Perception, Perfusion & Posture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bedside Neuro-Otological Examination and Interpretation of Commonly
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2004.054478 on 24 November 2004. Downloaded from BEDSIDE NEURO-OTOLOGICAL EXAMINATION AND INTERPRETATION iv32 OF COMMONLY USED INVESTIGATIONS RDavies J Neurol Neurosurg Psychiatry 2004;75(Suppl IV):iv32–iv44. doi: 10.1136/jnnp.2004.054478 he assessment of the patient with a neuro-otological problem is not a complex task if approached in a logical manner. It is best addressed by taking a comprehensive history, by a Tphysical examination that is directed towards detecting abnormalities of eye movements and abnormalities of gait, and also towards identifying any associated otological or neurological problems. This examination needs to be mindful of the factors that can compromise the value of the signs elicited, and the range of investigative techniques available. The majority of patients that present with neuro-otological symptoms do not have a space occupying lesion and the over reliance on imaging techniques is likely to miss more common conditions, such as benign paroxysmal positional vertigo (BPPV), or the failure to compensate following an acute unilateral labyrinthine event. The role of the neuro-otologist is to identify the site of the lesion, gather information that may lead to an aetiological diagnosis, and from there, to formulate a management plan. c BACKGROUND Balance is maintained through the integration at the brainstem level of information from the vestibular end organs, and the visual and proprioceptive sensory modalities. This processing takes place in the vestibular nuclei, with modulating influences from higher centres including the cerebellum, the extrapyramidal system, the cerebral cortex, and the contiguous reticular formation (fig 1). -
Sensory Biology of Aquatic Animals
Jelle Atema Richard R. Fay Arthur N. Popper William N. Tavolga Editors Sensory Biology of Aquatic Animals Springer-Verlag New York Berlin Heidelberg London Paris Tokyo JELLE ATEMA, Boston University Marine Program, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA Richard R. Fay, Parmly Hearing Institute, Loyola University, Chicago, Illinois 60626, USA ARTHUR N. POPPER, Department of Zoology, University of Maryland, College Park, MD 20742, USA WILLIAM N. TAVOLGA, Mote Marine Laboratory, Sarasota, Florida 33577, USA The cover Illustration is a reproduction of Figure 13.3, p. 343 of this volume Library of Congress Cataloging-in-Publication Data Sensory biology of aquatic animals. Papers based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held, June 24-28, 1985, at the Mote Marine Laboratory in Sarasota, Fla. Bibliography: p. Includes indexes. 1. Aquatic animals—Physiology—Congresses. 2. Senses and Sensation—Congresses. I. Atema, Jelle. II. International Conference on the Sensory Biology - . of Aquatic Animals (1985 : Sarasota, Fla.) QL120.S46 1987 591.92 87-9632 © 1988 by Springer-Verlag New York Inc. x —• All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of Information storage and retrieval, electronic adaptation, Computer Software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. -
Introduction the Vestibular Stimulus Turntable
Journal of Vestibular Research, Vol. 1, pp. 223-239, 1990/91 0957-4271/91 $3.00 + .00 Printed in the USA. All rights reserved. Copyright © 1991 Pergamon Press pic EFFECT OF INCISIONS IN THE BRAINSTEM COMMISSURAL NETWORK ON THE SHORT-TERM VESTIBULO-OCULAR ADAPTATION OF THE CAT G. Cheron The Laboratory of Neurophysiology, Faculty of Medicine, University of Mons, 24, avenue du Champ de Mars, 7000 Mons, Belgium Reprint address: G. Cheron, The Laboratory of Neurophysiology, Faculty of Medicine, University of Mons, 24, avenue du Champ de Mars, 7000 Mons, Belgium o Abstract - This study was intended to test the combined stimulation during the training was still adaptive plasticity of the vestibulo-ocular reflex be operative in all lesioned cats, the adaptive plastic fore and after either a midsagittal or parasagittal ity was completely abolished by the lesions. These incision in the brainstem. Eye movements were results suggest that the commissural brainstem net measured with the electromagnetic search coil tech work may playa crucial role in the acquisition of nique during the vestibulo-ocular reflex (VORD) the forced VOR adaptation. in the dark, the optokinetic reflex (OKN), and the visuo-vestibular adaptive training procedure. Two o Keywords - ve-stibulo-ocular adaptation; types of visual-vestibular combined stimulation brain stem commissural incisions; cat. were applied by means of low frequency stimuli (0.05 to 0.10 Hz). In order to increase or decrease the VORD gain, the optokinetic drum was oscil lated either 180° out-of-phase or in-phase with Introduction the vestibular stimulus turntable. This "training" procedure was applied for 4 hours. -
Zootechnologies
Zootechnologies A Media History of Swarm Research SEBASTIAN VEHLKEN Amsterdam University Press Zootechnologies The book series RECURSIONS: THEORIES OF MEDIA, MATERIALITY, AND CULTURAL TECHNIQUES provides a platform for cuttingedge research in the field of media culture studies with a particular focus on the cultural impact of media technology and the materialities of communication. The series aims to be an internationally significant and exciting opening into emerging ideas in media theory ranging from media materialism and hardware-oriented studies to ecology, the post-human, the study of cultural techniques, and recent contributions to media archaeology. The series revolves around key themes: – The material underpinning of media theory – New advances in media archaeology and media philosophy – Studies in cultural techniques These themes resonate with some of the most interesting debates in international media studies, where non-representational thought, the technicity of knowledge formations and new materialities expressed through biological and technological developments are changing the vocabularies of cultural theory. The series is also interested in the mediatic conditions of such theoretical ideas and developing them as media theory. Editorial Board – Jussi Parikka (University of Southampton) – Anna Tuschling (Ruhr-Universität Bochum) – Geoffrey Winthrop-Young (University of British Columbia) Zootechnologies A Media History of Swarm Research Sebastian Vehlken Translated by Valentine A. Pakis Amsterdam University Press This publication is funded by MECS Institute for Advanced Study on Media Cultures of Computer Simulation, Leuphana University Lüneburg (German Research Foundation Project KFOR 1927). Already published as: Zootechnologien. Eine Mediengeschichte der Schwarmforschung, Sebastian Vehlken. Copyright 2012, Diaphanes, Zürich-Berlin. Cover design: Suzan Beijer Lay-out: Crius Group, Hulshout isbn 978 94 6298 620 6 e-isbn 978 90 4853 742 6 doi 10.5117/9789462986206 nur 670 © S. -
A Dictionary of Neurological Signs
FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made. -
The Scope of Neuroethology
THE BEHAVIORAL AND BRAIN SCIENCES (1984) 7, 367-412 Printed in the United States of America The scope of neuroethology Graham Hoyle Institute of Neuroscience, University of Oregon, Eugene, Oreg. 97403 Abstract: Neuroethology, an interdisciplinary subdivision of neuroscience, has emerged in recent years. Since 1976 there has been a regular session under this heading at the annual meeting of the Society for Neuroscience. In 1980 two introductory texts in English were published on the subject (Ewert 1980; Guthrie 1980), and a third (Camhi 1984) was published recently. There is widespread interest in neural mechanisms underlying behavior, but they encompass such a vast array of often unrelated topics that proponents do not share common goals. This article describes the emergence of ethology as a discipline, pointing out that its practitioners were successful because they confined their research to stereotyped, complex, nonlearned, innate behavioral acts. A limited number of profoundly significant principles emerged. Each of these is redefined. The major concepts of earlier ethology were embodied in a simple hydraulic model used by Konrad Lorenz in 1949 (Lorenz 1950). It is pointed out that this model implies the existence of common neurophysiological mechanisms and neuronal circuitry. This model has now been made obsolete by neurophysiological progress, but with appropriate ~nodificationsan updated version may still be useful in focusing attention on possible principles. The initial aim of neuroethology should be to examine the neurophysiological events in a variety of behaviors, exhibited by diverse animals from different phyla, which meet the criteria of innate behavioral acts. The behaviors should be sufficiently complex to interest ethologists, yet they should be addressable with neurophysiological methods down to the cellular level. -
The Accessory Optic System: Basic Organization with an Update on Connectivity, Neurochemistry, and Function
UC Irvine UC Irvine Previously Published Works Title The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Permalink https://escholarship.org/uc/item/3v25z604 Journal Progress in brain research, 151 ISSN 0079-6123 Authors Giolli, Roland A Blanks, Robert H I Lui, Fausta Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chapter 13 The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function Roland A. Giolli1, , , Robert H.I. Blanks1, 2 and Fausta Lui3 1Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA 2Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., P.O. Box 3091, Boca Raton, FL 33431, USA 3Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Universita di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy Available online 10 October 2005. Abstract The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual–vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS. -
The Emulation Theory of Representation: Motor Control, Imagery, and Perception
BEHAVIORAL AND BRAIN SCIENCES (2004) 27, 377–442 Printed in the United States of America The emulation theory of representation: Motor control, imagery, and perception Rick Grush Department of Philosophy, University of California, San Diego, La Jolla, CA 92093-0119 [email protected] http://mind.ucsd.edu Abstract: The emulation theory of representation is developed and explored as a framework that can revealingly synthesize a wide vari- ety of representational functions of the brain. The framework is based on constructs from control theory (forward models) and signal processing (Kalman filters). The idea is that in addition to simply engaging with the body and environment, the brain constructs neural circuits that act as models of the body and environment. During overt sensorimotor engagement, these models are driven by efference copies in parallel with the body and environment, in order to provide expectations of the sensory feedback, and to enhance and process sensory information. These models can also be run off-line in order to produce imagery, estimate outcomes of different actions, and eval- uate and develop motor plans. The framework is initially developed within the context of motor control, where it has been shown that inner models running in parallel with the body can reduce the effects of feedback delay problems. The same mechanisms can account for motor imagery as the off-line driving of the emulator via efference copies. The framework is extended to account for visual imagery as the off-line driving of an emulator of the motor-visual loop. I also show how such systems can provide for amodal spatial imagery. -
Suppression of the Rotational Vestibulo-Ocular Reflex During a Baseball Pitch
Suppression of the Rotational Vestibulo-Ocular Reflex during a Baseball Pitch THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Marc A. Burcham Graduate Program in Vision Science The Ohio State University 2010 Master's Examination Committee: Nicklaus Fogt, O.D., Ph.D., Advisor Gilbert Pierce, O.D., Ph.D. Andrew Hartwick, O.D., Ph.D. Copyright by Marc A. Burcham 2010 Abstract The purpose of this experiment was to determine to what extent individuals could cancel the rotational vestibulo-ocular reflex (RVOR) in order to track an accelerating, high speed ball. More specifically, this study was designed to determine if subjects could successfully track a baseball pitch while viewing the ball through small apertures. While wearing these aperture goggles, we hypothesized that the batsmen would have to increase the rotational amplitude of their heads while successfully suppressing their rotational vestibulo-ocular reflex in order to accurately track a pitched baseball. Subjects were tested using a pitching machine called the Flamethrower under normal viewing conditions (no apertures), then while wearing apertures that subtended 3.3 degrees of visual field, and finally under normal viewing conditions again. In the final trial (normal viewing), subjects were encouraged to replicate the eye and head movements adopted while wearing the apertures. Tennis balls were pitched from a distance of 44 feet from the batter at a measured velocity of approximately 80 miles per hour. Eye movements were recorded with the ISCAN infrared eye tracker and horizontal head rotations were recorded with the 3DM-GX1 head tracker. -
Oculomotor Disorders in Neck Pain Patients
Oculomotor disorders in neck pain patients in neck disorders Oculomotor UITNODIGING Voor het bijwonen van de openbare verdediging van het proefschrift Oculomotor disorders in neck pain patients Op woensdag 16 januari 2019 om 09.30 uur precies in de Oculomotor disorders Prof. Andries Querido-zaal (Eg-370) van het Erasmus Medisch Centrum. Dr. Molewaterplein 40, in neck pain patients 3015 GD Rotterdam. Britta Castelijns Ischebeck Na afloop van de plechtigheid bent u van harte uitgenodigd voor de receptie in de foyer. Britta Castelijns Ischebeck Saksen Weimarlaan 56, 4818 LC Breda 06-46008080 - [email protected] Paranimfen: Karina Bölger - [email protected] Jurryt de Vries - [email protected] Britta Castelijns Ischebeck Castelijns Britta ISBN 978-94-6332-439-7 Britta proefschrift.indd 4-6 14-11-18 21:31 Britta_Uitnodiging dag.indd 1 28-11-18 08:22 Oculomotor disorders in neck pain patients Britta Kristina Castelijns Ischebeck Oculomotor Disorders In Neck Pain Patients Oculomotorische functiestoornissen bij nekpatiënten Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. dr. R.C.M.E. Engels en volgens het besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op 16 januari 2019 om 9.30 uur Acknowledgements: The work presented in this thesis was performed in the Department of Neuroscience of Erasmus MC in Rotterdam, The Netherlands and in the Spine& Joint Centre, door Rotterdam, The Netherlands. Cover: Sjoerd Cloos Britta Kristina Castelijns Ischebeck Photo: Rob van Dalen geboren te Wuppertal (Duitsland) ISBN: 978-94-6332-439-7 © Britta Castelijns Ischebeck, 2018. -
Spherical Arena Reveals Optokinetic Response Tuning to Stimulus Location
RESEARCH ARTICLE Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish Florian A Dehmelt1†, Rebecca Meier1†, Julian Hinz1†‡, Takeshi Yoshimatsu2, Clara A Simacek1, Ruoyu Huang1, Kun Wang1, Tom Baden2, Aristides B Arrenberg1* 1University of Tu¨ bingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tu¨ bingen, Germany; 2Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, United Kingdom Abstract Many animals have large visual fields, and sensory circuits may sample those regions of visual space most relevant to behaviours such as gaze stabilisation and hunting. Despite this, relatively small displays are often used in vision neuroscience. To sample stimulus locations across most of the visual field, we built a spherical stimulus arena with 14,848 independently controllable LEDs. We measured the optokinetic response gain of immobilised zebrafish larvae to stimuli of *For correspondence: different steradian size and visual field locations. We find that the two eyes are less yoked than aristides.arrenberg@uni- previously thought and that spatial frequency tuning is similar across visual field positions. tuebingen.de However, zebrafish react most strongly to lateral, nearly equatorial stimuli, consistent with † previously reported spatial densities of red, green, and blue photoreceptors. Upside-down These authors contributed equally to this work experiments suggest further extra-retinal processing. Our results demonstrate that motion vision circuits in zebrafish are anisotropic, and preferentially monitor areas with putative behavioural ‡ Present address: Friedrich relevance. Miescher Institute for Biomedical Research (FMI), Basel, Switzerland Competing interests: The Introduction authors declare that no The layout of the retina, and the visual system as a whole, evolved to serve specific behavioural tasks competing interests exist. -
Handbook on Clinical Neurology and Neurosurgery
Alekseenko YU.V. HANDBOOK ON CLINICAL NEUROLOGY AND NEUROSURGERY FOR STUDENTS OF MEDICAL FACULTY Vitebsk - 2005 УДК 616.8+616.8-089(042.3/;4) ~ А 47 Алексеенко Ю.В. А47 Пособие по неврологии и нейрохирургии для студентов факуль тета подготовки иностранных граждан: пособие / составитель Ю.В. Алексеенко. - Витебск: ВГМ У, 2005,- 495 с. ISBN 985-466-119-9 Учебное пособие по неврологии и нейрохирургии подготовлено в соответствии с типовой учебной программой по неврологии и нейрохирургии для студентов лечебного факультетов медицинских университетов, утвержденной Министерством здравоохра нения Республики Беларусь в 1998 году В учебном пособии представлены ключевые разделы общей и частной клиниче ской неврологии, а также нейрохирургии, которые имеют большое значение в работе врачей общей медицинской практики и системе неотложной медицинской помощи: за болевания периферической нервной системы, нарушения мозгового кровообращения, инфекционно-воспалительные поражения нервной системы, эпилепсия и судорожные синдромы, демиелинизирующие и дегенеративные поражения нервной системы, опу холи головного мозга и черепно-мозговые повреждения. Учебное пособие предназначено для студентов медицинского университета и врачей-стажеров, проходящих подготовку по неврологии и нейрохирургии. if' \ * /’ L ^ ' i L " / УДК 616.8+616.8-089(042.3/.4) ББК 56.1я7 б.:: удгритний I ISBN 985-466-119-9 2 CONTENTS Abbreviations 4 Motor System and Movement Disorders 5 Motor Deficit 12 Movement (Extrapyramidal) Disorders 25 Ataxia 36 Sensory System and Disorders of Sensation