A Single-Stage Reusable Launch Vehicle Concept Abbos Yunusov A
Total Page:16
File Type:pdf, Size:1020Kb
A Single-Stage Reusable Launch Vehicle Concept Abbos Yunusov A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2014 Reading Committee: Kuen Lin Dana Andrews Adam Bruckner Program Authorized to Offer Degree: Department of Aeronautics & Astronautics ©Copyright 2014 Abbos M. Yunusov University of Washington Abstract A Heavy-Lift Reusable Single-Stage Launch Vehicle Concept Abbos M. Yunusov Chair of the Supervisory Committee: Professor Kuen Y. Lin Aeronautics & Astronautics A reusable VTVL (vertical take-off, vertical landing), all-rocket SSTO (single-stage-to-orbit) launch vehicle is proposed to reduce the cost of space transportation. The concept vehicle is based on presently- existing or near-term technology, and incorporates several features to improve performance, including all-composite construction, lightweight pressure-stabilized tankage, and the use of a HIAD (hypersonic inflatable aerodynamic decelerator) - an inflatable heatshield - to return from orbit. Several different types of main engines, consuming various fuels, are considered. An ad-hoc MATLAB code is used to predict the empty mass of the vehicle, quantify the sensitivity of the design to empty mass growth, and the system life-cycle cost. A vehicle powered by tripropellant engines based on RD-701/RD-704 technology consuming liquid oxygen and liquid hydrogen and methane fuels is identified as the best performer. Table of Contents PAGE List of figures....................................................iii List of tables......................................................vi Chapter 1: Introduction............................................001 1.01: Motivation..............................................001 1.02: Focus/Scope.............................................001 1.03: Overview of methodology/objectives of study.............002 1.04: Overview of thesis......................................003 Chapter 2: Preliminary discussion..................................004 2.01: Concept of operations...................................004 2.01.01: CONOPS/Mission Description......................004 2.01.02: Implications of CONOPS..........................005 2.02: Ascent..................................................006 2.02.01: Flight physics of ascent........................006 2.02.02: Benefits of dense propellants...................008 2.02.03: Mass ratios.....................................012 2.02.04: Illustrative example............................012 2.03: Propulsion..............................................013 2.03.01: Main propulsion.................................013 2.03.02: Secondary propulsion............................015 2.04: Entry...................................................015 2.04.01: Physics of entry................................015 2.04.02: Hypersonic inflatable aerodynamic decelerators..022 2.04.03: Prediction of HIAD aerodynamic characteristics..024 2.04.04: Hypersonic glide flight phase...................027 2.04.05: Terminal flight phase...........................029 2.05: Materials/structures/manufacturing......................030 2.05.01: Material - IM-reinforced BMI laminates..........030 2.05.02: Composite cryotanks.............................030 2.05.03: Material processing and manufacturing...........031 2.06: Concept description.....................................033 2.06.01: Vehicle configuration...........................033 2.06.02: Ground handling.................................037 2.07: Historical VTVL projects................................038 2.07.01: HATV/WCSS single-stage..........................038 2.07.02: Phillip Bono....................................040 2.07.03: Chrysler SERV...................................041 2.07.04: Robert Salkeld/MAKS.............................042 2.07.05: Boeing Leo......................................043 2.07.06: McDonnell-Douglas DC-X/Delta Clipper............044 i Chapter 3: Methodology.............................................045 3.01: Mission simulation......................................045 3.02: Mass estimation.........................................047 3.03: Cost estimation.........................................048 Chapter 4: Results and analysis....................................052 4.01: Mass estimates..........................................052 4.01.01: Basic results...................................052 4.01.02: Empty mass breakdowns...........................059 4.02: Structural mass growth effects..........................063 4.02.01: Empty/gross mass and empty mass growth factor...063 4.02.02: Empty mass breakdown effects....................066 4.03: Cost predictions........................................067 4.03.01: Basic program cost information..................067 4.03.02: Program cost components.........................071 Chapter 5: Recommendations and conclusions.........................073 5.01: Conclusions.............................................073 5.02: Recommended course of action............................073 5.03: Recommendations for further research....................074 Bibliography.......................................................075 Appendix A: Propulsion/propellant data.............................082 A.01: Propellant data.........................................082 A.02: Ascent engine baselines.................................083 A.02.01: Rocketdyne RS-25 SSME...........................083 A.02.02: OKB-276/OAO Kuznetsov NK-33/Aerojet AJ-26.......084 A.02.03: OBK-476/NPO Energomash RD-704...................085 A.03: Secondary propulsion baselines..........................086 A.03.01: RL10 OMS........................................086 A.03.02: Gaseous RCS thruster............................086 Appendix B: Design mass inputs.....................................087 B.01: Airframe data...........................................087 B.02: HIAD data...............................................087 Appendix C: Detailed sample results................................088 C.01: Tripropellant hydrometholox vehicle.....................088 ii LIST OF FIGURES Figure 2.01.01-01: Illustration of CONOPS..........................005 Figure 2.02.02-01: Free-body diagram of vehicle in ascent flight...009 Figure 2.02.02-02: Ascent trajectories (to OMS circularization burn) of hydrolox and kerolox vehicles...................................011 Figure 2.02.02-03: Gross mass histories (to MECO) of hydrolox and kerolox vehicles...................................................011 Figure 2.04.01-01: Free-body diagram of vehicle in reentry flight..016 Figure 2.04.01-02: Peak heating rate as a function of ballistic coefficient according to Allan and Eggers..........................018 Figure 2.04.01-03: Time-varying peak heating rate experienced with various ballistic coefficients.....................................019 Figure 2.04.01-04: Time-varying decelerating experienced with various ballistic coefficients.............................................020 Figure 2.04.01-05: Integrated heat load as function of reentry ballistic coefficient..............................................021 Figure 2.04.02-01: General configuration of HIAD/XAC...............023 Figure 2.04.03-01: Illustration of micromechanics of Newtonian flow...............................................................024 Figure 2.04.03-02: Illustration of flow shadowing..................025 Figure 2.04.03-03: Illustration of forebody geometry...............025 Figure 2.04.03-04: Shadowgraph depicting features of real blunt-body flow...............................................................026 Figure 2.04.04-01: Isometric view of representative entry trajectory.........................................................028 Figure 2.04.04-02: Representative entry footprint..................029 Figure 2.04.05-01: Schematic of parachute descent to landing.......030 Figure 2.05.03-01: Conceptual design of tooling....................032 iii Figure 2.06.01-01: Diagram of concept vehicle......................033 Figure 2.06.02-01: MZKT-79221 ICBM transporter-erector- launcher...........................................................037 Figure 2.06.02-02: The MV Mighty Servant 2 transporting the damaged USS Samuel B. Roberts (FFG-58).....................................037 Figure 2.07.01-01: Martin HATV concept.............................038 Figure 2.07.01-02: North American Aviation HATV concept............039 Figure 2.07.01-03: Douglas World-Circling Space Ship, single-stage variant............................................................039 Figure 2.07.02-01: Douglas SASSTO..................................040 Figure 2.07.03-01: Chrysler SERV...................................041 Figure 2.07.04-01: MAKS-OS spaceplane and drop tank attached to An-225 carrier aircraft...................................................042 Figure 2.07.05-01: Boeing Leo/"Big Onion" heavy-lift VTVL SSTO.....043 Figure 2.07.06-01: McDonnell-Douglas DC-X Delta Clipper Experimental.......................................................044 Figure 3.02-01: Schematic depiction of method of interpolation used to obtain mass growth results.........................................048 Figure 4.01.01-01: Relative sizes of vehicles using the various propulsion schemes considered......................................053 Figure 4.01.01-02: Predicted vs. empty payload mass for hydrolox vehicle with various numbers of main engines.......................054 Figure 4.01.01-03: Undiscounted transportation