Adventures in Low Disk Loading VTOL Design

Total Page:16

File Type:pdf, Size:1020Kb

Adventures in Low Disk Loading VTOL Design NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California Click here: Press F1 key (Windows) or Help key (Mac) for help September 2018 This page is required and contains approved text that cannot be changed. NASA STI Program ... in Profile Since its founding, NASA has been dedicated • CONFERENCE PUBLICATION. to the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or co- helping NASA maintain this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of • TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing • TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services. NASA Programs and include extensive data or theoretical analysis. Includes compilations For more information about the NASA STI of significant scientific and technical data program, see the following: and information deemed to be of continuing reference value. NASA counterpart of peer- • Access the NASA STI program home page reviewed formal professional papers but has at http://www.sti.nasa.gov less stringent limitations on manuscript length and extent of graphic presentations. • E-mail your question to [email protected] • TECHNICAL MEMORANDUM. • Phone the NASA STI Information Desk at Scientific and technical findings that are 757-864-9658 preliminary or of specialized interest, e.g., quick release reports, working • Write to: papers, and bibliographies that contain NASA STI Information Desk minimal annotation. Does not contain Mail Stop 148 extensive analysis. NASA Langley Research Center Hampton, VA 23681-2199 • CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees. NASA/TP—2018–219981 Adventures in Low Disk Loading VTOL Design Mike Scully Ames Research Center Moffett Field, California National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035-1000 September 2018 Available from: NASA STI Support Services National Technical Information Service Mail Stop 148 5301 Shawnee Road NASA Langley Research Center Alexandria, VA 22312 Hampton, VA 23681-2199 [email protected] 757-864-9658 703-605-6000 This report is also available in electronic form at http://ntrs.nasa.gov Table of Contents Introduction ......................................................................................................................................1 Getting Started .................................................................................................................................1 On to MIT ........................................................................................................................................4 Finding My Place .............................................................................................................................7 Joining the Army Labs (AMRDL) ...................................................................................................8 HELCOM—My First Joint Service Preliminary Design Study ......................................................9 Advanced Attack Helicopter (AAH) Source Selection .................................................................10 AAH SSEB Performance Factor ....................................................................................................11 AAH SSEB Flight Test and Wind Tunnel Test Data ....................................................................13 AAH SSEB Rotor Performance .....................................................................................................15 AAH SSEB Comprehensive Analysis (C81) .................................................................................17 AAH SSEB Technical Reviews and Issues ...................................................................................18 AAH SSEB Wrap-up and Aftermath .............................................................................................20 Preliminary Design Team Consolidation and Design Tool Development .....................................21 Advanced Scout Helicopter (ASH)—My First Concept Formulation ...........................................24 Team Building and Tool Building .................................................................................................28 Vertical Takeoff and Landing (VTOL) Aircraft ............................................................................30 Joint Services Advanced Vertical Lift Aircraft (JVX) ..................................................................31 JVX Joint Technology Assessment (JTA) .....................................................................................32 JVX Joint Service Missions ...........................................................................................................33 JVX JTA Technical Foundations ...................................................................................................34 JVX JTA Weight and Cost Impact of Technology and Special Requirements .............................34 JVX JTA Turboshaft Engine Technology .....................................................................................35 JVX JTA Rotor Aeromechanics Technology ................................................................................36 JVX JTA Airframe Aerodynamics Technology ............................................................................38 JVX JTA Rotorcraft and V/STOL Design Codes ..........................................................................39 JVX JTA Layout Design ................................................................................................................39 JVX JTA Point Designs .................................................................................................................46 JVX JTA Commonality Designs ...................................................................................................49 JVX System Specification Design .................................................................................................50 JVX Program Briefings..................................................................................................................52 iii Table of Contents (cont.) JVX Request for Proposal (RFP) Task Force ................................................................................53 JVX Acquisition Strategy and Competition ..................................................................................54 JVX Program Funding and Executive Service ..............................................................................54 JVX Source Selection and Development Risk ...............................................................................55 Observations ..................................................................................................................................56 Friends, Colleagues, and Mentors ..................................................................................................57 References ......................................................................................................................................58 Index ..............................................................................................................................................64 iv Adventures in Low Disc Loading VTOL Design Dr. Mike Scully, Emeritus Engineer Ames Research Center Introduction This memoir covers the first 8 years of my 37-year career in vertical takeoff and landing (VTOL) aircraft design. It starts with family and how I came to be an engineer with a passion for aviation and a desire to make a difference. At the Massachusetts Institute of Technology (MIT) I acquired a solid understanding of basic physics, learned the basics of the various engineering disciplines, and gained design experience. After over a decade on the East Coast, I was homesick for Northern California. I decided to take a chance on working for the government instead of industry in order to return home. I was hired by Dr. Richard M. Carlson in March 1975 and joined a wonderful Army/NASA technical environment. The Interservice Helicopter Commonality Study (HELCOM) was an important introduction to Joint Service aircraft design. The Advanced Attack Helicopter (AAH) Source Selection Evaluation Board (SSEB) was an opportunity to learn acquisition system fundamentals and to lead
Recommended publications
  • Jay Carter, Founder &
    CARTER AVIATION TECHNOLOGIES An Aerospace Research & Development Company Jay Carter, Founder & CEO CAFE Electric Aircraft Symposium www.CarterCopters.com July 23rd, 2017 Wichita©2015 CARTER AVIATIONFalls, TECHNOLOGIES,Texas LLC SR/C is a trademark of Carter Aviation Technologies, LLC1 A History of Innovation Built first gyros while still in college with father’s guidance Led to job with Bell Research & Development Steam car built by Jay and his father First car to meet original 1977 emission standards Could make a cold startup & then drive away in less than 30 seconds Founded Carter Wind Energy in 1976 Installed wind turbines from Hawaii to United Kingdom to 300 miles north of the Arctic Circle One of only two U.S. manufacturers to survive the mid ‘80s industry decline ©2015 CARTER AVIATION TECHNOLOGIES, LLC 2 SR/C™ Technology Progression 2013-2014 DARPA TERN Won contract over 5 majors 2009 License Agreement with AAI, Multiple Military Concepts 2011 2017 2nd Gen First Flight Find a Manufacturing Later Demonstrated Partner and Begin 2005 L/D of 12+ Commercial Development 1998 1 st Gen 1st Gen L/D of 7.0 First flight 1994 - 1997 Analysis & Component Testing 22 years, 22 patents + 5 pending 1994 Company 11 key technical challenges overcome founded Proven technology with real flight test ©2015 CARTER AVIATION TECHNOLOGIES, LLC 3 SR/C™ Technology Progression Quiet Jump Takeoff & Flyover at 600 ft agl Video also available on YouTube: https://www.youtube.com/watch?v=_VxOC7xtfRM ©2015 CARTER AVIATION TECHNOLOGIES, LLC 4 SR/C vs. Fixed Wing • SR/C rotor very low drag by being slowed Profile HP vs.
    [Show full text]
  • Loss of Control in Yaw During Take-Off, Collision with the Ground, in Sightseeing Flight
    INVESTIGATION REPORT www.bea.aero Accident involving Airbus Helicopters EC130 B4 registered F-GOLH on 24 October 2015 at Megève (74) (1)Unless otherwise Time At 11:45(1) specified, the times in this report Operator Mont-Blanc Hélicoptère MBH are expressed Type of flight Commercial air transport in local time. Persons on board Pilot and six passengers Two passengers injured, the pilot and four Consequences and damage passengers slightly injured, helicopter destroyed Loss of control in yaw during take-off, collision with the ground, in sightseeing flight 1 - HISTORY OF THE FLIGHT During the morning, the pilot made several “Mont Blanc” sightseeing flights with the same helicopter from Megève altiport. During take-off for the fourth flight and as for the previous flights, he stabilized the helicopter in hover in the ground effect and then began to rotate it to the left around its yaw axis in order to face the climb-out path. During this manoeuvre, the pilot lost the yaw control of the aircraft, which turned several times on itself before crashing below a slope adjacent to the take-off area. The BEA investigations are conducted with the sole objective of improving aviation safety and are not intended to apportion blame or liabilities. 1/9 BEA-0647.en/January 2018 2 - ADDITIONAL INFORMATION 2.1 Examination of the accident site and wreckage The wreckage is located 25 meters to the north-north/west below the take-off area. Observations indicate that the engine was providing power and that the rotor struck the ground with energy. The cyclic pitch and collective pitch controls are continuous.
    [Show full text]
  • Future Battlefield Rotorcraft Capability (FBRC) – Anno 2035 and Beyond
    November 2018 Future Battle eld Rotorcraft Capability Anno 2035 and Beyond Joint Air Power Competence Centre Cover picture © Airbus © This work is copyrighted. No part may be reproduced by any process without prior written permission. Inquiries should be made to: The Editor, Joint Air Power Competence Centre (JAPCC), [email protected] Disclaimer This document is a product of the Joint Air Power Competence Centre (JAPCC). It does not represent the opinions or policies of the North Atlantic Treaty Organization (NATO) and is designed to provide an independent overview, analysis and food for thought regarding possible ways ahead on this subject. Comments and queries on this document should be directed to the Air Operations Support Branch, JAPCC, von-Seydlitz-Kaserne, Römerstraße 140, D-47546 Kalkar. Please visit our website www.japcc.org for the latest information on JAPCC, or e-mail us at [email protected]. Author Cdr Maurizio Modesto (ITA Navy) Release This paper is releasable to the Public. Portions of the document may be quoted without permission, provided a standard source credit is included. Published and distributed by The Joint Air Power Competence Centre von-Seydlitz-Kaserne Römerstraße 140 47546 Kalkar Germany Telephone: +49 (0) 2824 90 2201 Facsimile: +49 (0) 2824 90 2208 E-Mail: [email protected] Website: www.japcc.org Denotes images digitally manipulated JAPCC |Future BattlefieldRotorcraft Capability and – AnnoBeyond 2035 | November 2018 Executive Director, JAPCC Director, Executive DEUAF General, Lieutenant Klaus Habersetzer port Branchviae-mail [email protected]. AirOperationsSup contact to theJAPCC’s free feel thisdocument.Please to withregard have you may comments welcome any We thisstudy.
    [Show full text]
  • NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment
    NASA Mars Helicopter Team Striving for a “Kitty Hawk” Moment NASA’s next Mars exploration ground vehicle, Mars 2020 Rover, will carry along what could become the first aircraft to fly on another planet. By Richard Whittle he world altitude record for a helicopter was set on June 12, 1972, when Aérospatiale chief test pilot Jean Boulet coaxed T his company’s first SA 315 Lama to a hair-raising 12,442 m (40,820 ft) above sea level at Aérodrome d’Istres, northwest of Marseille, France. Roughly a year from now, NASA hopes to fly an electric helicopter at altitudes equivalent to two and a half times Boulet’s enduring record. But NASA’s small, unmanned machine actually will fly only about five meters above the surface where it is to take off and land — the planet Mars. Members of NASA’s Mars Helicopter team prepare the flight model (the actual vehicle going to Mars) for a test in the JPL The NASA Mars Helicopter is to make a seven-month trip to its Space Simulator on Jan. 18, 2019. (NASA photo) destination folded up and attached to the underbelly of the Mars 2020 Rover, “Perseverance,” a 10-foot-long (3 m), 9-foot-wide (2.7 The atmosphere of Mars — 95% carbon dioxide — is about one m), 7-foot-tall (2.13 m), 2,260-lb (1,025-kg) ground exploration percent as dense as the atmosphere of Earth. That makes flying at vehicle. The Rover is scheduled for launch from Cape Canaveral five meters on Mars “equal to about 100,000 feet [30,480 m] above this July on a United Launch Alliance Atlas V rocket and targeted sea level here on Earth,” noted Balaram.
    [Show full text]
  • Design, Modelling and Control of a Space UAV for Mars Exploration
    Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Space Engineering, master's level (120 credits) 2021 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Design, Modelling and Control of a Space UAV for Mars Exploration Akash Patel Department of Computer Science, Electrical and Space Engineering Faculty of Space Science and Technology Luleå University of Technology Submitted in partial satisfaction of the requirements for the Degree of Masters in Space Science and Technology Supervisor Dr George Nikolakopoulos January 2021 Acknowledgements I would like to take this opportunity to thank my thesis supervisor Dr. George Nikolakopoulos who has laid a concrete foundation for me to learn and apply the concepts of robotics and automation for this project. I would be forever grateful to George Nikolakopoulos for believing in me and for supporting me in making this master thesis a success through tough times. I am thankful to him for putting me in loop with different personnel from the robotics group of LTU to get guidance on various topics. I would like to thank Christoforos Kanellakis for guiding me in the control part of this thesis. I would also like to thank Björn Lindquist for providing me with additional research material and for explaining low level and high level controllers for UAV. I am grateful to have been a part of the robotics group at Luleå University of Technology and I thank the members of the robotics group for their time, support and considerations for my master thesis. I would also like to thank Professor Lars-Göran Westerberg from LTU for his guidance in develop- ment of fluid simulations for this master thesis project.
    [Show full text]
  • Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
    Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed.
    [Show full text]
  • A Brief Review on Electromagnetic Aircraft Launch System
    International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 5, Issue-6, Jun.-2017 http://iraj.in A BRIEF REVIEW ON ELECTROMAGNETIC AIRCRAFT LAUNCH SYSTEM 1AZEEM SINGH KAHLON, 2TAAVISHE GUPTA, 3POOJA DAHIYA, 4SUDHIR KUMAR CHATURVEDI Department of Aerospace Engineering, University of Petroleum and Energy Studies, Dehradun, India E-mail: [email protected] Abstract - This paper describes the basic design, advantages and disadvantages of an Electromagnetic Aircraft Launch System (EMALS) for aircraft carriers of the future along with a brief comparison with traditional launch mechanisms. The purpose of the paper is to analyze the feasibility of EMALS for the next generation indigenous aircraft carrier INS Vishal. I. INTRODUCTION maneuvering. Depending on the thrust produced by the engines and weight of aircraft the length of the India has a central and strategic location in the Indian runway varies widely for different aircraft. Normal Ocean. It shares the longest coastline of 7500 runways are designed so as to accommodate the kilometers amongst other nations sharing the Indian launch for such deviation in takeoff lengths, but the Ocean. India's 80% trade is via sea routes passing scenario is different when it comes to aircraft carriers. through the Indian Ocean and 85% of its oil and gas Launch of an aircraft from a mobile platform always are imported through sea routes. Indian Ocean also requires additional systems and methods to assist the serves as the locus of important international Sea launch because the runway has to be scaled down, Lines Of Communication (SLOCs) . Development of which is only about 300 feet as compared to 5,000- India’s political structure, industrial and commercial 6,000 feet required for normal aircraft to takeoff from growth has no meaning until its shores are protected.
    [Show full text]
  • National Rappel Operations Guide
    National Rappel Operations Guide 2019 NATIONAL RAPPEL OPERATIONS GUIDE USDA FOREST SERVICE National Rappel Operations Guide i Page Intentionally Left Blank National Rappel Operations Guide ii Table of Contents Table of Contents ..........................................................................................................................ii USDA Forest Service - National Rappel Operations Guide Approval .............................................. iv USDA Forest Service - National Rappel Operations Guide Overview ............................................... vi USDA Forest Service Helicopter Rappel Mission Statement ........................................................ viii NROG Revision Summary ............................................................................................................... x Introduction ...................................................................................................... 1—1 Administration .................................................................................................. 2—1 Rappel Position Standards ................................................................................. 2—6 Rappel and Cargo Letdown Equipment .............................................................. 4—1 Rappel and Cargo Letdown Operations .............................................................. 5—1 Rappel and Cargo Operations Emergency Procedures ........................................ 6—1 Documentation ................................................................................................
    [Show full text]
  • Micro Coaxial Helicopter Controller Design
    Micro Coaxial Helicopter Controller Design A Thesis Submitted to the Faculty of Drexel University by Zelimir Husnic in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 c Copyright 2014 Zelimir Husnic. All Rights Reserved. ii Dedications To my parents and family. iii Acknowledgments There are many people who need to be acknowledged for their involvement in this research and their support for many years. I would like to dedicate my thankfulness to Dr. Bor-Chin Chang, without whom this work would not have started. As an excellent academic advisor, he has always been a helpful and inspiring mentor. Dr. B. C. Chang provided me with guidance and direction. Special thanks goes to Dr. Mishah Salman and Dr. Humayun Kabir for their mentorship and help. I would like to convey thanks to my entire thesis committee: Dr. Chang, Dr. Kwatny, Dr. Yousuff, Dr. Zhou and Dr. Kabir. Above all, I express my sincere thanks to my family for their unconditional love and support. iv v Table of Contents List of Tables ........................................... viii List of Figures .......................................... ix Abstract .............................................. xiii 1. Introduction .......................................... 1 1.1 Vehicles to be Discussed................................... 1 1.2 Coaxial Benefits ....................................... 2 1.3 Motivation .......................................... 3 2. Helicopter Flight Dynamics ................................ 4 2.1 Introduction ........................................
    [Show full text]
  • Flow Visualization Studies of VTOL Aircraft Models During Hover in Ground Effect
    NASA Technical Memorandum 108860 Flow Visualization Studies of VTOL Aircraft Models During Hover In Ground Effect Nikos J. Mourtos, Stephane Couillaud, and Dale Carter, San Jose State University, San Jose, California Craig Hange, Doug Wardwell, and Richard J. Margason, Ames Research Center, Moffett Field, California Janua_ 1995 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 Flow Visualization Studies of VTOL Aircraft Models During Hover In Ground Effect NIKOS J. MOURTOS,* STEPHANE COUILLAUD,* DALE CARTER,* CRAIG HANGE, DOUG WARDWELL, AND RICHARD J. MARGASON Ames Research Center Summary fountain fluid flows along the fuselage lower surface toward the jets where it is entrained by the jet and forms a A flow visualization study of several configurations of a vortex pair as sketched in figure 1(a). The jet efflux and jet-powered vertical takeoff and landing (VTOL) model the fountain flow entrain ambient temperature air which during hover in ground effect was conducted. A surface produces a nonuniform temperature profile. This oil flow technique was used to observe the flow patterns recirculation is called near-field HGI and can cause a on the lower surfaces of the model. Wing height with rapid increase in the inlet temperature which in turn respect to fuselage and nozzle pressure ratio are seen to decreases the thrust. In addition, uneven temperature have a strong effect on the wing trailing edge flow angles. distribution can result in inlet flow distortion and cause This test was part of a program to improve the methods compressor stall. In addition, the fountain-induced vortex for predicting the hot gas ingestion (HGI) for jet-powered pair can cause a lift loss and a pitching-moment vertical/short takeoff and landing (V/STOL) aircraft.
    [Show full text]
  • Sikorsky S70i CAL FIRE HAWK Fact Sheet
    SIKORSKY S70i CAL FIRE HAWK CALIFORNIA DEPARTMENT OF FORESTRY & FIRE PROTECTION AVIATION PROGRAM MANUFACTURER CREW Sikorsky Aircraft, Stratford, Connecticut (Built in Mielec, Poland) One pilot, two Helitack Captains, an operations supervisor, and up to AIRCRAFT FIRE BUILD-UP nine personnel. United Rotorcraft, Englewood, Colorado PAYLOAD ORIGINAL OWNER Fixed tank - 1000 gallons of water/foam with pilot controlled drop volumes. CAL FIRE, 2019 ACQUIRED BY CAL FIRE SPECIFICATIONS Gross Weight: Internal 22,000 lbs./ In 2018 CAL FIRE received approval from the Governor’s Office to purchase External 23,500 lbs. up to 12 new Sikorsky S70i firefighting helicopters from United Rotorcraft. Cruise Speed: 160 mph These new generation helicopters will replace CAL FIRE’s aging fleet of Night Vision Capable 12 Super Huey Helicopters. The new generation of S70i CAL FIRE HAWK Range: 250 miles helicopters will bring enhanced capabilities including flight safety, higher Endurance: 2.5 hours payloads, increased power margins, and night flying capabilities. Rotor Diameter: 53 feet and 8 inches Engines: Twin turbine engine, T700-GE701D MISSION The CAL FIRE HAWK’s primary mission is responding to initial attack wildfires and rescue missions. When responding to wildfires, the helicopter can quickly deliver up to a 9-person Helitack Crew for ground firefighting operations and quickly transition into water/foam dropping missions. The helicopters are also used for firing operations using either a Helitorch or a Chemical Ignition Device System (CIDS) on wildland fires or prescribed burns, transporting internal cargo loads, mapping, medical evacuations and numerous non-fire emergency missions. The CAL FIRE HAWK is also equipped with an external hoist for rescue missions.
    [Show full text]
  • Supersonic STOVL Ejector Aircraft from a Propulsion Point of View
    N84-24581 NASA Technical Memorandum 83641 9 Supersonic STOVL Ejector Aircraft from a Propulsion Point of View R. Luidens, R. Plencner, W. Haller, and A. blassman Lewis Research Center Cleveland, Ohio Prepared for the Twentieth Joint Propulsion Coiiference cosponsored by the AIAA, SAE, and ASME i Cincinnati, Ohio, June 11-13, 1984 I 1 1 SUPERSONIC STOVL EJECTOR AIRCRAFT FROH A PROPULSION POINT OF VIEW R hidens,* R. Plencner,** W. Hailer.** and A Glassman+ National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Abstract 1 Higher propulsion system thrust for greater lift-off acceleration. The paper first describes a baseline super- sonic STOVL ejector aircraft, including its 2 Cooler footprint, for safer, more propulsion and typical operating modes, and convenient handllng, and lower observability identiftes Important propulsion parameters Then a number of propulsion system changes are 3. Alternattve basic propulsion cycles evaluated in terms of improving the lift-off performance; namely, aft deflection of the ejec- The approach of this paper is to use the tor jet and heating of the ejector primary air aircraft of reference 5 as a baseline. and then either by burning or using the hot englne core to consider some candidate propulsion system flow The possibility for cooling the footprint growth options The vehicle described in refe- is illustrated for the cases of mixing or lnter- rence 5 was selected on the basis of detailed changlng the fan and core flows, and uslng a alrcraft design and performance analyses The
    [Show full text]