bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454479; this version posted August 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Visuo-vestibular gaze control – conserved subcortical processing Tobias Wibble1,2, Tony Pansell2, Sten Grillner1, Juan Pérez-Fernández1,3,* 1The Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden 2The Department of Clinical Neuroscience, Marianne Bernadotte Centrum, St: Erik’s Eye Hospital, Karolinska Institutet, Stockholm, Sweden 3CINBIO, Universidade de Vigo, Campus universitario Lagoas, Marcosende, 36310 Vigo, Spain *Corresponding author:
[email protected] Abstract Gaze stabilization compensates for movements of the head or external environment to minimize image blurring, which is critical for visually-guided behaviors. Multisensory information is used to stabilize the visual scene on the retina via the vestibulo-ocular (VOR) and optokinetic (OKR) reflexes. While the organization of neuronal circuits underlying VOR is well described across vertebrates, less is known about the contribution and evolutionary origin of the OKR circuits. Moreover, the integration of these two sensory modalities is still poorly understood. Here, we developed a novel experimental model, the isolated lamprey eye-brain-labyrinth preparation, to analyze the neuronal pathways underlying visuo-vestibular integration which allowed electrophysiological recordings while applying vestibular stimulation using a moving platform, coordinated with visual stimulation via two screens. We show that lampreys exhibit robust visuo-vestibular integration, with optokinetic information processed in the pretectum 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454479; this version posted August 1, 2021.