PTH), Ultimobranchial 1976)

Total Page:16

File Type:pdf, Size:1020Kb

PTH), Ultimobranchial 1976) Okajimas Folia Anat. Jpn., 75(2-3): 141-154, August, 1998 Fine Structure of the Parathyroid and Ultimobranchial Glands of the Snake, Elaphe quadrivirgata By Kishiko YOSHIDA-TERASAWA, Daisuke HAYAKAWA, Huayue CHEN Shoichi EMURA, Akira TAMADA, Toshihiko OKUMURA and Shizuko SHOUMURA Department of Anatomy,Laboratory of Electron Microscope, Gifu University School of Medicine, 40 Tsukasa- machi, Gifu 500-8705, Japan College of Medical Sciences, Gifu University, 70-1, Kitano-machi, Gifu 500-8807, Japan -Received for Publication, June 30, 1998- Key Words: Parathyroid gland, Ultimobranchial gland, Snake, Electron microscope Summary: The ultrastructure of the parathyroid gland and ultimobranchial gland of the snake, Elaphe quadrivirgata, was studied. The parenchyma of the parathyroid gland was consisted of chief cells arranged in cords. Oxyphil cells and water- clear cells were not recognized. The chief cells contained irregular shaped nudeus, moderately-developed mitochon- dria, granular endoplasmic reticulum and Golgi complexes. A few secretory granules of 100-300 nm in diameter dis- tributed in the cytoplasm. Small aggregations of glycogen particles and lipid droplets were dispersed widely in the cytoplasm. The ultimobranchial glands consisted of follides and interfollicular aggregates of C-cells. Follicles were invaginated and composed of C-cells, goblet cells and ciliated cells. C-cells were located in the basal position of the follicle and possessed variety of secretory granules of 100-300 nm in diameter in the basal region of the cell. C-cells presented various secretory cycles. Goblet cells projected microvilli into follicular lumen. At the apical region the goblet cells had large granules of 300-1,200 nm in diameter. Ciliated cells projected cilia intermixed with micovilli from the apical sur- face of the cell into the follicular lumen. Parathyroid hormone (PTH), ultimobranchial 1976). As there have been a few detailed papers gland hormone (calcitonin) and vitamin D are on the ultrastructure of Elaphe quadrivirgata para- known as major calcium regulating hormone. PTH thyroid glands and ultimobranchial glands, we ob- elevates serum calcium level, whereas calcitonin served these two glands of Elaphe quadrivirgata lowers antagonistically. It is mentioned when the with electron microscopy. ultimobranchial body became active, the para- The snake, Elaphe quadrivirgata (class Reptilia, thyroid glands exhibited reduced activity (Srivastav order Squamata, suborder Ophidia) is the Japanese and Rani, 1992; Srivastav et aL, 1994). proper species that lives in Hokkaido, Honshu, The parathyroid glands are recognized in all Shikoku, Kyushu, Kunashiri Islands, Izu Islands vertebrates higher than fishes. In mammals C-cells and Osumi Islands (Matsui, 1987). are called parafollicular cells in the thyroid. In birds, reptiles, amphibian and fish C-cells form the independent organ, ultimobranchial gland. Materials and Methods The ultrastructure of the reptile parathyroid gland has been studied in turtles (Clark and Khai- Twenty snakes of both sexes weighing 95-440 g rallah, 1972; Chin, 1974; Grandi, 1982), iguanas were used. The snakes were collected from spring (Anderson and Capen, 1976), Japanese lizards to autumn. The caudal parathyroid glands and (Isono et al., 1979) and geckos (Isono et al., 1986). ultimobranchial glands were excised under ether The ultrastructure of the reptile ultimoranchial anesthesia. Both glands were fixed with Millonig's glands has been studied in turtles (Khairallah and fixative and dehydrated through ascending concen- Clark, 1971) and iguanas (Anderson and Capen, trations of acetone. The specimens were embedded 141 142 K. Yoshida-Terasawa et al. in Epon 812. Thin sections were cut on a PORTER- follicles and interfollicular cell aggregates (Fig. 7). BLUM MT-1 ultramicrotome, stained with uranyl Follicular lumen was filled with the moderately acetate and lead salts, and examined with a Hitachi electron dense substance (Fig. 8). There were three H-700H or Hitachi H-800 electron microscope. For types of cells in the follicle walls (Fig. 8). light microscopy 1-2 gm sections were cut and stained with 0.1% Azur II. (1) C-cells The C-cells were found not only in the follicular walls but also in interfollicular connective tissues Observations forming the cell aggregates (Figs. 8, 9, 10). In the follicle the C-cells occupied the basal position. The Parathyroid gland nucleus was irregular in shape with deep indenta- Elaphe quadrivirgata possessed two pairs of tions. Mitochondria and granular endoplasmic reti- parathyroid glands, the rostra' and caudal glands. culum distributed throughout the cytoplasm. Well- The parathyroid glands existed along the carotid developed Golgi complex was seen near the nucleus artery. The caudal parathyroid glands were situated (Fig. 11). Many secretory granules of 100-300 nm dorsal surface of the thymus (Fig. 1). The para- in diameter of various electron densities were rec- thyroid glands were fusiform measuring 0.3-0.4 mm ognized near the basal region of the cell. Number in short diameter and 0.4-1.2 mm in long diameter. and density of the secretory granules varied from Connective tissue capsule enclosed the parathyroid cell to cell. Secretory granules attached to the lat- gland and divided the gland into the cell cords (Fig. eral and basal cell membranes were often observed 1). (Fig. 10). Lysosomes 300-500 nm in diameter con- The parenchyma consisted of chief cells alone. tained heterogeneously electron dense materials Oxyphil cells and water-clear cells were absent. The (Fig. 9). chief cells were round, spindle or polygonal in shape and arranged in cell cords (Figs. 2, 3). (2) Goblet cells The nucleus was irregular in shape (Fig. 3). The apical surface of the goblet cell was covered Plasma membranes of adjacent chief cells pursued with numerous microvilli (Fig. 12). Mitochondria a straight course except for occasional interdigita- and granular endoplasmic reticulum were distrib- tions (Figs. 4, 5). Opposing plasma membranes uted throughout the cytoplasm. The goblet cell had were connected mainly by intermediate junctions a lot of large granules 300-1,200 nm in diameter at (Fig. 5). the apical region of the cell. The large granules Mitochondria and granular endoplasmic reticu- contained moderate electron dense, flocculent lum were scattered throughout the cytoplasm (Fig. materials and dense cores. Some of the large gran- 5). Golgi complex was moderatelydeveloped (Fig. ules attached to the apical surface of the follicular 6). lumen (Fig. 12). The follicular lumen was filled with The chief cells had a few secretory granules moderately dense materials (Figs. 8, 12). containing homogeneously dense materials 100-- 300 nm in diameter. Most secretory granules oc- (3) Ciliated cells cured singly (Fig. 5). They appeared near the Abundant cilia were observed at the luminar plasma membrane or in the Golgi region. Occa- surface (Figs. 8, 13). Numerous mitochondria were sional secretory granule attached to the plasma observed just beneath the basal bodies of the cilia membrane (Fig. 6). Lysosomes were round or irre- (Fig. 13). Microvilli intermixed among cilia (Fig. gular in shape measuring 250-1,000 nm. Some lyso- 13). somes contained the lipid droplets, dense granules or vacuoles (Fig. 4). Small aggregations of glycogen particles dispersed in the cytoplasm (Figs. 4, 5). Discussion Lipid droplets measuring 140-1,000 nm occured in the cytoplasm (Fig. 4). Parathyroid gland As to the parathyroid function of reptile, experi- Ultimobranchial gland mental studies have been reported mainly through The ultimobranchial gland was located near the parathyroidectomy (Sidky, 1966; Oguro, 1970; caudal parathyroid gland and was oval or spindle in Singh and Kar, 1979). Parathyroidectomized fresh- shape measuring about 0.7 mm in length and 0.4 water turtles do not show any particular changes mm in width. The connective tissue capsule envel- (Clark, 1965), whereas parathyroidectomized lizards oped the ultimobranchial gland (Fig. 7). The ulti- die of hypocalcemia and tetany (Sidky, 1966;Clark mobranchial gland was composed of invaginated et al., 1969). Though the parathyroidectomized Parathyroid and Ultimobranchial Gland of Snake 143 Elaphe quadrivirgata and another species of snakes seem to be less active than those of the gecko and show the decrease in serum calcium, only few Japanese lizard. These observations are in agree- animals showed tetanic convulsions (Oguro, 1970; ment with the report on the function of the snake Singh and Kar, 1979). parathyroid gland (Oguro, 1970). The parenchyma of the parathyroid gland of Elaphe quadrivirgata consists of only one type chief Ultimobranchial gland cell same as Japanese lizard (Isono et al. , 1979) It has been reported that snakes have one pair and gecko (Isono et aL, 1986). Oxyphil cells are of the ultimobranchial glands and that the glands observed in the mammalian parathyroid gland such are located midway between the rostral and caudal as, human, ape, horse, cow and bat (Shoumura et pairs of the parathyroid glands (Singh and Kar, aL, 1993). In reptile, Clark and Khairallah (1972) 1983; Padgaonkar et aL, 1992). In the present study has reported the existence of oxyphil cells in the Elaphe quadrivirgata ultimobranchial glands are fresh-water turtles. In the present study no oxyphil found near the caudal parathyroid glands. cells are observed in Elaphe quadrivirgata para- In amphibia the ultimobranchial gland mainly thyroid glands. Emura et aL (1990, 1992) have re- consists
Recommended publications
  • WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT (51) International Patent Classification: (74) Agents: GEORGE, Nikolaos C. et al; Jones Day, 222 A61K 35/12 (2006.01) East 41st Street, New York, NY 10017-6702 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 12/07 1192 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 1 December 2012 (21 .12.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/579,942 23 December 201 1 (23. 12.201 1) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/592,350 30 January 2012 (30.01.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/696,527 4 September 2012 (04.09.2012) us ZM, ZW. (71) Applicant: ANTHROGENESIS CORPORATION (84) Designated States (unless otherwise indicated, for every [US/US]; 33 Technology Drive, Warren, NJ 07059 (US).
    [Show full text]
  • The Fine Structure of the Parathyroid Gland*
    The Fine Structure of the Parathyroid Gland* BY JERRY STEVEN TRIER, M.D. (From the Department of Anatomy, University of Washington School of Medicine, Seattle) PLATES 3 TO 10 (Received for publication, July 29, 1957) ABSTRACT The fine structure of the parathyroid of the macaque is described, and is cor- related with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron mierographs. The chief cells contain within their cyto- plasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic rcticulum of the ergastoplasmic or granular type. Oxyphll cells are characterized by juxtanuclear bodies and by numerous mito- chondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. INTRODUCTION Other contributions to the present concepts con cerning the human parathyroid can be found in the It is the purpose of the present paper to report some observations on the fine structure of the reports of Bergstrand (7), Morgan (34), Pappen- parathyroid gland employing the electron micro- heimer and Wilens (45), Castleman and Mallory (10), and Gilmour (20).
    [Show full text]
  • WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T (51) International Patent Classification: (72) Inventors: HSIAO, Sonny; 1985 Pleasant Valley Avenue, A61K 48/00 (2006.01) Apartment 7, Oakland, CA 9461 1 (US). LIU, Cheng; 24 N Hill Court, Oakland, CA 94618 (US). LIU, Hong; 5573 (21) International Application Number: Woodview Drive, El Sobrante, CA 94803 (US). PCT/US20 15/02895 1 (74) Agents: GIERING, Jeffery, C. et al; Wilson Sonsini (22) International Filing Date: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 1 May 2015 (01 .05.2015) 94304-1050 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/988,070 2 May 2014 (02.05.2014) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: ADHEREN INCORPORATED [US/US]; HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1026 Rispin Drive, Berkeley, CA 94705 (US). KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (72) Inventors; and PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicants : TWITE, Amy, A.
    [Show full text]
  • Nomenclatore Per L'anatomia Patologica Italiana Arrigo Bondi
    NAP Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 Arrigo Bondi Bologna, 2016 NAP v. 1.9, pag 2 Arrigo Bondi * NAP - Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 * Componente Direttivo Nazionale SIAPEC-IAP Società Italiana di Anatomia Patologica e Citodiagnostica International Academy of Pathology, Italian Division NAP – Depositato presso S.I.A.E. Registrazione n. 2012001925 Distribuito da Palermo, 1 Marzo 2016 NAP v. 1.9, pag 3 Sommario Le novità della versione 1.9 ............................................................................................................... 4 Cosa è cambiato rispetto alla versione 1.8 ........................................................................................... 4 I Nomenclatori della Medicina. ........................................................................................................ 5 ICD, SNOMED ed altri sistemi per la codifica delle diagnosi. ........................................................... 5 Codifica medica ........................................................................................................................... 5 Storia della codifica in medicina .................................................................................................. 5 Lo SNOMED ............................................................................................................................... 6 Un Nomenclatore per l’Anatomia Patologica Italiana ................................................................. 6 Il NAP .................................................................................................................................................
    [Show full text]
  • Wednesday Slide Conference 2008-2009
    PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions.
    [Show full text]
  • Differentiation of Human Parathyroid Cells in Culture
    417 Differentiation of human parathyroid cells in culture W Liu, P Ridefelt1, G Åkerström and P Hellman Department of Surgery, University Hospital, Uppsala, Sweden 1Clinical Chemistry, University Hospital, Uppsala, Sweden (Requests for offprints should be addressed to P Hellman, Department of Surgery, University Hospital, SE-751 85 Uppsala, Sweden; Email: [email protected]) Abstract Continuous culture of parathyroid cells has proven diffi- histochemistry for proliferating cell nuclear antigen and cult, regardless from which species the cells are derived. In cell counting. Signs of differentiation were present as the the present study, we have used a defined serum-free low set-points, defined as the external calcium concentration at 2+ calcium containing medium to culture human parathyroid which half-maximal stimulation of [Ca ]i (set-pointc), or cells obtained from patients with parathyroid adenomas half-maximal inhibition of PTH release (set-pointp) occur, due to primary hyperparathyroidism. No fibroblast over- were higher in not proliferating compared with prolifer- growth occurred, and the human parathyroid chief cells ating cells in P0. Inhibition of cell proliferation was proliferated until confluent. After the first passage the cells accompanied by signs of left-shifted set-points, indicating ceased to proliferate, but still retained their functional a link between proliferation and differentiation. capacity up to 60 days, demonstrated by Ca2+-sensitive The results demonstrate that human parathyroid chief changes in the release of parathyroid hormone (PTH) and cells cultured in a defined serum-free medium can be kept 2+ ff as adequate cytoplasmic calcium ([Ca ]i) responses to viable for a considerable time, and that signs of di er- changes in ambient calcium as measured by micro- entiation occur after proliferation has ceased.
    [Show full text]
  • Introduction to the Endocrine System: Mechanisms of Disease
    Introduction to the Endocrine System: Mechanisms of Disease Mark J. Hoenerhoff, DVM, PhD, DACVP Associate Professor, In Vivo Animal Core Unit for Laboratory Animal Medicine University of Michigan Medical School 1.1 Lairmore and Rosol, Vet Pathol. 2008 May;45(3):285-286. 1.2 HORMONES CONTROL EVERYTHING!! 1.3 quora.com “CAPEN’S TEN LAWS” OF ENDOCRINE DISEASE 1. Primary Hyperfunction 2. Secondary Hyperfunction 3. Primary Hypofunction 4. Secondary Hypofunction 5. Endocrine Hyperactivity 2o to Other Organ Disease 6. Hypersecretion of Hormones by Non-endocrine Tumors 7. Endocrine Dysfunction due to Failure of Target Cell Response 8. Failure of Fetal Endocrine Function 9. Endocrine Dysfunction 2o to Abnormal Hormone Degradation 10. Syndromes of Iatrogenic Hormone Excess 1.4 Capen CC. Endocrine Glands. In: Maxie G, ed. Jubb, Kennedy & Palmer’s Pathology of Domestic Animals. 5th ed. Elsevier; 2007:325-326. Papadopoulos and Cleare, Nat Rev Endocrinol. 2011 Sept 27;8(1):22-32 1.5 Bassett and Williams, Bone. 2008 Sep;43(3):418-426. 1. PRIMARY HYPERFUNCTION OF ENDOCRINE ORGANS • Often result of functional neoplastic disease of endocrine gland • Autonomous secretion of hormones – DIRECT effect on target organ • Outpaces body’s ability to utilize and degrade hormone • Functional disturbance of hormone excess • Parathyroid chief cell tumors Hyperparathyroidism • Thyroid follicular tumors Hyperthyroidism 1.6 1. PRIMARY HYPERFUNCTION • Parathyroid tumors Hyperparathyroidism Parathyroid PTH Solar Arias et al, Open Vet J. 2016;6(3):165-171. 1.7 Bassett and Williams, Bone. 2008 Sep;43(3):418-426. 1. PRIMARY HYPERFUNCTION • Parathyroid tumors Hyperparathyroidism Parathyroid PTH https://ntp.niehs.nih.gov/nnl/index.htmSolar Arias et al, Open Vet J, 2016 1.7 Bassett and Williams, Bone.
    [Show full text]
  • Thyroid Gland
    10/13/2020 STP Virtual Modular Course 1 Thyroid/Parathyroid: Normal, Background, Induced; Rodent/Nonrodent Terminology; Rodent-Specific Effects I and II Thomas J. Rosol, DVM, PhD, MBA, DACVP, Ohio University Heritage College of Medicine See INHAND: Endocrine (rodents, dog) 2 ©Rosol 2020 1 10/13/2020 Thyroid Gland • Evolution: Conservation of T4 and T3 (mammals, birds, and teleosts) • Structure: Similar • Physiology and metamorphosis: Similarities and dissimilarities • Cancer: Dissimilarities 3 4 ©Rosol 2020 2 10/13/2020 Thyroid Stimulating Hormone (TSH) • Glycoprotein: Alpha & Beta (novel) subunits • Short (~15 minute) half-life • Circulates free (unbound) in blood • Highly species-specific – Human, primate, rat, & dog assays – Little cross reactivity – Male rats greater than females 5 Negative Feedback of the Pituitary by Free T4 • Feedback is dependent on the free hormone – Hypothalamus – Pituitary •Pituitary – 5’ Deiodinase (D2) (intracellular on ER) – Converts T4 to T3 – Serum free T4 correlates with TSH secretion 6 ©Rosol 2020 3 10/13/2020 Relationship of TSH to Free T4 TSH (ng/ml) Free T4 (pM) 7 T4 dose and serum TSH in hypothyroid dog Ferguson DC, 2009, Vet Pharm & Ther 8 ©Rosol 2020 4 10/13/2020 Mouse: TSH Cell Hypertrophy & Hyperplasia (Inhibition of thyroxine synthesis) 9 NIS IHC: 2-month-old Mouse 10 ©Rosol 2020 5 10/13/2020 NIS IHC: 9-month-old Mouse 11 12 ©Rosol 2020 6 10/13/2020 Thyroid Hormone Deiodination • Circulating T3 is not useful to measure thyroid function –Source: liver & kidney plasma membrane deiodinase 1 (D1) • T3 is largely regulated at the cellular level in a tissue- dependent manner (by 5’ deiodinase, D2) 13 Free Serum T4 Between Species TT4 FT4 FT4 Half-life Species (g/dL) (%) (ng/dl) (hours) Rat 4.1 0.05 2.0 13 Dog 2.8 0.10 2.8 15 Cat 1.7 0.10 1.7 11 Human 6.8 0.03 2.0 120 TT4: Total T4, FT4: Free T4 14 ©Rosol 2020 7 10/13/2020 15 Thyroxine Pharmacokinetics Dog and Human (0.22 L/hr) (0.05 L/hr) Kaptein, Am.
    [Show full text]
  • W O 2017/180669 a L 1 9 October 2017 (19.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/180669 A l 1 9 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 15/90 (2006.01) C12N 15/09 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C12N 15/87 (2006.01) C07H 21/04 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/US20 17/027073 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 11 April 2017 ( 11.04.2017) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/320,863 11 April 2016 ( 11.04.2016) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: APPLIED STEMCELL, INC.
    [Show full text]
  • Parsabiv H-3995
    15 September 2016 EMA/664198/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report Parsabiv International non-proprietary name: etelcalcetide Procedure No. EMEA/H/C/003995/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5520 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ..................................................................................... 6 1.2. Steps taken for the assessment of the product ........................................................ 7 2. Scientific discussion ................................................................................ 8 2.1. Introduction ........................................................................................................ 8 2.1.1. Problem statement ............................................................................................ 8 2.1.2. About the product ............................................................................................. 9 2.2. Quality aspects ...................................................................................................
    [Show full text]
  • The Role of Protein Kinase C in the Extracellular Ca2+-Regulated Secretion of Parathyroid Hormone
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1384 The Role of Protein Kinase C in the Extracellular Ca2+-regulated Secretion of Parathyroid Hormone BY AMOS M. SAKWE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 !" !# $ % & ' % % (& & ) % * +, -& . / '&, 0 1. 2 *, !#, -& 3 % ( 4 & / !56' 0 % ( & 7 , 2 , 8#, #6 p , , ISBN 96$$#6"96; ( & & )(-7+ & < & ' ' % & !5 !5 )= > + & , -& % & & &'& !5 = > , ( & . & '& ' % & & & &. % & )(-+ . % !5 6 ' & ' ) 3+, : & % (-7 & % (-7 & % (- & % (-7 & % (-7, -& '' & (- ? % & !5 % (-7 & & = > 6' % & & , - % (- . & !6@6 & 66 )-(2+ 1 & !5 &'& = > 6 36 % (-7 , - & % 2A6 1 )(4+ % & . & ' % (4 . & & ' % & B !5 & 3, (46C . &'& = > . %% . 6' !5 ' -(2 , : 36 % 7/4!; -(2 &'& = > & % /34D! & -(2 %% . 36 !56 , -& ' % 6 % !5 % % . ' & ' % (4 . & ' % & ' D & % & B & 3, : % % !5 % . ' % & 6 & , @6 % . (46C 6E (- ' & - 6@ ' & & %% !5 % -(2 (-7 &'& = > . & 6 ' . (46C & ' % & !5 ' (-7 . & & ' % & (4 % & 3, & & !5 1 ' /34D! & ! " # $ %" #& '()" " *+,'-). " F 2 *, 0 1. !# :00 !8!69#9" :0 ;6$$#6"96; 6#"9 )& DD ,1,D G H 6#"9+ In memory of
    [Show full text]
  • Water-Clear Cell Adenoma of the Mediastinal Parathyroid Gland
    Case Report doi: 10.5146/tjpath.2017.01407 Water-Clear Cell Adenoma of the Mediastinal Parathyroid Gland Deniz ARIK1, Emine DÜNDAR1, Evrim YILMAZ1, Cumhur SİVRİKOZ2 Department of 1Pathology and 2Thorax Surgery, Eskisehir Osmangazi University, Medicine Faculty, ESKİŞEHİR, TURKEY ABSTRACT Water-clear cell adenoma of the parathyroid gland is a rare neoplasm that consists of cells with abundant clear-pink cytoplasm. There have only been 19 cases reported in the English literature. Here we report a case of water-clear cell adenoma of the mediastinal parathyroid gland. A 70-year-old male patient presented to the hospital with back pain and a mediastinal mass 6 cm in size was detected. After excision and microscopic evaluation, uniform, large clear cells with fine cytoplasmic vacuolization, without nuclear atypia, and arranged in solid and acinar patterns were revealed. The cells formed nests that were separated by fine fibrovascular septae and stained positively with anti-parathyroid hormone. To the best of our knowledge, this has not been previously reported in this location. In the differential diagnosis of clear cell lesions of the mediastinum, water-clear cell parathyroid adenoma should be considered. Key Words: Water-clear cell, Adenoma, Ectopic tissue, Mediastinum, Parathyroid gland INTRODUCTION did not have high glycolytic activity. The serum calcium and parathyroid hormone levels were not evaluated. Surgical Water-clear cell parathyroid adenoma (WCCA) is very excision was planned by the initial diagnosis of a bronchial rare. Only nineteen cases have been reported in the English cyst, pathological lymph node or low-grade malignancy. literature (1-17). Water-clear cells (WCCs) are large In open surgery, by intraoperative consultation (frozen polygonal cells with a small nucleus and large optically section) of the biopsy, a lesion with clear cells was seen, but clear cytoplasm.
    [Show full text]