 16.4 3.1 2729BO(( -18.8 (.2 -10.8 •17.4 -(•• (.4 -4*( 2917.576 -5.9 9.6 11.9 15.0 10.2 2724.7(7 12. ( -25.9 -36.2 -32.9 -16.» -1«.2 2917.691 -14.9 12.6 6.6 13.9 2724.M0 -4.6 (.2 >.( -tl.f •15.9 -19.» -21.7 2917.622 19.1 12.0 a.i 0.0 16.4

130

The Orbit and Masses of 3U0900-40/HD 77581 211

XRHY PHRSE Figure Ie Same as figure la for all lines together (except HI lines). Each point gives the average for all plates, obtained during one night. The curve drawn through the points represents the best-fit solution to the data points.

2 0.0 0.Z 0.4 0.6 0.8 1.0 XROY PHfiSE Figure If The same as figure la. for lines of HI. 131 [HRPÏER1

SPECTROSCOPIC STUDIES OF MASSIVE X-RAY BINAIRES

1.4

Ha profile of HD 77581 around phase 0.8 (cf. Zuiderwijk et al., 1974; plate G3857 )

133

in A

Spectroscopie observations of the early type B-superglant Wray 977 (4U1223-62): Description of the spectrum and * Classification.

G. Hammerschlag-Hensberge 2 C. de Loore 1 2 E.P.J. van den Heuvel ' E.J. Zuiderwijk

Astronomical Institute, university of Amsterdam, Boetersstraat 15, 1018 WB Amsterdam, The Netherlands

2 Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

* based on observations collected at the European Southern Observatory, La- Silla, Chile 134

Summary

Spectroscopie observations of the emission-line star Wray 977 are pre-

sented. Drastic variations are observed in the P-Cygni profiles of HD P and H . The classification of Wray 977 as a BlI supergiant is supported by our spectra.

Key words; X-ray binaries - supergiants - spectral variations - interstellar lines

1 Introduction

The B-type supergiant Wray 977 has been proposed as the optical counterpart of the X-ray source 3U1223-62 (Vidal, 1973; Hammerschlag-Hensberge et al., 1976). Since the publication of the third Uhuru catalog (Giacconni et al., 1974) / the X-ray error box has been considerably improved by SAS-3 obser- vations (Bradt et al., 1977), which have- confirmed beyond doubt that Wray 977 coincides with the X-ray source 4U1223-62. The X-ray source shows irregular variations on time scales of days and hours. White et al.(1976) discovered periodic X-ray pulsations with a period of 699 seconds. Hecent- ly White et al. (1978) mentioned a 41 day periodicity which they discovered in X-rays through time delay of the pulses. However, this period may be an artifact of the reduction method used (Takens, 1978).

Wray 977 has been studied photometrically by several authors (van Genderen, 1973, 1977; Hammerschlag-Hensberge et al., 1976; Mauder, 1974, 1976; Bord et al., 1976). Hammerschlag-Hensberge et al. (1976) found a periodic vari- ation in the uvby photometry of 23 ± 1 days. A first description of the spectrum of Wray 977 has been given by Vidal (1973). As. this study was rather coarse due to the low dispersion of his plate material we give here the first results of our spectroscopie inves- tigation of this star.

2 Description of the Spectrum

Table 1 lists our observational material, obtained with the Coudé and Echellec "spectrographs attached to the 1.5 m telescope of the ESO, La Silla, 135

Chile. The Coudë plates have a higher dispersion but they are more noisy due to bad weather conditions combined with the long exposure times needed for this faint object (in =10.8, m =12.5). Therefore, in 1977 and 1978 we decided to obtain Echellec first order spectra with a dispersion of 62 A/mm. These spectra cover the wavelength region 4050 A - 4900 fi . In figure la-c an intensity tracing of the spectrum of Wray 977 in this region is shown. To reduce the -noise we added 4 to 6 spectra: this method results in a much bet- ter signal to noise ratio than for a single spectrum and makes the identi- fication of spectral lines more certain. The strength of the interstellar lines (indicated by IS in the figures) is most striking in these figures. The central depth of each of the interstellar features in Wray 977 is lar-, ger than observed in any of the stars studied by Herbig (1975). From his relation between the strength of the interstellar lines and the color ex- cess E(B-V), we derive for Wray 977: E(B-V) «1.8 mag. in good agreement with our previous estimates (Hammerschlag-Hensberge et al., 1976). An inspection of the individual spectra reveals that all the observed P-Cygni lines and emission lines show very striking variations. For this

reason, Ho is not included in the addition of the spectra. Figure lb indi- P cates that even Hel X 4471 A has a weak emission component. Figure 2 shows the variations in H and H_. On the 4 plates of 1977 (P791-800) the P-Cygni profile of H remains constant. On P1000-1001 the H profile looks simi- lar to the one on P791-800. However, two days later (Pi022) the emission has weakened considerably, whereas still one to three days later the emis- sion has disappeared completely. The H_ emission changes in the same way p as the H emission. We note that Vidal (1973) mentions that the H absorp-

tion is filled in by emission on all his plates; also Ho changes drasti- P cally on his plates. The H variations on our plates suggest that the va- riations could be periodically and that monitoring of this star during several days to one month would be extremely desirable. Due to the bad signal to noise ratio of our Coudé plates we only picked out the most important lines which are shown in figures 3 and 4. Fiqure 3 shows

the HQ emission on plate F3118. The P-Cygni profile of Hel X6678A" is plotted in figure 4. Hel X5876A* , which is not shown, also has a P-Cygni type profile. The emission components of these lines appear to be weaker on plate. F3118, compared with the plates F3138 and F3143. 136

3 Classification

We compared the line strength ratios of SilV / Hel, Mgll / Hel and Oil / Hel measured on the intensity tracings of our added Echellec spectra with those given by Sinnerstad (1961) for different spectral types. This com- parison supports a spectral type Bl, which is slightly earlier than Bl.5 suggested by Vidal (1973), based on the comparison of an underexposed spectrum of Wray 977 with that of a B0.5Ia supergiant. The strength of the Oil lines and the Balmer lines indicates a supergiant type rather than a main sequence star or a (bright) giant.

4 Conclusions

The spectrum'of Wray 977 shows drastic changes with time. Especially the H profile could be used to search for periodic variations. The spectra show that the Oil, Silll and Hel absorption lines are suited for radial velocity studies. It may be difficult to measure radial velocities of these lines from individual spectra, because the lines are very weak. A good approach would be to take several spectra during each night (4 or more) and to add these spectra to improve the signal to noise ratio before calculating the radial velocities. 137

References

Bord, D.J., Mook, O.E., Petro, L., Hiltner, W.A. : 1976, Astrophys.J. 203, 689 Bradt, H.V., Apparao, K.M.V., dark, G.W., Dower, R., Doxsey, R., Hearn, D.R., Jernigan, J.G., Joss,. P.C., Mayer, w., McClintock, J., Walter, F.: 1977, Nature 269_, 21 van Genderen, A.M. : 1973, Inf. Bull. Var. Stars, No. 856 van Genderen, A.M. : 1977, Astron. Astrophys, 54_, 733 Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Matilsky, T., Koch, D., Tananbaum, H.: 1974, Astrophys.J. Suppl. 237, 27 Hammerschlag-Hensberge, G., Zuiderwijk, E.J., van den Heuvel, E.P.J.: 1976, Astron. Astrophys. 49, 321 Herbig, G.H. : 1975, Astrophys.J. 19£, 129 Mauder, H. : 1974, I.A.U.Circ. No. 2673 Mauder, H. : 1976, I.A.U.Circ. No. 2946 Sinner stad, O. : 1961, Stockholms Observatoriums Annaler, Band 22_, No. 2 Takens, R.J. : 1978, private communication Vidal, N.V. : 1973, Astrophys.J. 186_, L81 White, N.B., Mason, K.O.,.Buckle, H.E., Charles, P.A., Sanford, P.W.: 1976, Astrophys.J. 209, L119 White, N.E., Mason, K.O., Sanford, P.W.: 1978, Monthly Not. Roy. Astron. Soc. 184, 67P

1 138

Table 1: Observational material. F numbers ore Coudê plates with a

dispersion of SI K/rtm3 P numbers are HaheVLea plates with a dispersion of 62 A/mm.

Plate number Date Emulsion Observer

F 3118 27 May 1975 098-02 GHH F 3138 6 June 1975 098-02 . GBH F 3143 7 June 1975 IlaD GHH P 791 7 July 1977 nucleair SB P 792 7 July 1977 nucle&x EH P 799 8 July 1977 nuclear EH P 800 8 July 1977 nucleaur EH P 1000 28 Febr 1978 nucleax CdL P 1001 28 Febr 1978 nuclear CdL P 1022 2 March 1978 nucleair CdL P 1028 3 March 1978 nucleair CdL P 1068 6 March 1978 nuclear CdL P 1069 6 March 1978 nucleaar CdL

1 139

Captions of the Figures Figure 1: Intensity spectrum of Wray 977 for the wavelength regions (a) X 4075 - 4300, (b) X 4300 - 4525, (c) X 4525 - 4750. The continuum level is normalized to 1.0 and some of the most important spectral featw'es are identified.

Figure 2; Intensity variations in S and J?_. The plate numbers are indicated in the figure. The.dates on which the plates were taken can be found in Table 1.

Figure 3; E profile of Wray 977.

Figure 4: Eel 6678 has a clear P-Cygni profile.

143

HyOÏÏ 4345-49

P1000.1001 1.4- 13- P 791-800 P 1000,1001 .1.1 1.1 -

0.9- z UI P1028-1069

4400 4600 4900

WAVELENGTH

Figure 2 144

MBVELENOTH

Figure 4

0.0 6550 6575

WAVELENGTH

Figure 3 145

nis

THE SPECTRUM OF HD 77581 (VELA X-l)

VARIATIONS IN THE PROFILES OF Ho AND HEIIXH686 p

Ed.J. Zuiderwijk European Southern Observatory c/o CERN 1211 GENEVE 23 Switzerland 146

Summary

The blue spectrum of the B0.5Ib supergiant HD77581, optical counterpart of the X-ray source 4U0900-40, is described. The profile of H_ is phase dependent and consists of two absorption com- ponents, superimposed on one another. One of these is variable in both strength and velocity, the other is the steady photospheric profile. The profile of Hell \ 4686 A is of P-Cygni type around phase 0.7, whereas the line is in absorption with variable strength between phase 0.9 and phase 0.5. These observations indicate the presence of a gaseous stream in the system, and an asymmetrically expanding atmosphere of HD77581.

Key words: X-ray Binaries - Supergiants - Spectrum Variations 147

1 Introduction

The massive X-ray binary HD77581/4U0900-40 is one of the most extensi- vely studied systems of this type. The compact object is an X-ray pulsar with a period of 283S, for which the slightly eccentric orbit has been

determined accurately (Rappaport et al.f 1976). The primary shows the well-known ellipsoidal brightness variations with an amplitude of about 0.10 and a period of 8.966 days (Jones and Liller, 1973? Zuiderwijk et al., 1977). Spectroscopie studies were presented by Wickramasinghe et al. (1974), Hutchings (1974), Wallerstein (1974), and Zuiderwijk et al. (1974). The spectrum of the primary is very similar that of the BO.5la supergiant E Ori. The periodic variation of the H emission line profile is common- ly interpreted as being due to gaseous streams in the system. Evidence for

variations in the profiles of Ho and some Hel lines was given by Zuider-f wijk et al. (1974). The presence and variability of the HelT line A 4686 A was reported by Hutchings (1974); the absorption and emission components are very weak and Hutchings (1974) stated that observations with a high signal to noise ratio would be required for a decent study of this line. Radial velocity variations of the primary were discussed by various observers (Hiltner et al., 1972; Wallerstein, 1974; Hutchings, 1974 and Zuiderwijk et al., 1974). In the most recent study, van Paradijs et al. (1977a) give an accurate mass determination for both the neutron star and the primary, i.e. 1.74 M and 21.3 M , respectively (q= 0.076). For o 0 a review of further observations of this X-ray binary system we refer to Bahcall (1978) and references therein. Since the bolometric luminosity of the X-ray source is fairly low - -4 about 10 of the luminosity of the primary -r the secondary contributes virtually nothing to the optical spectrum. The spectrum of HD77581 is "clean": no conspicuous peculiarities, like strong emission features, are present, except in H . Therefore, this X-ray binary system constitu- tes an ideal test case to study the influence of geometrical distortions, due to the secondary, on the photometric and spectroscopie properties of the primary. Theoretical studies of the effects of tidal and rotational deformation Echellec'spectre-graphs attached to the 1.5 m telescope of the ESO, La Silla,

148

on the apparent radial velocity of the primary - of obvious importance for a reliable mass determination - were made by Wilson and Sofia (1976) and by van Paradijs et al. (1977b). The latter authors predict signifi- cant deviations between the "true" orbital velocity of the primary and the apparent radial velocity derived from absorption lines of several ions (Hel, Oil and SilV). These predicted discrepancies would be due to the phase dependent shape of the theoretically computed line profiles. The evidence for the presence of these predicted distortion effects is not very strong (van Paradijs et al., 1977a). This may be due to the fact that HD77581 is not rotating with the orbital angular velocity (Conti, 1978? Wallerstein, 1974), while corotating was assumed in the theoretical computations. It is desirable in any case to study the shape of several important spectral lines which were used in the determination of the ra- dial velocities; only in this way it is possible to set an upper limit on non-orbital contributions to the radial velocity curve. The first results of such a study are reported.in this paper. The ob- servational material consists of averaged intensity tracings obtained from the spectrograms used by van Paradijs et al. (1977a) for their ra- dial velocity study. The next section describes the reduction of the den- sity tracings and the construction of the averaged spectra. An atlas of the spectrum, in which line identifications are indicated is presented in section 3, and in the last section the variations in the profiles of H- and Hell X4686A* are discussed. A list of equivalent widths and a comparison of line profiles with profiles derived from theoretical model computations will be presented elsewhere.

2 Observational Material and Reduction

Several data of the spectrograms used for this study are listed in Table 1. These plates were selected from the file obtained by van Para- dijs et al. (1977a) with the 152 cm telescope and Coudé spectrograph of the European Southern Observatory in Chile. The selection criteria were twofold: a photographic calibration of reasonable quality should be a- vailable, and several other spectrograms recorded at about the same bi- nary phase must be available, in practice this resulted in the use of 149

six sets, consisting of 6 to 8 plates each, each set being obtained du- ring one night, supplemented with two similar sets, consisting of 3 plates each. Spectrograms obtained in the same night ware developed under standard conditions together with 3 to 5 calibration plates. The spectra are re- corded on sensitised IlaO emulsion. Exposure times and widening of the individual spectra were typically 15 minutes and 0.4-0.5 millimeter res- pectively. On each spectrogram an Iron-arc comparison spectrum was re- corded, both before and after the exposure of the stellar spectrum. All spectra cover the wavelength region between X3800A and X4900A* were the focus is good. The image becomes slightly astigmatic at wavelengths short- er than about X3800 8; therefore Balmer lines from H on, were not in- cluded in the study. (These lines are still Usuable for radial velocity determinations, as the distortions due to astigmatism, are perpendicular to the dispersion direction.) The continuum density of the spectra ranges from 0.7 to 0.9. unfortunately, beyond X4700A* the sensitivity of the emulsion decreases, which results in a lower density level (about 0.3)

around H„; this makes the photographic calibration less reliable for this P line. All spectrograms were scanned in the same way with the Faul Coradi digi- tized Micro Densitometer of the Astronomical Institute at Utrecht. This scanning device is decribed by Heintze et al. (1975). The accuracy of the positioning of the scanner slit is better than 0.4 ym. For each spec- trogram four scans were performed; one of the stellar spectrum, two of the comparison spectrum on both sides, at equal distances from the stel- lar spectrum, and one scan of the neutral plate density as close to the stellar spectrum as possible. Each scan consists of some 20000 to 25000 density measurements recorded with a step size of 4 y m. The digitized tracings are stored on magnetic tape and were analyzed by means of a set reduction programs written and developed by the author, using the CDC7300 computer system of the SARA at Amsterdam, and the CDC7700 system of CERN in Geneva. Several features of the reduction software are described in the following paragraphs. 150

a Wavelength Calibration

Some 45 Iron-arc comparison lines were 'used to establish the wavelength calibration. They were taken, from a list given by Edlén (1960) and were chosen because of their selected location in the spectrum and their vir- tually undisturbed symmetric shape. The method used to identify the lines in the comparison spectrum and to measure their positions is straightfor- ward, as follows. First a list of approximate positions of all stronger lines present in the spectrum is stored in core memory. 'In a properly exposed spectrum up to 400 individual lines can be distinguished. Subsequently a small number of lines -typically 3 to 5 - which define a group characteristic for the wavelength region covered by the spectro- gram, is traced. This is performed by means of a simple "pattern recogni- tion" algorithm that looks for coincidences of the relative positions of these few comparison lines with relative positions of the reference lines in the list- Once this group of lines has been located, the other compa- rison lines to be measured are easily found by means of linear or quadra- tic extrapolation, based on the position of comparison lines already i- dentified and the wavelength of the next line to be found. This method functions well in the case of Coudé spectra -over wavelength intervals as large as 200A. The only information which the program requires, apart from the wavelength of the spectral lines to be identified, is the dis- persion of the spectrogram.

Finally the run of the density is analyzed near the preliminary posi- tions of the identified comparison lines by means of a subroutine which simulates the well known "Grant" comperator method of position determi- nation by "eye estimate". Typically 20 to 25 density points are used in the determination of the precise position of a line; for some weaker lines 10 to 15 points are used. Before determining the accurate positions of the lines, their profiles are submitted to a symmetry test. Asymmetric and blended lines are properly recognized and, if too much distorted, omitted from the list. It appeared that when a line was rejected in this way, always a clear reason (such as bad focus or misidentification) for this rejection could be indicated a postiori.

1 151

The positions of the reference lines in the two comparison spectra are transformed to the location of the stellar spectrum by means of linear interpolation. The wavelength calibration is represented by two polyno- mials of third degree. One polynomial represents the relation between wavelength X and position p in the spectrum:

X == (la)

The other represents the inverse relation:

p = (lb)

This representation is sufficiently accurate over a wavelength range of at least 1000X in the Coudé spectrograms. The coefficients a. and b. are determined from the wavelengths and positions of the reference lines by using a least squares fitting algorithm which also analyses-the dis- tribution of the residuals. The possible presence of a "bad line" results in an abnormal distribution and is properly recognized. For all spectro- grams the standard deviations of the residuals with respect to the fitted polynomials are in the range 0.010-0.015 A for wavelength, and in the range 0.8-1.2ym for position. This result is as good as, or even better than, the "eye estimated" results obtained with a Grant comperator for the same spectrograms by van Paradijs et al. (1977a). b Photometric Calibration

The calibration spectra consist of the usual spectra of a continuum source; a rotating step sector with 13 transmission steps was placed be- fore the entrance slit of the calibration spectrograph. Density tracings of the plates, recorded in the direction perpendicular to the dispersion, were all analyzed in the same way by using a sub-program that properly recognizes the "steps" and determines the density of each of them. The finally used calibration curves for all plates obtained in one night were determined by taking together several (4 to 5) individual curves from different calibration plates, followed by a least squares fit to the

1 152

analytical expression:

log I = c log (1-T) + log (T) (2)

where T denotes the transmission of the photographic plate. The coeffi- cients c and c are computed with a least squares fitting algorithm. This representation of the intensity calibration appears to be at least as accurate as a free-hand determination (Underhill, 1966) for the den- sity range from 0.2 to 2.5, which is the part of the curve of our inte- rest. A typical example is shown in Figure 1 to illustrate the quality of the representation. The analytical function (2) is stored in tabular form for equidistant density values. To cover a range in densities from 0 to 2.0 one hundred points turned out to be sufficient. The transformation into intensity of each density measurement (after correction for the neutral density) is performed by means of linear interpolation in this table. This method is sufficiently accurate and much less time consuming than evaluating equa- tion (2) for each point.

C Averaged Intensity Tracings

The registration of IlaO spectrograms are quite noisy (Underhill, 1966). Therefore, several averaged intensity tracings were constructed to improve the signal to noise ratio. If one wishes to detect small distortions of the line profiles or weak lines, the application of this technique is ab- solutely required. Since the expected distortions are phase dependent, only plates obtained during the same night were used to construct the averaged spectra. The range in binary phase is typically 0.01 to 0.02 in each set of plates (cf. Table 1). In principle, two different methods can be applied to construct avera- ged spectra: One might obtain rectified intensity tracings for each individual spec- trogram, followed by the computation of the mean of several of these tracings. This approach may give rise to some difficulties when dealing with spectra of substantially different exposure and with different Fi

153

photographic calibrations. In that case one has to assign a weight to each individual rectified tracing in the computation of the mean spec- trum, in order to compensate for differences in the continuum densities. Individual tracings with the poorest signal to noise ratio should be given the lowest weights. This difficulty is not encountered when we are dealing with a homoge- neous set of spectrographs which all have the same calibration, such as those used in this study. It is then sufficient to construct individual non-rectified intensity tracings and simply add them. The rectified spec- trum is obtained later from the composite intensity tracing constructed in this way. Irrespective of which of these methods is chosen, the original density vs. position tracings have to be transformed into intensity vs. wave= length tracings;the intensity in each individual spectrogram has to be computed at equidistant wavelength values (AX is 0.05A in our case). This is performed by estimating for every wavelength velue the corres- ponding position in the original tracing, followed by the computation of the density by means of a four-point Lagrangian interpolation between the original density measurements, which are sampled at equidistant po- sitions. The thus computed density is transformed into intensity by ap- plying the photometric calibration. In the computation of the position in the original tracing a correction for the motion of the earth is in- cluded. Therefore the finally computed averaged tracings are obtained in the solar-centric reference frame. Without further precautions the four-points interpolation procedure may become unstable, due to the noise in the original density measurements; the interpolated values then deviate unrealistically strong from the origi- nal data. We can avoid this difficulty by smoothing the original density tracings slightly, before computing the interpolated values. This was per- formed by applying a Fourier Filtering technique - based on a fast Fourier Transform algorithm given by Singleton (1969), - to remove the highest fre- quenties from the data. An extensive discussion of this smoothing technique was given by Brault and White (1971). From these author» we adopted the da- ta manipulation procedures preceding the filtering proces itself, i.e. sys- tematic trends were removed from the data and end region masking was applied to the individual data segments - consisting of 2000 densities each- into which the scans were devided. (Removal of a systematic trend from the data UISN31NI Figure 1 a

164

is basically equivalent to compensating for the slope of the continuum. The continuum level, here in terms of density, was estimated automatically and subtracted from the data. Afterwards, the smoothed data are restored by again adding the continuum level). The filter function was adopted from Brault and White (1971); the "cut- off" frequency was estimated empirically such that the profile of the in- terstellar Call K line remained unaffected. Therefore, the improvement of the signal to noise ratio in the averaged spectra is completely due to the near-cancelation of the noise contributions from the individual tra- cings. The filtering procedure has no influence on the final results as it was only applied to stabilize the interpolation in the original densi- ty measurements.

3 Preliminary Investigation of the Spectrum of HD77581

The averaged spectrum of HD77581, obtained from 8 spectrograms recorded during one night around phase 0.42 (1975, nov. 07; cf. van Paradijs et. al., 1977) is shown in Figure 2. The spectrum closely resembles that of eOri, a B0.5la supergiant. All of the stronger spectral features found in the identification list of eOri (Lamers, 1972) are present in this spectrum of HD77581. Especially interesting is the presence of several of the weaker interstellar absorption lines, such as: CH 43008 , CH A3958A* and CH+X4232 8 ; the equivalent width of the CH line is about 20 m8. From the width of the interstellar lines the spectral resolution can be estimated, which is approximately 0.4 X . This is not much different from the resolution of about 0.3 A* , which would be expected for these Coudé plates; the difference may easily be due to some smearing introduced by the averaging process. A modified version of a method given by Peast et al. (1970) was used to establish the continuum level and rectify the intensity tracings. This method is based on the analysis of the distribution of densities in the tracing. If one assumes that this distribution is a composite one, con- sisting of a Gaussian distributed continu'im population and a line popu- lation, then the continuum level can be estimated quite easily from de- termining the centroid of the Gaussian distribution. The original version of the method (Peast et al., 1970) was extended in order to not only determine the level but also the slope of the continuum. This method works very well in the case of spectra with a relatively small number of absorp- Figure 1 b AÜSN31NI

155

tion lines; the results are completely consistent with the "eye-estimated" continuum determination. Only very broad spectral features,such as the diffuse interstellar absorption band near 4430 A , are not recognized by this procedure. A detailed study of the spectrum and an analysis of the line profiles is presently being carried out; the results will be given in a separate paper. Here we.only consider the broadening mechanisms of the lines. Inspection of the line profiles reveals that the width of the hydrogen lines is systematically larger by about 40 percent than those of the lines of Hel, SilV and NIII. The shape of the lines suggests that macroturbulence might be an important broadening mechanism. A velocity gradient in the at-. mosphere, however, has a similar effect on line profiles as macroturbu- lence. Since HD77581 certainly has an outflowing atmosphere (Zuiderwijk et al., 1974), and the hydrogen lines are formed further outwards than the lines of other elements, one expects them to•show the outflow effects most clearly (cf. Underhill, 1966). However, the absence of a Balmer pro- gression (van Paradijs et al., 1977a) makes an explanation in terms of real macroturbulence more likely. If we assume that this macroturbulence is absent in the profiles of the Hel lines, the rotational velocity of HD77581 can be estimated roughly from the width of these lines. A value v sin i = 120 km/s was obtained as an upper limit. Given the corotation ve- locity v sin i=175 km/s (Avni, 1976), we see that the corotation factor for the primary is about 0.7 or smaller. This fact, is of importance for the calculation of theoretical light curves (this thesis Chapter I).

4 Line Profile Variations

The most pronounced variations in line profiles occur in H. and in Hell 4686A. They are shown in figures 3 and 4, respectively. It is clear that

the disturbance of the HD profile is the strongest around phase 0.4 (with p respect to X-ray eclipse), while the disturbances in the Hell line are most pronounced around phase 0.7. The profile of H. clearly consists of P two components: an underlying steady absorption profile on which an extra absorption component with variable velocity is superimposed. The follo- wing velocity differences between the two components are observed: $ = 0.55: 120 km/s;

1 FiRure 1 c A1ISN3J.NI

156

In the system. The striking similarity of the prof iles around phase 0.53 and phase 0.58, derived from two sets of plates obtained one year apart, strongly indicates that this gaseous stream is a stationary phenomenon on longer time scales. It should be noticed that the P-Cygni type of the Hfi profile reported by Hutchings (1974) has not been found here, except per- haps around phase 0.42 where a minor emission component might be present.

A puzzling aspect of the gaseous stream seen in Ho, is that the stream p is most strongly visible around phase 0.4. This may indicate that the re- gion of the surface of the primary preceding the X-ray source is the most perturbed. The small emission in Hell 4686% around phase 0.7 may be due to a den- sity increase in the stellar wind around this phase. Also in other X-ray binaries, such as HD153919, lines of Hell are drastically varying (Ham- mer schlag-Hensberge, 1978), which is interpreted as being due to an asym- metrically outflowing atmosphere.

Preliminary Discussion

The differences in width between lines of different ions is a well known phenomenon in early-type stars (Onderhill, 1966). They indicate an in- crease in the turbulence with increasing height in the atmosphere. In the case of HD77581 this may be caused by the non-synchronous rotation of the primary. The fact that the orbit is eccentric and that the star is not corotating, strongly suggests that HD77581/4U0900-40 is very young as an X-ray source, and that HD77581 is at present in the stage of rapid enve- lope expansion following the depletion of hydrogen in the core of this star. Even if thé primary was corotating during its main-sequence life, then, because of the conservation of angular momentum, the star will ro- tate slower than synchronous, as the time scale for tidal synchronisation 4 is expected t" be much longer than the ^10 yr timescale of envelope ex- pansion (cf. Savonye and van den Heuvel, 1977). The fact that the orbit of the secondary is still eccentric indicates that dissipation processes, which synchronize the rotation and circularize the orbit were not impor- tant in the recent history of the system. This is in good agreement with theoretical expectations for systems with a main-sequence primary and with an orbital period longer than 5 days (Lecar et al., 1976), as was the configuration of this binary system 4 longer than some 10 years ago. 157

Acknowledgements

It is a pleasure to thank Prof. Dr. E.P.J. van den Heuvel for his ad- vice and for many stimulating discussions. I am indebted to Drs. J. van Paradijs and C. de Loore, who obtained the spectrograms used for this study. Part of this study was supported by the Netherlands Organization for the Advancement of Pure Research (ZWO) and the University of Amsterdam. I thank Mr. G. van Gelder of the Astronomical Institute at Utrecht for his help at the microdensitometer. I also thank Mrs. M. Moesman and Mr. E. Faverey for preparing the fi- gures. Last, but not least I am indebted to my wife Julie for her help during the preparation of the manuscript. 158

References

Avni, Y. (1976); Astrophys. J. 209_, 574 Bahcall, J.N. (1978): Ann. Rev. Astron. Astrophysics^, 241 Brault, J.W., White, O.R. (1971): Astron. & Astrophys. j^, 169 Conti, P.S. (1978): Astron. & Astrophys. 63_, 225 Edlën, B. (1960): Trans. IAU JJO, 211 Hammerschlag-Hensberge, G. (1978): Astron. & Astrophys. 64_, 399 Heintze, J.W.R., Porteous, R.L., Brandie, W. (1975) in: "Image Processing Techniques in Astronomy"/ Ed: C. de Jager and H. Nieuwenhuizen, Reidel Publ. Comp. (Dordrecht) (Dordrecht) p. 185 Hiltner, W.A., Werner, J., Osmer, P. (1972): Astrophys. J. (Letters) 175, L19 Hutchings, J.B. (1974): Astrophys. J. 192,- 685 Jones, C., Liller, W. (1973): Astrophys. J. (Letters) 182, L109 Lamers, H.J. (1972): Astron. Astrophys. Suppl. 7_, 113 Lecar, M., Wheeler, J.C., McKee, F.M. (1976): Astrophys. J. 205, 556 van Paradijs, J., Zuiderwijk, E.J., Takens, R.J., Hammerschlag- Hensberge, G., van den Heuvel, E.P.J., de Loore, C. (1977a): Astron. & Astrophys. Suppl. 30, 195 van Paradijs, J., Takens, R., Zuiderwijk, E.J. (1977b): Astron. & Astrophys. 57_, 221 Peast, D.W., Pemberton, A.C. (1970): The Observatory,. 9£, 141 Rappaport, S.A., Joss, P.C., McClintock, J.E. (1976):

Astrophys. J.(Letters) 206, L103 Savonije, G.J., van den Heuvel, E.P.J. (1977): Astrophys. J. (Letters) 214, LI9 Singleton, R.C. (1969): IEEE Trans. AU-17, p. 93 ünderhill, A.B. (1966): "The Early-Type Stars", Reidel Publ. Comp. (Dordrecht) Wallerstein, G. (1974): Astrophys. J. 194_, 451 Wickramasinghe, D.T., Vidal, N.V., Bessel, M.S., Peterson, B.A., Perry, M.E. (1974): Astrophys. J. U38_, 167 Wilson, R.E., Sofia, S. (1976): Astrophys. J, 203_, 182 Zuiderwijk, E.J., van den Heuvel, E.P.J., Hensberge, G. (1974): Astron.& Astrophys. 35, 353 Table 1: Observational Data

Plate Number Phase Mean Phase Date Observer Plate Number Phase Mean Phase Date Observer

G7158 0.304 G7617 0.355 1976 G7159 0.307 G7618 0.356 0.36 MAY 12 G7160 1975 0.309 0.31 G7619 0.358 G7161 0.311 NOV 06 G7163 0.315 G7639 0.573 G7164 0.316 G7640 0.575 G7641 6.578 1976 G7180 0.418 G7642 0.581 0.58 G7181 0.420 G7643 ' 0.583 MAY 15 G7182 0.421 G7644 0.586 G7183 1975 . 0.423 0.42 G7645 0.589 G7184 0.424 NOV 07 G7646 0.591 G7185 0.425 s G7186 0.426 G7654 0.684 G7187 0.428 G7655 0.687 f G 7656 1976 0.689 0.69 G7201 0.532 G7657 0.691 MAY 16 G7202 0.533 G7658 0.700 G7203 0.535 G7659 0.705 1975 G7204 0.536 0.53 G7205 0.538 NOV 08 G7668 0.909 G7206 0.539 G7669 0.913 G7207 . 0.540 G7670 0.914 1976 G7672 0.91 G7208 0.542 0.918 MAY 18 G7673 0.921 G7604 0.240 G7676 1976 0.925 G7605 0.243 0.24 MAY 11 G7677 0.928 G7606 0.245

Notes to table 1: *) Phase calculated according to (JD-2441446.54)/8.9681 Observers: P = J. van Paradijs, L = C. de Loore (cf. van Paradijs et al., 1977a) 160

2.5

0.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 08 1.0

Figure 1: Intensity calibration for the spectrograms G7158 to G7164. The solid line represents the analytical function discussed in the text. 07180-87 PH.418-.428

o>

3790 3800 9BI0 HflVELENGTH

Figure 2: Averaged spectrum of HD77S81, computed from 8 spectrograms - G7180 to G7187 - around phase 0.42 (with respect to X-ray eclipse). The continuum level was estimated automatically, except for the spectral region around 44308. The "line" near 4162 ft is due to a disturbance ("spike") -in the tracing of spectrogram G7186.

very well in the case of spectra with a relatively small number of absorp-

10

•^y^N**^***-**^

lj+W™**»^*^^

0.8

4660 4670 4680 4690 4700 WAVELENGTH

Figure 4: Variations in the profile of Hell X 4686 ft as a function of orbital phase. Wallerstein, 1974) and has been interpreted as due to a gaseous stream

169

De schrijver werd geboren op 27 augustus 1950 te Haarlem. In 1963 verhuisde hij naar Amersfoort, waar hij in 1967 het diploma HBS-B behaalde aan het Constantijn College. In september 1967 begon hij aan de studie in de natuur- en sterren- kunde aan de Rijksuniversiteit te Utrecht, waar hij in november 1970 het candidaatsexamen met hoofdvak natuurkunde aflegde. Hij voltooide zijn studie in juli 1974, toen hij het doctoraalexamen met hoofdvak algemene sterrenkunde aflegde. Het af studeer-onderzoek verrichtte hij onder leiding van Dr. E.P.J. van den Heuvel in de afdeling Sterspectroscopie van het Sterrenkun- dig Instituut te Utrecht. Dit onderzoek leidde tot een publicatie in "Astronomy and Astrophysics" en was tevens de aanzet tot het in dit proefschrift beschreven promotie onderzoek. Vanaf 1 augustus 1974 tot en met 30 september 1978 was hij ver- bonden aan het Sterrenkundig Instituut te Amsterdam als wetenschap- pelijk medewerker, eerst, tot en met 31 december 1977, in dienst van de Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek (ZWO) en later in dienst van de Universiteit van Amsterdam. Geduren- de die tijd werd het grootste deel van de in dit proefschrift be- schreven onderzoeken uitgevoerd.

Sedert 1 oktober 1978 wonen hij en zijn echtgenote in Ferney- Voltaire (Frankrijk) en is hij werkzaam bij de "European Southern Observatory" in Genêve.

STELLINGEN BEHOREND BIJ HET PROEFSCHRIFT: "OPTICAL STUDIES OF MASSIVE X-RAY BINARIES" DOOR E.J. ZUIDERWIJK

1. De baan van VelaX-1 is excentrisch. Dit proefschrift, hoofdstuk II

2. Voor het doen van kwantitatief sterspectroscopisch onderzoek verdient het gebruik van IHaJ emulsie de voorkeur boven dat van IlaO emulsie.

3. De dubbelsterperiode van 41 dagen die White, Mason"en Sanford afleiden uit Ariel V röntgenwaarnemingen van 4U1223-62 (wray 977 ) is niet reëel. White, N.E., Mason, K.O., Sanford, P.W. (1978) M.N.R.A.S. 184, 67P Pakull, M. (1978) IAOC 3317 ,.

4. Op grond van de grootte van de helderheidsvariaties van de röntgendub- belster LMCX-4 is de aanwezigheid van een accretieschij f in dit sys- teem waarschijnlijk. Uitvoerige fotometrische waarnemingen van deze dubbelster in het Balmer-continuum, bijvoorbeeld met het Walraven vijf kleuren systeem, zijn daarom zeer gewenst. Chevalier, C., Ilovaisky, S.A. (1977) Astron. Astrophys. 59, L9

5. De vereenvoudiging die Schuerman (1972) toepast bij de behandeling van de stralingsdruk in de atmosferen van door rotatie en getijden vervorm- de hete OB sterren is niet geoorloofd omdat deze leidt tot een stermo- del dat niet in hydrostatisch evenwicht is. Schuerman, D.w. (1972) Astron.Space Sciences 19_, 351

6. De periodieke verandering van de Strömgren cl index die wordt waarge- nomen bij HD 77581 weerspiegelt de variatie van de zwaartekrachtsver- snelling over het oppervlak van deze ster. Dit proefschrift, hoofdstuk I

7. De door Crampton, Hutchings en Cowley (1978) opgegeven onzekerheden in de massa's van de twee componenten in de röntgendubbelster 4U1538-52 zijn veel te optimistisch. Crampton, D., Hutchings, J.B., Cowley, A.P. (1978): Astrophys. J (Letters) 225, L63 8. Bij beschouwingen over zwaartekrachtsverduistering in door rotatie en getijden vervormde sterren wordt vaak over het hoofd gezien dat het "theorema" van von Zeipel alleen mag worden toegepast op dat deel van het sterinwendige waar het stralingsveld gethermaliseerd is. Avni, Y., Bahcall, J.N. (1975): Astrophys.J. 197, 675

9. In veel studieboeken wordt de vergelijking van hydrostatisch evenwicht didaktisch onjuist gepresenteerd.

10. In de reclame worden sigaretten meestal aangeprezen door jonge mensen, vaak getoond in "vlotte" houdingen, (nog) gezond en in de kracht van hun leven. Zelden echter ziet men sigaretten aangeprezen door een vijf- tiger of een 65 -er. Dit kan worden opgevat als een duidelijke aanwij- zing over de invloed van het roken op de gezondheid.

11. De door sommigen geuite bewering dat "linkse" diktaturen te verkiezen zouden zijn boven "rechtse" is een belediging voor de slachtoffers er- van.

12. Het huidige systeem van het voortgezet onderwijs, waarvan de - te vroe- ge - beperking van het studiepakket tot 6 vakken een kenmerk is, vormt een belangrijke belemmering voor de emancipatie van vrouwen èn mannen, door het vroegtijdig afsluiten van de mogelijkheden tot keuze van voor hen niet traditionele beroepen.

13. Het steeds toenemende aantal berichten over de potentiële kankerverwek- kende eigenschappen van gangbare voedingsmiddelen dreigt een belang- rijke oorzaak te worden van neurotische aandoeningen.

Layout Druk Tr

Titel oir Beïnvloi

Illustrati engelse 1 voor Ma 1 jjj-S

r

Layout - illustraties J.M.M, van Lith Druk Trepico - Hooglanderveen

Titel omslag illustratie- Beïnvloeding (Mutual influnce)

Illustratie hoofdstuk 3 engelse houtsnede 1605 voor Mathew Lowness-Londen