Refining of Non-Ferrous Metals

Total Page:16

File Type:pdf, Size:1020Kb

Refining of Non-Ferrous Metals REFINING OF NON-FERROUS METALS J. G. BERRY- Abstract Fundamentals and Examples The fundamentals of refining of non - ferrous How, then, is the objective achieved ? It metals have been outlined . Examples of removal may be achieved by using the affinity of an electrolysis, of impurities by selective oxidation , undesirable element for another element, thus distillation , volatilization , etc., have been given. Refining of copper, lead, zinc, tin, and some other forming a compound, which is insoluble in the metals have been described . The importance of metal to be refined and which can easily be economics and time involved in refining process removed. Selective oxidation, electrolysis, has been stressed, distillation or volatilization may be used, while flotation, magnetic separation or chemi- cal reaction may be used to remove undesir- Introduction able elements prior to the reduction stage. T will be my endeavour in this paper to One of the earliest attempts at refining I indicate the fundamentals of refining would be the ` purification' of gold by as. they are applied to the more common thermal methods, while the most recent members of this group, with a description of development in this field is the solution and some of the processes, and, in doing so, I precipitation of metals under controlled hope to promote discussion which, after all, pressures from ores and concentrates or is the objective of this symposium. scrap, such as brass. In the fire-refining of copper; many im- purities are oxidized and removed in the Definition slag, these impurities being oxidized in pre- What, then, is the definition of ` refining ' ? ference to the copper itself. On the other Strictly speaking, - it is the metallurgical hand, in the refining of metals in which process for the removal of impurities which copper is itself an impurity its affinity for follows the reduction of an ore or concentrate sulphur may be used to bring about its to metal. It can also be applied to any elimination. process used for the purification of scrap. Zinc is refined by distillation, while im- The term `refining', for the purposes of purities, such as arsenic, can be removed by this discussion, must, however, be expanded volatilization. Electrolysis, as a method to include the removal of impurities from of refining, is used for copper and, of course, an ore or concentrate before the reduction the treatment of bauxite is a well-known stage; as, in some cases, if such impurities example of ` pre-extraction ' refining, assum- are allowed to enter the product of reduction, ing that the proposed expansion of the they are difficult to remove in the subsequent original definition of refining is permitted. refining process. Whether before or after smelting, the Outlines of Refining Procedures objective of the metallurgist is the removal of undesirable elements from a metal or Copper-By far the greater tonnage of alloy. copper is produced from sulphide ores which, *J. G. BERRY, B.Sc. (Land.), M.I.M.M., M.A.I.M.E., rounder Member, I.I.M., Works Manager, Indian Copper Corporation Ltd., Ghatsila ( Bihar). 102 BERRY - REFINING OF NON-FERROUS METALS 103 after concentration, are smelted to produce Care must be taken in fire-refining and a a ` matte' which, in turn, is 'blown' to blister balance struck between the amount of im- copper in a converter. The blister copper, purities removed and the time taken, as the which is sent to the refinery may contain longer the oxidation , the more copper goes varying amounts of sulphur, iron, arsenic, into the slag which must be re-treated to aluminium, selenium, tellurium, bismuth, recover that copper . This recovery is nickel, cobalt, gold and silver. achieved by utilizing the affinity of copper The actual refining process starts in the for sulphur and the slags , resulting from the converter where, if bismuth is present, this converting and refining operations, when impurity can be reduced to 0001 per cent or added to the reverberatory furnace, react less by prolonging the blowing at the slagging with and enter the matte. stage, and a concentrate, with a percentage Depending on the residual impurities, of iron higher than normal, is produced to 'oxidation ' is followed by 'poling' with enable this to be done. Bismuth, if allowed green poles to reduce the dissolved copper to remain in the blister copper, cannot be oxide, after. which the metal can be ingotted removed by fire-refining. and sold for many purposes. If, however, Fire-refining of the blister copper is carried high conductivity copper is required, and if out either to produce an ingot of relatively the copper is suitable from the point of view high purity, or as a preliminary to electrolytic of impurities, the fire -refining process can refining, and even after electrolytic refining be continued, and it is interesting to note the cathode copper may be again fire-refined that some 6 or 7 per cent of the world's to give the correct pitch for the production production is high conductivity fire-refined of copper-wire bars. In the fire-refining copper. process, air is used for oxidation and the Electrolytic methods of refining remove ` end point ' is noted by studying the ` set ' the difficult elements , such as nickel , cobalt, of samples taken at intervals from the bath. selenium and tellurium, together with the It is a feature of this process that the oxida- gold and silver; and, as already stated, after tion of the impurities is more rapid than that the electrolytic process, the cathodes are of the copper, thus enabling the impurities melted and the copper subjected to a short to be removed with comparative ease. fire-refining process by which the correct Of the impurities which have been noted, pitch or oxygen content is obtained before sulphur is eliminated almost at once. Iron casting into wire-bars. is readily removed in the slag, as also is Lead- Lead, which may contain any of aluminium. Arsenic and antimony, if pre- the following impurities , viz, ' copper, anti- sent, are removed by using soda-ash and lime, mony, arsenic , bismuth and silver , has a very the lime being added to reduce the wear and interesting course to follow from the blast tear on the furnace lining. These latter ele- furnace to the refined product , and at Port ments are, of course, removed after the nor- Pirie, South Australia , Dr. G. K. Williams, mal slagging process has been completed. the then Chief Metallurgist at the Broken Selenium and tellurium cannot be removed Hill Associated Smelter ( Proprietary) Ltd., by fire-refining, although there are possibil- worked out a scheme for the continuous flow ities of some success using soda-ash under of metal from the bullion storage kettles to reducing conditions. However, these ele- the finished product. ments are normally removed by electrolysis, Copper is the first impurity to be removed, together with the precious metals which, if and this is done by drossing and by the present, as would be expected, do not oxidize utilization of the affinity of copper for sul- and, therefore, cannot be removed by fire- phur. The blast furnace product is received refining. in kettles, where it is allowed to cool, As the 104 SYMPOSIUM ON NON-FERROUS METAL INDUSTRY IN INDIA temperature drops, the dross formation on into the main bulk of lead below. As the reduces the copper to under 0.1 per cent. lead passes through the zinc layer, the zinc At this stage, sulphur is added and the final takes up the gold and silver, while the lead drossing carried out at as near to the freezing dissolves some of the zinc. When the zinc point as possible. is sufficiently enriched, it is removed by I remember, as a young man, watching ladles and fresh zinc added. The lead is this process being carried out on a very small discharged from the kettle by a syphon, the scale in a solder pot, and the operator, quite a mouth of which is set some 18 in. from the character, called the process ` cold burnin '. bottom. Thus the incoming lead having I have never heard the term before or since, passed through the zinc layer is displaced but it aptly describes the process. The dross downward into the cooler zones, where the from this section is smelted to recover the zinc alloy crystallizes out and rises back into copper, while the lead is pumped to the the upper sections. The temperature of the bullion storage kettles. lead, as it is displaced downward, falls nearly The lead is now ready for the continuous to the freezing point and the desilverized refining process, The first stage is ` soften- lead, rising up in the syphon, is re-heated ing ', in which, as is indicated by the name, by the metal in the upper sections. the hardening elements, namely arsenic and The desilverized lead still contains a little antimony, are removed. The molten metal zinc, and the final refining takes place in a, is agitated with compressed air and the oxi- furnace similar to that in which the ` soften- dation of antimony and arsenic takes place ing ' was carried out, the same principle, together with a proportion of the lead. The namely oxidation, being involved. Here concentration of antimony in the bath has a trouble was experienced owing to lack of pronounced effect on the rate of oxidation fluidity of the slag, but by adding some anti- and the blowers are controlled so that the monial slag from the softening furnace, this antimony is oxidized quickly and the bath trouble was overcome without upsetting the maintained within the critical range (0.02- refining process.
Recommended publications
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Table of Contents
    Table of Contents Preface ........................................... xi Chapter 1. Physical Extraction Operations .................... 1 1.1. Solid-solid and solid-fluid separation operations .............. 1 1.1.1. Flotation ................................... 1 1.1.2. Settling under gravity ........................... 3 1.1.3. Centrifugation ................................ 3 1.1.4. Filtration ................................... 4 1.2. Separation operations of the components of a fluid phase ........ 5 1.2.1. Condensation ................................ 5 1.2.2. Vacuum distillation ............................. 5 1.2.3. Liquation ................................... 6 1.2.4. Distillation .................................. 8 1.2.5. Extractive distillation ........................... 11 1.3. Bibliography ................................... 12 Chapter 2. Hydrometallurgical Operations .................... 15 2.1. Leaching and precipitation operations .................... 15 2.1.1. Leaching and precipitation reactors ................... 15 2.1.2. Continuous stirred tank reactor (CSTR) ................ 18 2.1.3. Models of leaching and precipitation operations ........... 20 2.1.4. Particle-size distribution (PSD) functions ............... 21 2.2. Reactor models based on particle residence time distribution functions ........................................ 24 2.2.1. Performance equations for a single CSTR ............... 24 2.2.2. Performance equations for multistage CSTRs ............. 28 2.3. Reactor models based on the population balance
    [Show full text]
  • A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia's Artisanal Gold Mining
    [Type here] The University of British Columbia Norman B. Keevil Institute of Mining Engineering 6350 Stores Rd., Vancouver, BC, Canada, V6T 1Z4 ph: (604) 8224332, fax: (604) 8225599; [email protected] Report to UNDP Indonesia A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia’s Artisanal Gold Mining: Co-existence is the Solution Marcello M. Veiga, PhD, PEng Professor For UNDP - United Nations Development Programme, Indonesia − March 2020 – A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia’s AGM i Report to UNDP, March 2020, by Marcello M. Veiga _____________________________________________________________________________________ Table of Contents SUMMARY ...................................................................................................................................................... 1 1. MERCURY POLLUTION FROM ARTISANAL GOLD MINERS ..................................................................... 2 1.1. Some Definitions ............................................................................................................................ 2 1.2. Mercury in AGM in Indonesia ........................................................................................................ 3 1.3. Summary of the Main Problems of Mercury in AGM in Indonesia ............................................... 7 2. SOLUTIONS TRIED TO REDUCE/ELIMINATE MERCURY .......................................................................... 8 2.1. Environmental and Health Approach ...........................................................................................
    [Show full text]
  • Occurrence and Extraction of Metals MODULE - 6 Chemistry of Elements
    Occurrence and Extraction of Metals MODULE - 6 Chemistry of Elements 16 Notes OCCURRENCE AND EXTRACTION OF METALS Metals and their alloys are extensively used in our day-to-day life. They are used for making machines, railways, motor vehicles, bridges, buildings, agricultural tools, aircrafts, ships etc. Therefore, production of a variety of metals in large quantities is necessary for the economic growth of a country. Only a few metals such as gold, silver, mercury etc. occur in free state in nature. Most of the other metals, however, occur in the earth's crust in the combined form, i.e., as compounds with different anions such as oxides, sulphides, halides etc. In view of this, the study of recovery of metals from their ores is very important. In this lesson, you shall learn about some of the processes of extraction of metals from their ores, called metallurgical processes. OBJECTIVES After reading this lesson, you will be able to : z differentiate between minerals and ores; z recall the occurrence of metals in native form and in combined form as oxides, sulphides, carbonates and chlorides; z list the names and formulae of some common ores of Na, Al, Sn, Pb ,Ti, Fe, Cu, Ag and Zn; z list the occurrence of minerals of different metals in India; z list different steps involved in the extraction of metals; * An alloy is a material consisting of two or more metals, or a metal and a non-metal. For example, brass is an alloy of copper and zinc; steel is an alloy of iron and carbon.
    [Show full text]
  • Characterization of Bronze Casting in Insula 56, in Roman Aventicum
    CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK (Under the Direction of Ervan Garrison) ABSTRACT This study characterizes metallurgical wastes (slag) recovered from a bronze workshop during excavations in 1997-1998 at the Roman provincial city of Aventicum, located in western Switzerland, then Germania Superior. Previous research has identified the workshop as one devoted to the production of large leaded bronze statuary. The slag assemblage analyzed in this study is unusual due to the absence of ceramic crucible fragments normally associated with the production of copper alloys. Instead, this workshop is hypothesized to have used iron crucibles. Electron Microprobe Analysis (EMPA) and X-Ray Diffraction (XRD) were used to analyze the chemical composition of the slags in contrast to previous bulk analysis studies. Modern metal casting methods were observed for analogues. The data show that the slag reached temperatures between 1350°-1400° C and chemical components indicated the use of sand and lime fluxes. Evidence of high temperatures is proposed as one chemical fingerprint that can be used to re-assess slag for the presence of iron crucibles in other Roman bronze workshops. INDEX WORDS: Aventicum, Classical Bronzes, EMPA, XRD, Roman Metallurgy CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK AB History, Anthropology, The University of Georgia, 2003 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2008 © 2008 Jessica Wheat Cook All Rights Reserved CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK Major Professor: Ervan Garrison Committee: Samuel Swanson Douglas Crowe Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2008 iv ACKNOWLEDGMENTS The author wishes to thank Drs.
    [Show full text]
  • ENVIRONMENTAL CODE of PRACTICE Base Metals Smelters and Refineries
    ENVIRONMENTAL CODE OF PRACTICE C ANADIAN E NVIRONMENTAL P ROTECTION A CT , 1999 First Edition Base Metals Smelters and Refineries March 2006 EPS 1/MM/11 E Metals Section Natural Resource Sectors Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Library and Archives Canada Cataloguing in Publication Main entry under title: Environmental Code of Practice for Base Metals Smelters and Refineries: Code of Practice, Canadian Environmental Protection Act, 1999. Issued also in French under title: Code de pratiques écologiques pour les fonderies et affineries de métaux communs : Code de pratique de la Loi canadienne sur la protection de l’environnement (1999). “First Edition”. Available also on the Internet. Includes bibliographical references. ISBN 0-662-42221-X Cat. no.: En84-34/2005E EPS 1/MM/11 E 1. Non-ferrous metal industries – Waste disposal – Canada. 2. Non-ferrous metals – Metallurgy – Environmental aspects – Canada. 3. Non-ferrous metals – Refining – Environmental aspects – Canada. 4. Smelting – Environmental aspects – Canada. 5. Best management practices (Pollution prevention) – Canada. i. Canada. Pollution Prevention Directorate. Metals Section. ii. Canada. Environment Canada. TD195.F6E58 2005 669'.028'6 C2005-980316-9 READERS’ COMMENTS Inquiries and comments on this Code of Practice, as well as requests for additional copies of the Code, should be directed to: Metals Section Natural Resources Sectors Division Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Place Vincent Massey 351 St. Joseph Blvd. Gatineau, Quebec K1A 0H3 Fax (819) 953-5053 Note: Website addresses mentioned in this document may have changed or references cited may have been removed from websites since the publication of the document.
    [Show full text]
  • Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld
    metals Article Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld Kai-Cheng Chen 1, Tai-Cheng Chen 2,3 ID , Ren-Kae Shiue 3 ID and Leu-Wen Tsay 1,* ID 1 Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; [email protected] 2 Nuclear Fuels and Materials Division, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan; [email protected] 3 Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-2-24622192 (ext. 6405) Received: 7 May 2018; Accepted: 25 May 2018; Published: 27 May 2018 Abstract: The main scope of this study investigated the occurrence of liquation cracking in the heat-affected zone (HAZ) of IN738 superalloy weld, IN738 is widely used in gas turbine blades in land-based power plants. Microstructural examinations showed considerable amounts of γ’ uniformly precipitated in the γ matrix. Electron probe microanalysis (EPMA) maps showed the γ-γ’ colonies were rich in Al and Ti, but lean in other alloy elements. Moreover, the metal carbides (MC), fine borides (M3B2 and M5B3), η-Ni3Ti, σ (Cr-Co) and lamellar Ni7Zr2 intermetallic compounds could be found at the interdendritic boundaries. The fracture morphologies and the corresponding EPMA maps confirmed that the liquation cracking in the HAZ of the IN738 superalloy weld resulted from the presence of complex microconstituents at the interdendritic boundaries. Keywords: IN738 superalloy; welding; HAZ cracking; microconstituent 1. Introduction The superior tensile strength, creep and oxidation resistance at elevated temperature make Ni-base superalloys used extensively in industrial gas turbines [1].
    [Show full text]
  • Silver City Santa Rita Hurley
    SCENIC TRIPS to the GEOLOGIC PAST SILVER CITY SANTA RITA HURLEY NEW MEXICO Scenic Trips to the Geologic Past Series: No. I - Santa Fe, New Mexico No. 2 - Taos-Red River - Eagle Nest, New Mexico, Circle Drive No. 3 - Roswell- Capitan - Ruidoso and Bottomless Lakes Park, New Mexico No. 4 - Southern Zuni Mountains, New Mexico No. 5 - Silver City-Santa Rita-Hurley, New Mexico Additional copies of these guidebooks are available, for 25 cents, from the New Mexico Bureau of Mines and Mineral Resources, Campus Station, Socorro, New Mexico. HO: FOR THE GOLD AND SILVER MINES OF NEW MEXICO Fortune hunters, capitalists, poor men, Sickly folks, all whose hearts are bowed down; And Ye who would live long, be rich, healthy, and Happy; Come to our sunny clime and see For Yourselves. Handbill -- 1883 Santa Rita Open Pit, 1959. Scenic Trips to the Geologic Past No. 5 SILVER CITY - SANTA RITA - HURLEY, NEW MEXICO by JOHN H. SCHILLING 1959 STATE BUREAU OF MINES AND MINERAL RESOURCES a division of NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY Socorro - New Mexico NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS Members Ex Officio The Honorable John Burroughs ...............Governor of New Mexico Tom Wiley ……….…… ...........Superintendent of Public Instruction Appointed Members Holm 0. Bursum, Jr. ........................................................ Socorro Thomas M. Cramer.......................................................... Carlsbad Frank C. DiLuzio ...................................................... Albuquerque John N. Mathews, Jr. ....................................................... Socorro Richard A. Matuszeski .............................................. Albuquerque PREFACE Much of the work undertaken at the New Mexico Bureau of Mines and Mineral Resources is done to help the mineral industries -- the prospector, miner, geologist, oil man.
    [Show full text]
  • The Metallurgy of Antimony
    Chemie der Erde 72 (2012) S4, 3–8 Contents lists available at SciVerse ScienceDirect Chemie der Erde journal homepage: www.elsevier.de/chemer The metallurgy of antimony Corby G. Anderson ∗ Kroll Institute for Extractive Metallurgy, George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, United States article info abstract Article history: Globally, the primary production of antimony is now isolated to a few countries and is dominated by Received 4 October 2011 China. As such it is currently deemed a critical and strategic material for modern society. The metallurgical Accepted 10 April 2012 principles utilized in antimony production are wide ranging. This paper will outline the mineral pro- cessing, pyrometallurgical, hydrometallurgical and electrometallurgical concepts used in the industrial Keywords: primary production of antimony. As well an overview of the occurrence, reserves, end uses, production, Antimony and quality will be provided. Stibnite © 2012 Elsevier GmbH. All rights reserved. Tetrahedrite Pyrometallurgy Hydrometallurgy Electrometallurgy Mineral processing Extractive metallurgy Production 1. Background bullets and armory. The start of mass production of automobiles gave a further boost to antimony, as it is a major constituent of Antimony is a silvery, white, brittle, crystalline solid that lead-acid batteries. The major use for antimony is now as a trioxide exhibits poor conductivity of electricity and heat. It has an atomic for flame-retardants. number of 51, an atomic weight of 122 and a density of 6.697 kg/m3 ◦ ◦ at 26 C. Antimony metal, also known as ‘regulus’, melts at 630 C 2. Occurrence and mineralogy and boils at 1380 ◦C.
    [Show full text]
  • Chemistry As a Tool for Historical Research: Identifying Paths of Historical Mercury Pollution in the Hispanic New World
    Bull. Hist. Chem., VOLUME 37, Number 2 (2012) 61 CHEMISTRY AS A TOOL FOR HISTORICAL RESEARCH: IDENTIFYING PATHS OF HISTORICAL MERCURY POLLUTION IN THE HISPANIC NEW WORLD Saúl Guerrero, History Department, McGill University, Montreal, QC H3A 2T7, Canada, [email protected] Introduction silver ores to identify and quantify the different mercury loss vectors that resulted from the amalgamation process This article is the first of a series that explore the as practiced in the Hispanic New World. potential of chemistry as an efficient tool for historical research. Basic chemical principles such as the The Scale of Anthropogenic Emissions of stoichiometry of chemical reactions provide the historian Mercury in the New World with a powerful tool to judge the reliability of archival records and interpret better the historiography of events From 1521 to 1810 Spain produced nearly 69% of that relate directly to processes of production based the total world output of silver from its mines in New on chemical reactions. Chemical mass balances have Spain (present day Mexico) and in the Vice-Royalty of determined both revenue streams and environmental Peru (present day Peru and Bolivia). During this period consequences in the past. there was no other non-Hispanic major silver produc- A very appropriate case study to apply this ap- tion in the New World (2). The global economic impact proach is the first industrial scale chemical process to of these exports of silver to Europe and China during have caused a global economic impact. The application the Early Modern Era has received wide coverage in of mercury amalgamation to extract silver from the ores the historiography of this period (3).
    [Show full text]
  • Principles of Extractive Metallurgy
    Principles of Extractive Metallurgy by Professor Nosa O. Egiebor Environmental Engineering Program Department of Chemical Engineering Tuskegee University Tuskegee, AL 36088 USA Course Reference Texts Materials for the course were taken from multiple textbook. The main texts include: Principles of Extractive Metallurgy by Terkel Rosenquist; Tapir Academic Press, Trondheim, Norway, 2004. The Chemistry of Gold Extraction (2nd Ed) by John O. Marsden and C. Lain House, SME Littleton, Colorado, USA (2006) Process Selection in Extractive Metallurgy by Peter Hayes, Hayes Publishing Co., Brisbane, Australia (1985) Instructor’s Lecture Notes, Prof. Nosa O. Egiebor (2011) Introduction - Definitions Metallurgy is the science of extracting and refining metals from ores and the compounding of metals to form alloys. Extractive metallurgy is the branch of metallurgical science & engineering which deals with the extraction and refining of metals from ores. An ore is a rock that contains commercially viable amounts of metallic/non-metallic solid minerals. Ores are complex associations of mineral grains A mineral is a chemical compound that constitute a component of an ore, and with its own characteristic chemical composition. Introduction – Types of Ores & Minerals Most metals are combined with other elements to form minerals. Few exist as pure metals. The table below provides examples of the common types of ores with minerals, their chemical formula and Common Names: Native Metals (Can occur as Pure Metals) Silver-(Ag), Gold-(Au), Bismuth-(Bi),
    [Show full text]
  • Principles of Metallurgy
    Chapter 13 Principles of Metallurgy In class 8 you have studied about certain properties of metals like, malleability, ductility, sonarity etc. Metals play an important role in our daily life. We use various metals for various purposes like gold and silver as jewellary, copper, iron, alluminium for making conducting wires and for making utensils etc. We use many house hold articles made up of metals and their alloys at our home. • Can you mention some articles that are made up of metals? • Do metals exist in nature in the form same as that we use in our daily life? • Have you ever heard the words like ore, mineral and metallurgy? • Do you know how these metals are obtained? To understand these questions you need to know about metallurgy. In this chapter we discuss various concepts related to metallurgy and the process by which we are able to obtain the pure form of metal that we use in our daily life. “Metallurgy is the process of extraction of metals from their ores”. Human history in terms of materials had the Bronze Age and Iron Age pertaining to the metals they started to use the bronze (an alloy of copper and tin) and iron. Now we have more than 75% metals among the elements available. Occurrence of the metals in nature • How the metals are present in nature? The earth’s crust is the major source of metals. Sea water also contains some soluble salts such as sodium chloride and magnesium chloride etc. 286 X Class Principles of Metallurgy Some metals like gold (Au), silver (Ag) and copper (Cu) are available in nature in free state (native) as they are least reactive.
    [Show full text]