A Single-Stage Reusable Launch Vehicle Concept Abbos Yunusov A

A Single-Stage Reusable Launch Vehicle Concept Abbos Yunusov A

A Single-Stage Reusable Launch Vehicle Concept Abbos Yunusov A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2014 Reading Committee: Kuen Lin Dana Andrews Adam Bruckner Program Authorized to Offer Degree: Department of Aeronautics & Astronautics ©Copyright 2014 Abbos M. Yunusov University of Washington Abstract A Heavy-Lift Reusable Single-Stage Launch Vehicle Concept Abbos M. Yunusov Chair of the Supervisory Committee: Professor Kuen Y. Lin Aeronautics & Astronautics A reusable VTVL (vertical take-off, vertical landing), all-rocket SSTO (single-stage-to-orbit) launch vehicle is proposed to reduce the cost of space transportation. The concept vehicle is based on presently- existing or near-term technology, and incorporates several features to improve performance, including all-composite construction, lightweight pressure-stabilized tankage, and the use of a HIAD (hypersonic inflatable aerodynamic decelerator) - an inflatable heatshield - to return from orbit. Several different types of main engines, consuming various fuels, are considered. An ad-hoc MATLAB code is used to predict the empty mass of the vehicle, quantify the sensitivity of the design to empty mass growth, and the system life-cycle cost. A vehicle powered by tripropellant engines based on RD-701/RD-704 technology consuming liquid oxygen and liquid hydrogen and methane fuels is identified as the best performer. Table of Contents PAGE List of figures....................................................iii List of tables......................................................vi Chapter 1: Introduction............................................001 1.01: Motivation..............................................001 1.02: Focus/Scope.............................................001 1.03: Overview of methodology/objectives of study.............002 1.04: Overview of thesis......................................003 Chapter 2: Preliminary discussion..................................004 2.01: Concept of operations...................................004 2.01.01: CONOPS/Mission Description......................004 2.01.02: Implications of CONOPS..........................005 2.02: Ascent..................................................006 2.02.01: Flight physics of ascent........................006 2.02.02: Benefits of dense propellants...................008 2.02.03: Mass ratios.....................................012 2.02.04: Illustrative example............................012 2.03: Propulsion..............................................013 2.03.01: Main propulsion.................................013 2.03.02: Secondary propulsion............................015 2.04: Entry...................................................015 2.04.01: Physics of entry................................015 2.04.02: Hypersonic inflatable aerodynamic decelerators..022 2.04.03: Prediction of HIAD aerodynamic characteristics..024 2.04.04: Hypersonic glide flight phase...................027 2.04.05: Terminal flight phase...........................029 2.05: Materials/structures/manufacturing......................030 2.05.01: Material - IM-reinforced BMI laminates..........030 2.05.02: Composite cryotanks.............................030 2.05.03: Material processing and manufacturing...........031 2.06: Concept description.....................................033 2.06.01: Vehicle configuration...........................033 2.06.02: Ground handling.................................037 2.07: Historical VTVL projects................................038 2.07.01: HATV/WCSS single-stage..........................038 2.07.02: Phillip Bono....................................040 2.07.03: Chrysler SERV...................................041 2.07.04: Robert Salkeld/MAKS.............................042 2.07.05: Boeing Leo......................................043 2.07.06: McDonnell-Douglas DC-X/Delta Clipper............044 i Chapter 3: Methodology.............................................045 3.01: Mission simulation......................................045 3.02: Mass estimation.........................................047 3.03: Cost estimation.........................................048 Chapter 4: Results and analysis....................................052 4.01: Mass estimates..........................................052 4.01.01: Basic results...................................052 4.01.02: Empty mass breakdowns...........................059 4.02: Structural mass growth effects..........................063 4.02.01: Empty/gross mass and empty mass growth factor...063 4.02.02: Empty mass breakdown effects....................066 4.03: Cost predictions........................................067 4.03.01: Basic program cost information..................067 4.03.02: Program cost components.........................071 Chapter 5: Recommendations and conclusions.........................073 5.01: Conclusions.............................................073 5.02: Recommended course of action............................073 5.03: Recommendations for further research....................074 Bibliography.......................................................075 Appendix A: Propulsion/propellant data.............................082 A.01: Propellant data.........................................082 A.02: Ascent engine baselines.................................083 A.02.01: Rocketdyne RS-25 SSME...........................083 A.02.02: OKB-276/OAO Kuznetsov NK-33/Aerojet AJ-26.......084 A.02.03: OBK-476/NPO Energomash RD-704...................085 A.03: Secondary propulsion baselines..........................086 A.03.01: RL10 OMS........................................086 A.03.02: Gaseous RCS thruster............................086 Appendix B: Design mass inputs.....................................087 B.01: Airframe data...........................................087 B.02: HIAD data...............................................087 Appendix C: Detailed sample results................................088 C.01: Tripropellant hydrometholox vehicle.....................088 ii LIST OF FIGURES Figure 2.01.01-01: Illustration of CONOPS..........................005 Figure 2.02.02-01: Free-body diagram of vehicle in ascent flight...009 Figure 2.02.02-02: Ascent trajectories (to OMS circularization burn) of hydrolox and kerolox vehicles...................................011 Figure 2.02.02-03: Gross mass histories (to MECO) of hydrolox and kerolox vehicles...................................................011 Figure 2.04.01-01: Free-body diagram of vehicle in reentry flight..016 Figure 2.04.01-02: Peak heating rate as a function of ballistic coefficient according to Allan and Eggers..........................018 Figure 2.04.01-03: Time-varying peak heating rate experienced with various ballistic coefficients.....................................019 Figure 2.04.01-04: Time-varying decelerating experienced with various ballistic coefficients.............................................020 Figure 2.04.01-05: Integrated heat load as function of reentry ballistic coefficient..............................................021 Figure 2.04.02-01: General configuration of HIAD/XAC...............023 Figure 2.04.03-01: Illustration of micromechanics of Newtonian flow...............................................................024 Figure 2.04.03-02: Illustration of flow shadowing..................025 Figure 2.04.03-03: Illustration of forebody geometry...............025 Figure 2.04.03-04: Shadowgraph depicting features of real blunt-body flow...............................................................026 Figure 2.04.04-01: Isometric view of representative entry trajectory.........................................................028 Figure 2.04.04-02: Representative entry footprint..................029 Figure 2.04.05-01: Schematic of parachute descent to landing.......030 Figure 2.05.03-01: Conceptual design of tooling....................032 iii Figure 2.06.01-01: Diagram of concept vehicle......................033 Figure 2.06.02-01: MZKT-79221 ICBM transporter-erector- launcher...........................................................037 Figure 2.06.02-02: The MV Mighty Servant 2 transporting the damaged USS Samuel B. Roberts (FFG-58).....................................037 Figure 2.07.01-01: Martin HATV concept.............................038 Figure 2.07.01-02: North American Aviation HATV concept............039 Figure 2.07.01-03: Douglas World-Circling Space Ship, single-stage variant............................................................039 Figure 2.07.02-01: Douglas SASSTO..................................040 Figure 2.07.03-01: Chrysler SERV...................................041 Figure 2.07.04-01: MAKS-OS spaceplane and drop tank attached to An-225 carrier aircraft...................................................042 Figure 2.07.05-01: Boeing Leo/"Big Onion" heavy-lift VTVL SSTO.....043 Figure 2.07.06-01: McDonnell-Douglas DC-X Delta Clipper Experimental.......................................................044 Figure 3.02-01: Schematic depiction of method of interpolation used to obtain mass growth results.........................................048 Figure 4.01.01-01: Relative sizes of vehicles using the various propulsion schemes considered......................................053 Figure 4.01.01-02: Predicted vs. empty payload mass for hydrolox vehicle with various numbers of main engines.......................054 Figure 4.01.01-03: Undiscounted transportation

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    104 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us