Improving Safety of the Platform-Train-Interface Through Operational and Technical Mitigation Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Improving Safety of the Platform-Train-Interface Through Operational and Technical Mitigation Strategies AN ABSTRACT OF THE THESIS OF Dylan Anderson for the degree of Master of Science in Civil Engineering presented on April 22, 2015. Title: Improving Safety of the Platform-Train-Interface Through Operational and Technical Mitigation Strategies Abstract approved: ______________________________________________________ Katharine Hunter-Zaworski The purpose of this study is to provide background information and examples of best practices relating to platform-train-interface (PTI) safety. The research and information obtained for this manuscript has been in association with the A-40 project funded by the Transit Cooperative Research Program (TCRP) of the National Academies. The purpose of the TCRP A-40 project is to create a manual to improve platform safety for rail modes of public transportation at the interface between the edge of the platform and the vehicle. Information has been collected via an extensive literature review, phone interviews with stakeholders, basic incident data analysis, and site visits. Research has determined that the three main factors that affect platform safety are technical aspects, operational elements, and passenger characteristics. The focus of this document is to better understand the issues and potential mitigation strategies associated with the operational and technical aspects of platform-train-interface safety. ©Copyright by Dylan Anderson 22 April, 2015 All Rights Reserved Improving Safety of the Platform-Train-Interface Through Operational and Technical Mitigation Strategies by Dylan Anderson A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented April 22, 2015 Commencement June 2015 Master of Science thesis of Dylan Anderson presented on April 22, 2015 APPROVED: Major Professor, representing Civil Engineering Head of the School of Civil and Construction Engineering Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Dylan Anderson, Author ACKNOWLEDGEMENTS The author expresses sincere appreciation to his advisor Katharine Hunter-Zaworski for all of her support and guidance throughout his educational and professional development at Oregon State University. The author would also like to thank his parents and brother for their support from afar. Without it, moving thousands of miles from home to complete his degree would have been far tougher. In addition, the author would like to thank the Transit Cooperative Research Program (TCRP) for providing support for the TCRP A-40 project. Furthermore, the author offers many thanks to the Transportation Research Board (TRB) for providing a Dwight D. Eisenhower fellowship to support his research and graduate studies. In addition, thanks must be given to the fellow graduate students in the transportation cohort. We were all in this together and it will be interesting to see what marks they leave on the transportation industry during their careers. Lastly, the author would like to thank the Oregon State Triathlon Club for providing a healthy work-life balance and long lasting friendships. TABLE OF CONTENTS Page 1. Introduction ............................................................................................................................................................ 1 2. Literature Review ................................................................................................................................................. 3 2.1 Introduction................................................................................................................................................... 3 2.2 Technical and Engineering Factors ...................................................................................................... 3 Track Infrastructure and Geometry .................................................................................................... 4 Platform Design ........................................................................................................................................... 6 Platform Edge Doors .............................................................................................................................. 10 Intrusion Detection Technologies ..................................................................................................... 16 Between Car Barriers ............................................................................................................................. 19 Vehicles ........................................................................................................................................................ 21 Regulations and Standards .................................................................................................................. 23 2.2 Mode Specific Considerations ............................................................................................................. 25 Heavy Rapid Rail ...................................................................................................................................... 26 Light Rail and Streetcar ......................................................................................................................... 27 Commuter Rail .......................................................................................................................................... 28 2.3 Operational Aspects ................................................................................................................................ 29 Train Operations ...................................................................................................................................... 29 Railroad Track, Station, and Car Maintenance ............................................................................ 31 Public Relation Campaigns and Information Systems .............................................................. 31 Transit Agency Employee Training and Safety Culture ........................................................... 33 Railroad Hazard Analysis Process .................................................................................................... 35 2.4 Passenger Characteristics and Conditions ..................................................................................... 37 User Characteristics ................................................................................................................................ 37 User Conditions ........................................................................................................................................ 39 Incident Characteristics ........................................................................................................................ 42 2.5 Methodology Case Studies .................................................................................................................... 44 New Jersey .................................................................................................................................................. 44 Bangkok Mass Transit System ............................................................................................................ 45 Japan Study- Analytical Hierarchy Process ................................................................................... 45 2.6 Assessing Mitigation Approaches Implemented Worldwide ................................................. 47 Introduction ............................................................................................................................................... 47 Gauntlet Track ........................................................................................................................................... 47 Moving platform –Amtrak, United States ...................................................................................... 49 Page Platform Fixed Gap Boards .................................................................................................................. 50 Onboard Automatic and Manual Gap Fillers ................................................................................ 50 2.7 Identification of Operational Best Practices ................................................................................. 55 Platform Safety ......................................................................................................................................... 55 Public Relations ........................................................................................................................................ 57 2.8 Gaps in the Literature ............................................................................................................................. 59 Lighting ........................................................................................................................................................ 59 Acoustics...................................................................................................................................................... 59 Platform design......................................................................................................................................... 59 Passenger Behavior ...............................................................................................................................
Recommended publications
  • Investigation Into Reliability of the Jubilee Line
    Investigation into Reliability: London Underground Jubilee Line An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science By Jack Arnis Agolli Marianna Bailey Errando Berwin Jayapurna Yiannis Kaparos Date: 26 April 2017 Report Submitted to: Malcolm Dobell CPC Project Services Professors Rosenstock and Hall-Phillips Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Abstract Metro systems are often faced with reliability issues; specifically pertaining to safety, accessibility, train punctuality, and stopping accuracy. The project goal was to assess the reliability of the London Underground’s Jubilee Line and the systems implemented during the Jubilee Line extension. The team achieved this by interviewing train drivers and Transport for London employees, surveying passengers, validating the stopping accuracy of the trains, measuring dwell times, observing accessibility and passenger behavior on platforms with Platform Edge Doors, and overall train performance patterns. ii Acknowledgements We would currently like to thank everyone who helped us complete this project. Specifically we would like to thank our sponsor Malcolm Dobell for his encouragement, expert advice, and enthusiasm throughout the course of the project. We would also like to thank our contacts at CPC Project Services, Gareth Davies and Mehmet Narin, for their constant support, advice, and resources provided during the project.
    [Show full text]
  • 2.2 Pointwork Configurations in the Following Paragraphs Some of the More Maintenance Is Straightforward
    Part 2 Section 2 POINTWORK Issued February 2001 2.2 Pointwork configurations In the following paragraphs some of the more maintenance is straightforward. However, in a common pointwork configurations are shown restricted space it may be necessary to together with the accepted terminology used to superimpose one turnout upon another, which describe them. When planning track layouts the introduces additional crossings and timbering and preference is to use a combination of single may, in bullhead track, involve the use of special turnouts as these require the minimum of special chairs. chairs and timbers to construct them and 2.2.1 Single turnouts These follow the pattern described in 2.1 and are illustrated in Figure 2-9. RH Turnout LH Turnout RH Crossover LH Crossover Split or Equilateral Turnout Figure 2-9 Single turnouts 2.2.2 Tandem or double turnout This uses one set of switches immediately after form part of a continuous curve but this would another and before the crossing, which introduces require movements to be carried out at low speed. a third crossing and crowded timbering. Where (Figure 2-10 and Photo 2.2) space is particularly crowded the crossing may Figure 2-10 Tandem turnout 2-2-9 2.2.3 Three-throw turnout Photo 2.2 A double tandem turnout leading off from a double There is a nomenclature problem here slip at Stowmarket Goods Yard. as the 3-throw yields the same outcome (NRM Windwood Collection GE1005) as the double turnout. It uses a left hand and a right hand set of switches that are superimposed to divide three ways together in symmetrical form.
    [Show full text]
  • Uncovering the Underground's Role in the Formation of Modern London, 1855-1945
    University of Kentucky UKnowledge Theses and Dissertations--History History 2016 Minding the Gap: Uncovering the Underground's Role in the Formation of Modern London, 1855-1945 Danielle K. Dodson University of Kentucky, [email protected] Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.339 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dodson, Danielle K., "Minding the Gap: Uncovering the Underground's Role in the Formation of Modern London, 1855-1945" (2016). Theses and Dissertations--History. 40. https://uknowledge.uky.edu/history_etds/40 This Doctoral Dissertation is brought to you for free and open access by the History at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--History by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Metro Rail Design Criteria Section 10 Operations
    METRO RAIL DESIGN CRITERIA SECTION 10 OPERATIONS METRO RAIL DESIGN CRITERIA SECTION 10 / OPERATIONS TABLE OF CONTENTS 10.1 INTRODUCTION 1 10.2 DEFINITIONS 1 10.3 OPERATIONS AND MAINTENANCE PLAN 5 Metro Baseline 10- i Re-baseline: 06/15/10 METRO RAIL DESIGN CRITERIA SECTION 10 / OPERATIONS OPERATIONS 10.1 INTRODUCTION Transit Operations include such activities as scheduling, crew rostering, running and supervision of revenue trains and vehicles, fare collection, system security and system maintenance. This section describes the basic system wide operating and maintenance philosophies and methodologies set forth for the Metro Rail Projects, which shall be used by designer in preparation of an Operations and Maintenance Plan. An initial Operations and Maintenance Plan (OMP) is developed during the environmental phase and is based on ridership forecasts produced during this early planning phase of a project. From this initial Operations and Maintenance plan, headways are established that are to be evaluated by a rail operations simulation upon which design and operating headways can be established to confirm operational goals for light and heavy rail systems. The Operations and Maintenance Plan shall be developed in order to design effective, efficient and responsive transit system. The operations criteria and requirements established herein represent Metro’s Rail Operating Requirements / Criteria applicable to all rail projects and form the basis for the project-specific operational design decisions. They shall be utilized by designer during preparation of Operations and Maintenance Plan. Any proposed deviation to Design Criteria cited herein shall be approved by Metro, as represented by the Change Control Board, consisting of management responsible for project construction, engineering and management, as well as daily rail operations, planning, systems and vehicle maintenance with appropriate technical expertise and understanding.
    [Show full text]
  • Kapālama Canal Catalytic Project
    KAPĀLAMA CANAL CATALYTIC PROJECT EXISTING CONDITIONS REPORT OCTOBER 2016 2 • EXISTING CONDITIONS REPORT - OCTOBER 2016 KAPĀLAMA CANAL CATALYTIC PROJECT Prepared by : with assistance from: KAPĀLAMA CANAL CATALYTIC PROJECT EXISTING CONDITIONS REPORT - OCTOBER 2016 • 3 Table of Contents 1 Introduction 1.1 Project Background and Location 4 2 Site Analysis 2.1 General Observations 6 2.2 Nimitz Highway to Dillingham Boulevard 10 2.3 Dillingham Boulevard to North King Street 12 2.4 North King Street to the H-1 Freeway 15 2.5 The H-1 Freeway to Houghtailing Street 17 2.6 Bridges 18 2.7 Architecturally Significant Structures 20 3 Civil Study Areas 3.1 Flood Capacity and Channel Design 22 3.2 Utilities 23 3.3 Stormwater Runoff and Drainage 25 3.4 Water Quality and Pollutant Sources 26 3.5 Canal Management and Maintenance 26 3.6 Tides 27 3.7 Sea Level Rise and Climate Change 27 3.8 Bathymetric and Topographic Surveys 28 3.9 Design Standards 28 3.10 Ecology & Marine Resources 29 4 Related Planning Studies 4.1 Primary Urban Center Development Plan for 2025 30 4.2 Kalihi-Palāma Action Plan 31 4.3 Kalihi Neighborhood Transit-Oriented Development Plan 33 4.4 Kapālama Canal: A Conceptual Plan Study 36 5 Jurisdiction, Land Ownership, and Regulations 5.1 Jurisdiction 37 5.2 Landowners 37 5.3 Landowner Development Plans 38 5.4 Revised Ordinances of Honolulu 39 5.5 Chapter 343 Hawai‘i Revised Statutes 40 5.6 Land Use Considerations 41 5.7 Other Required Permits/Regulatory Approvals 42 6 Community Design 43 7 References 46 7.1 Civil References 47 Appendix A : Cultural and Historical Brief A-1 Appendix B : Community Stakeholders B-1 Appendix C : Geotechnical Work Plan C-1 4 • EXISTING CONDITIONS REPORT - OCTOBER 2016 KAPĀLAMA CANAL CATALYTIC PROJECT 1 Introduction 1.1 Project Background & Location The Kapālama Canal Catalytic Project is based on various community plans supported by the City & County of Honolulu.
    [Show full text]
  • Northeast Corridor Chase, Maryland January 4, 1987
    PB88-916301 NATIONAL TRANSPORT SAFETY BOARD WASHINGTON, D.C. 20594 RAILROAD ACCIDENT REPORT REAR-END COLLISION OF AMTRAK PASSENGER TRAIN 94, THE COLONIAL AND CONSOLIDATED RAIL CORPORATION FREIGHT TRAIN ENS-121, ON THE NORTHEAST CORRIDOR CHASE, MARYLAND JANUARY 4, 1987 NTSB/RAR-88/01 UNITED STATES GOVERNMENT TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2.Government Accession No. 3.Recipient's Catalog No. NTSB/RAR-88/01 . PB88-916301 Title and Subtitle Railroad Accident Report^ 5-Report Date Rear-end Collision of'*Amtrak Passenger Train 949 the January 25, 1988 Colonial and Consolidated Rail Corporation Freight -Performing Organization Train ENS-121, on the Northeast Corridor, Code Chase, Maryland, January 4, 1987 -Performing Organization 7. "Author(s) ~~ Report No. Performing Organization Name and Address 10.Work Unit No. National Transportation Safety Board Bureau of Accident Investigation .Contract or Grant No. Washington, D.C. 20594 k3-Type of Report and Period Covered 12.Sponsoring Agency Name and Address Iroad Accident Report lanuary 4, 1987 NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 1*+.Sponsoring Agency Code 15-Supplementary Notes 16 Abstract About 1:16 p.m., eastern standard time, on January 4, 1987, northbound Conrail train ENS -121 departed Bay View yard at Baltimore, Mary1 and, on track 1. The train consisted of three diesel-electric freight locomotive units, all under power and manned by an engineer and a brakeman. Almost simultaneously, northbound Amtrak train 94 departed Pennsylvania Station in Baltimore. Train 94 consisted of two electric locomotive units, nine coaches, and three food service cars. In addition to an engineer, conductor, and three assistant conductors, there were seven Amtrak service employees and about 660 passengers on the train.
    [Show full text]
  • Alberta-To-Alaska-Railway-Pre-Feasibility-Study
    Alberta to Alaska Railway Pre-Feasibility Study 2015 Table of Content Executive Summary ...................................................................................................... i Infrastructure and Operating Requirements................................................................ ii Environmental Considerations and Permitting Requirements .................................... ii Capital and Operating Cost Estimates ......................................................................... iii Business Case .............................................................................................................. iii Mineral Transportation Potential ................................................................................ iii First Nations/Tribes and Other Contacts ..................................................................... iv Conclusions .................................................................................................................. iv 1 | Introduction ........................................................................................................ 1 This Assignment............................................................................................................ 1 This Report ................................................................................................................... 2 2 | Infrastructure and Operating Requirements ........................................................ 3 Route Alignment ..........................................................................................................
    [Show full text]
  • Solent Connectivity May 2020
    Solent Connectivity May 2020 Continuous Modular Strategic Planning Page | 1 Page | 2 Table of Contents 1.0 Executive Summary .......................................................................................................................................... 6 2.0 The Solent CMSP Study ................................................................................................................................... 10 2.1 Scope and Geography....................................................................................................................... 10 2.2 Fit with wider rail industry strategy ................................................................................................. 11 2.3 Governance and process .................................................................................................................. 12 3.0 Context and Strategic Questions ............................................................................................................ 15 3.1 Strategic Questions .......................................................................................................................... 15 3.2 Economic context ............................................................................................................................. 16 3.3 Travel patterns and changes over time ............................................................................................ 18 3.4 Dual-city region aspirations and city to city connectivity ................................................................
    [Show full text]
  • Platform Screen Systemssystems
    09.2014 P-1210-EN RAIL VEHICLE PLATFORM SCREEN SYSTEMSSYSTEMS RAILSERVICES CONTINUED RESEARCH Through its specialist RailServices division, AND DEVELOPMENT WPSD has the ability to maintain, service In addition to the core platform screen and upgrade your metro platform screen door and gate products, WPSD offer system wherever in the world it is located further safety and operational through flexible and customized service enhancements such as the WPSD Gap contracts. Filler and WPSD Media Wall with Sound systems. Platform Screen Systems Westinghouse Platform Screen Doors PRODUCT SPECIFIC BENEFITS BY TYPE Westinghouse Way, Hampton Park East, Melksham Wiltshire SN12 6TL PLATFORM SCREEN PLATFORM EDGE PLATFORM SAFETY United Kingdom DOORS (PSD) DOORS (PED): GATES (PSG): Tel: +44 (0)1225 898700 Fax: +44(0)1225 898710 n Full height screen work n Screen work 2.3 metres to 2.5 metres n Screen work 1.3 metres to 1.7 metres WWW.PLATFORMSCREENDOORS.COM n Full height systems offer the ultimate in high (typical) high (typical) platform enhancement n Allows free flow of air for platform ­ n Allows free airflow for ventilation n Civil interface is at the platform and ventilation n Mounted directly onto finished floor ceiling level n Civil interface at platform level only n Rapid installation APPLICATIONS n Train noise is suppressed n Can be fitted new and in most cases, n Can be fitted new and in most cases, n Economical air conditioning of the retrofitted retrofitted Heavy Metro Systems | Light Rail Vehicles | Metros | New and platform is possible n Option of Media Wall with Sound n Option of Media Wall with Sound Retrofit Installations | People Movers | Underground, n Can be fitted new and in most cases, retrofitted Overground and Elevated Platforms n Option of Media Wall with Sound ENHANCED PASSENGER SAFETY This publication may be subject to alteration without prior notice.
    [Show full text]
  • Functional Allocation and Door Control of ATO for the Korean Radio-Based Train Control System
    Recent Advances in Circuits, Systems and Automatic Control Functional Allocation and Door Control of ATO for the Korean Radio-based Train Control System MIN-SOO KIM, YONG-KI YOON, SEH-CHAN OH and YONG-KYU KIM Radio-based Train Control Research Team, Korea Railroad Research Institute 360-1 Woram-dong, Uiwang-si, Gyeonggi-do, 437-757, KOREA [email protected] http://www.krri.re.kr Abstract: - The Communication Based Train Control (CBTC) performs train position report immediately and movement authority transmission through wireless communications between a wayside control center and on- board vehicle computers. And it has effect of increasing the railway capacity by allowing the high-density train control through a high capacity of information transmission between the on-board and the wayside. Also, it reduces the maintenance cost because it does not use the existing track circuits. The Automatic Train Protection (ATP)/ Automatic Train Operation (ATO) is fundamental train control system for driverless operation in urban rail and metro rail, and it is important role in the communications based train control system. Especially, the ATO acts as a key role for automatic operation in urban rail with short distance between stations stopping and frequently stops. This paper describes the door control including platform screen door (PSD) and functional allocation of ATO which is responsible for the automatic operation and the door control as a subsystem of the Korean Radio-based Train Control System (KRTCS). Key-Words: - Korean Radio-based Train Control System, Automatic Train Operation, Door Control, Automatic Train Protection 1 Introduction offers safety and conveniences of passengers Railway systems are group of individuals with through the safe operations such as an accurate stop vehicles, tracks and signals, and therefore the on the station, train door/Platform Screen Door effective interaction among the subsystems is a core (PSD) controlling, and so on.
    [Show full text]
  • Accessibility in Rail Facilities
    9/7/2017 Accessibility in Rail Facilities Kenneth Shiotani Senior Staff Attorney National Disability Rights Network 820 First Street Suite 740 Washington, DC 20002 (202) 408-9514 x 126 [email protected] September 2017 1 ADA Transportation Provisions Making Transportation Accessible was a major focus of the statutory provisions of the ADA PART B - Actions Applicable to Public Transportation Provided by Public Entities Considered Discriminatory [Subtitle B] SUBPART I - Public Transportation Other Than by Aircraft or Certain Rail Operations [Part I] 42 U.S.C. § 12141 – 12150 Definitions – fixed route and demand responsive, requirements for new, used and remanufactured vehicles, complementary paratransit, requirements in new facilities and alterations of existing facilities and key stations SUBPART II - Public Transportation by Intercity and Commuter Rail [Part II] 42 U.S.C. § 12161- 12165 Detailed requirements for new, used and remanufactured rail cars for commuter and intercity service and requirements for new and altered stations and key stations 2 1 9/7/2017 What Do the DOT ADA Regulations Require? Accessible railcars • Means for wheelchair users to board • Clear path for wheelchair user in railcar • Wheelchair space • Handrails and stanchions that do create barriers for wheelchair users • Public address systems • Between-Car Barriers • Accessible restrooms if restrooms are provided for passengers in commuter cars • Additional mode-specific requirements for thresholds, steps, floor surfaces and lighting 3 What are the different ‘modes’ of passenger rail under the ADA? • Rapid Rail (defined as “Subway-type,” full length, high level boarding) 49 C.F.R. Part 38 Subpart C - NYCTA, Boston T, Chicago “L,” D.C.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Collision at Swanage station 16 November 2006 Report 35/2007 September 2007 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2007 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Rail Accident Investigation Branch 3 Report 35/2007 www.raib.gov.uk September 2007 Collision at Swanage station 16 November 2006 Contents Introduction 6 Summary of the report 7 Key facts about the accident 7 Immediate cause, causal and contributory factors, underlying causes 7 Recommendations 8 The Accident 9 Summary of the accident 9 Location 9 The parties involved 10 External circumstances 10 The infrastructure 10 The train 12 Events
    [Show full text]