Silver City Santa Rita Hurley
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia's Artisanal Gold Mining
[Type here] The University of British Columbia Norman B. Keevil Institute of Mining Engineering 6350 Stores Rd., Vancouver, BC, Canada, V6T 1Z4 ph: (604) 8224332, fax: (604) 8225599; [email protected] Report to UNDP Indonesia A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia’s Artisanal Gold Mining: Co-existence is the Solution Marcello M. Veiga, PhD, PEng Professor For UNDP - United Nations Development Programme, Indonesia − March 2020 – A Critical Review of Suitable Methods to Eliminate Mercury in Indonesia’s AGM i Report to UNDP, March 2020, by Marcello M. Veiga _____________________________________________________________________________________ Table of Contents SUMMARY ...................................................................................................................................................... 1 1. MERCURY POLLUTION FROM ARTISANAL GOLD MINERS ..................................................................... 2 1.1. Some Definitions ............................................................................................................................ 2 1.2. Mercury in AGM in Indonesia ........................................................................................................ 3 1.3. Summary of the Main Problems of Mercury in AGM in Indonesia ............................................... 7 2. SOLUTIONS TRIED TO REDUCE/ELIMINATE MERCURY .......................................................................... 8 2.1. Environmental and Health Approach ........................................................................................... -
Occurrence and Extraction of Metals MODULE - 6 Chemistry of Elements
Occurrence and Extraction of Metals MODULE - 6 Chemistry of Elements 16 Notes OCCURRENCE AND EXTRACTION OF METALS Metals and their alloys are extensively used in our day-to-day life. They are used for making machines, railways, motor vehicles, bridges, buildings, agricultural tools, aircrafts, ships etc. Therefore, production of a variety of metals in large quantities is necessary for the economic growth of a country. Only a few metals such as gold, silver, mercury etc. occur in free state in nature. Most of the other metals, however, occur in the earth's crust in the combined form, i.e., as compounds with different anions such as oxides, sulphides, halides etc. In view of this, the study of recovery of metals from their ores is very important. In this lesson, you shall learn about some of the processes of extraction of metals from their ores, called metallurgical processes. OBJECTIVES After reading this lesson, you will be able to : z differentiate between minerals and ores; z recall the occurrence of metals in native form and in combined form as oxides, sulphides, carbonates and chlorides; z list the names and formulae of some common ores of Na, Al, Sn, Pb ,Ti, Fe, Cu, Ag and Zn; z list the occurrence of minerals of different metals in India; z list different steps involved in the extraction of metals; * An alloy is a material consisting of two or more metals, or a metal and a non-metal. For example, brass is an alloy of copper and zinc; steel is an alloy of iron and carbon. -
Evaluation of Scale-Up Model for Flotation with Kristineberg Ore
Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson Chemical Engineering, master's level 2018 Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Evaluation of Scale-up Model for Flotation with Kristineberg Ore Adam Isaksson 2018 For degree of MASTER OF SCIENCE Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Division of Minerals and Metallurgical Engineering Printed by Luleå University of Technology, Graphic Production 2018 Luleå 2018 www.ltu.se Preface As you may have figured out by now, this thesis is all about mineral processing and the extraction of metals. It was written as part of my studies at Luleå University of Technology, for a master’s degree in Chemical Engineering with specialisation Mineral and Metal Winning. There are many people I would like to thank for helping me out during all these years. First of all, my thanks go to supervisors Bertil Pålsson and Lisa Malm for the guidance in this project. Iris Wunderlich had a paramount role during sampling and has kindly delivered me data to this report, which would not have been finished without her support. I would also like to thank Boliden Mineral AB as a company. Partly for giving me the chance to write this thesis in the first place, but also for supporting us students during our years at LTU. Speaking of which, thanks to Olle Bertilsson for reading the report and giving me feedback. The people at the TMP laboratory deserves another mention. I am also very grateful for the financial support and generous scholarships from Jernkontoret these five years. -
Characterization of Bronze Casting in Insula 56, in Roman Aventicum
CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK (Under the Direction of Ervan Garrison) ABSTRACT This study characterizes metallurgical wastes (slag) recovered from a bronze workshop during excavations in 1997-1998 at the Roman provincial city of Aventicum, located in western Switzerland, then Germania Superior. Previous research has identified the workshop as one devoted to the production of large leaded bronze statuary. The slag assemblage analyzed in this study is unusual due to the absence of ceramic crucible fragments normally associated with the production of copper alloys. Instead, this workshop is hypothesized to have used iron crucibles. Electron Microprobe Analysis (EMPA) and X-Ray Diffraction (XRD) were used to analyze the chemical composition of the slags in contrast to previous bulk analysis studies. Modern metal casting methods were observed for analogues. The data show that the slag reached temperatures between 1350°-1400° C and chemical components indicated the use of sand and lime fluxes. Evidence of high temperatures is proposed as one chemical fingerprint that can be used to re-assess slag for the presence of iron crucibles in other Roman bronze workshops. INDEX WORDS: Aventicum, Classical Bronzes, EMPA, XRD, Roman Metallurgy CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK AB History, Anthropology, The University of Georgia, 2003 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2008 © 2008 Jessica Wheat Cook All Rights Reserved CHARACTERIZATION OF BRONZE CASTING IN INSULA 56, IN ROMAN AVENTICUM by JESSICA WHEAT COOK Major Professor: Ervan Garrison Committee: Samuel Swanson Douglas Crowe Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2008 iv ACKNOWLEDGMENTS The author wishes to thank Drs. -
ENVIRONMENTAL CODE of PRACTICE Base Metals Smelters and Refineries
ENVIRONMENTAL CODE OF PRACTICE C ANADIAN E NVIRONMENTAL P ROTECTION A CT , 1999 First Edition Base Metals Smelters and Refineries March 2006 EPS 1/MM/11 E Metals Section Natural Resource Sectors Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Library and Archives Canada Cataloguing in Publication Main entry under title: Environmental Code of Practice for Base Metals Smelters and Refineries: Code of Practice, Canadian Environmental Protection Act, 1999. Issued also in French under title: Code de pratiques écologiques pour les fonderies et affineries de métaux communs : Code de pratique de la Loi canadienne sur la protection de l’environnement (1999). “First Edition”. Available also on the Internet. Includes bibliographical references. ISBN 0-662-42221-X Cat. no.: En84-34/2005E EPS 1/MM/11 E 1. Non-ferrous metal industries – Waste disposal – Canada. 2. Non-ferrous metals – Metallurgy – Environmental aspects – Canada. 3. Non-ferrous metals – Refining – Environmental aspects – Canada. 4. Smelting – Environmental aspects – Canada. 5. Best management practices (Pollution prevention) – Canada. i. Canada. Pollution Prevention Directorate. Metals Section. ii. Canada. Environment Canada. TD195.F6E58 2005 669'.028'6 C2005-980316-9 READERS’ COMMENTS Inquiries and comments on this Code of Practice, as well as requests for additional copies of the Code, should be directed to: Metals Section Natural Resources Sectors Division Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Place Vincent Massey 351 St. Joseph Blvd. Gatineau, Quebec K1A 0H3 Fax (819) 953-5053 Note: Website addresses mentioned in this document may have changed or references cited may have been removed from websites since the publication of the document. -
Mercury and Mercury Compounds
United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY -
Corrosion and Mercury Release from Dental Amalgam
Corrosion and Mercury Release from Dental Amalgam 1 Jaro Pleva, Ph.D. Abstract been presented, amalgam is still by far the most Corrosion attacks on twenty-two dental extensively used material for dental restorations.2 amalgam restorations after in vivo service have Since the investigations and warnings of the been studied by Scanning Electron Microscopy outstanding German chemist Alfred Stock, 1920- together with the Energy Dispersive X-Ray 19453 4 5 little epidemiological studies of mercury Technique, and by optical microscopy. From the release and its effects have been made. One of the measured depth and type of corrosion attack, possible reasons may be the very interdisciplinary estimates of released mercury amounts are made. character of the problem. For correct answer, The amalgam fillings have been obtained from specialist competence in the following fields is members of a group of 250 individuals, who required: materials science, suspected their health troubles potentially to be corrosion/electrochemistry, toxicology, chronic mercury poisoning from amalgam and medicine/diagnostics, physical biology, analytical were to have all amalgam fillings removed. Three chemistry. typical patient cases are presented. The common type of dental amalgam is an Model calculations of released mercury, based alloy containing typically in weight-%; 50 Hg, 35 on previously published measurements of Ag, 10 Sn, Cu, Zn. corrosion currents with and without abrasion are Reported types of amalgam degradation are also given. crevice corrosion,2 6 7 8 selective corrosion,9 The investigations show, that the long-term galvanic corrosion in contact with dissimilar release of mercury from a few amalgam fillings alloys10 11 and mechanical wear.12 33 Besides will often reach or exceed the recommended selective attack, stress corrosion has been limits for daily intake of mercury. -
NATURE MAY 6, 1944, Vol
562 NATURE MAY 6, 1944, VoL. 153 If the number of young people leaving school and nineteenth century led to the emancipation of the college is much larger in recent years than at the lower classes and of women, and to increasing de beginning of the century, it would seem that this is mands for improved social status and better educa less marked in Switzerland than in certain other tion. Dr. Erb considers that, in Switzerland, the countries. For example, it is pointed out that, in exaggerated importance imputed to academic learn 1930-31, per 100,000 of population, Germany had 63 ing of the more showy or superficial type was par Abiturienten (holders of school-leaving certificates or ticularly marked, and was closely associated with equivalent) whereas Switzerland had only 34. Japan the growing soci»l prejudice for black-coated respect and Rumania in 1934 had more than six times as ability. Those who had not themselves attained many with academic training as in 1913. In the to this status were anxious and determined that their same period those of Holland increased by 146 per children should do so; and this delusion, says Dr. cent, of France 112 per cent, of Great Britain 83 per Erb, will continue until it is more generally realized cent, and of Switzerland 59 per cent. According to that the harder one studies the more certainly will Dr. Erb, the most disturbing aspect of this increase he miss the road to wealth. This may be often true, in quantity is the serious decline in quality : he but scarcely attains the dignity of a general thinks the standard, however measured, is definitely proposition ; and in any event strikes a slightly dis lower. -
Refining of Non-Ferrous Metals
REFINING OF NON-FERROUS METALS J. G. BERRY- Abstract Fundamentals and Examples The fundamentals of refining of non - ferrous How, then, is the objective achieved ? It metals have been outlined . Examples of removal may be achieved by using the affinity of an electrolysis, of impurities by selective oxidation , undesirable element for another element, thus distillation , volatilization , etc., have been given. Refining of copper, lead, zinc, tin, and some other forming a compound, which is insoluble in the metals have been described . The importance of metal to be refined and which can easily be economics and time involved in refining process removed. Selective oxidation, electrolysis, has been stressed, distillation or volatilization may be used, while flotation, magnetic separation or chemi- cal reaction may be used to remove undesir- Introduction able elements prior to the reduction stage. T will be my endeavour in this paper to One of the earliest attempts at refining I indicate the fundamentals of refining would be the ` purification' of gold by as. they are applied to the more common thermal methods, while the most recent members of this group, with a description of development in this field is the solution and some of the processes, and, in doing so, I precipitation of metals under controlled hope to promote discussion which, after all, pressures from ores and concentrates or is the objective of this symposium. scrap, such as brass. In the fire-refining of copper; many im- purities are oxidized and removed in the Definition slag, these impurities being oxidized in pre- What, then, is the definition of ` refining ' ? ference to the copper itself. -
Chemistry As a Tool for Historical Research: Identifying Paths of Historical Mercury Pollution in the Hispanic New World
Bull. Hist. Chem., VOLUME 37, Number 2 (2012) 61 CHEMISTRY AS A TOOL FOR HISTORICAL RESEARCH: IDENTIFYING PATHS OF HISTORICAL MERCURY POLLUTION IN THE HISPANIC NEW WORLD Saúl Guerrero, History Department, McGill University, Montreal, QC H3A 2T7, Canada, [email protected] Introduction silver ores to identify and quantify the different mercury loss vectors that resulted from the amalgamation process This article is the first of a series that explore the as practiced in the Hispanic New World. potential of chemistry as an efficient tool for historical research. Basic chemical principles such as the The Scale of Anthropogenic Emissions of stoichiometry of chemical reactions provide the historian Mercury in the New World with a powerful tool to judge the reliability of archival records and interpret better the historiography of events From 1521 to 1810 Spain produced nearly 69% of that relate directly to processes of production based the total world output of silver from its mines in New on chemical reactions. Chemical mass balances have Spain (present day Mexico) and in the Vice-Royalty of determined both revenue streams and environmental Peru (present day Peru and Bolivia). During this period consequences in the past. there was no other non-Hispanic major silver produc- A very appropriate case study to apply this ap- tion in the New World (2). The global economic impact proach is the first industrial scale chemical process to of these exports of silver to Europe and China during have caused a global economic impact. The application the Early Modern Era has received wide coverage in of mercury amalgamation to extract silver from the ores the historiography of this period (3). -
Principles of Metallurgy
Chapter 13 Principles of Metallurgy In class 8 you have studied about certain properties of metals like, malleability, ductility, sonarity etc. Metals play an important role in our daily life. We use various metals for various purposes like gold and silver as jewellary, copper, iron, alluminium for making conducting wires and for making utensils etc. We use many house hold articles made up of metals and their alloys at our home. • Can you mention some articles that are made up of metals? • Do metals exist in nature in the form same as that we use in our daily life? • Have you ever heard the words like ore, mineral and metallurgy? • Do you know how these metals are obtained? To understand these questions you need to know about metallurgy. In this chapter we discuss various concepts related to metallurgy and the process by which we are able to obtain the pure form of metal that we use in our daily life. “Metallurgy is the process of extraction of metals from their ores”. Human history in terms of materials had the Bronze Age and Iron Age pertaining to the metals they started to use the bronze (an alloy of copper and tin) and iron. Now we have more than 75% metals among the elements available. Occurrence of the metals in nature • How the metals are present in nature? The earth’s crust is the major source of metals. Sea water also contains some soluble salts such as sodium chloride and magnesium chloride etc. 286 X Class Principles of Metallurgy Some metals like gold (Au), silver (Ag) and copper (Cu) are available in nature in free state (native) as they are least reactive. -
WC/97/014 a Review of Gold Particle-Size and Recovery Methods
British Geological Survey TECHNICAL REPORT WC/97/14 Overseas Geology Series A REVIEW OF GOLD-PARTICLE-SIZE AND RECOVERY METHODS CJ Mitchell, EJ Evans & M T Styles This document is an output of a project funded by the UK Overseas Development Administration (ODA) for the benefit of developing countries. The views expressed in this document are not necessarily those of the ODA. ODA Classi$cation Subsector: Geoscience Theme: G2, Identify and ameliorate minerals-related and other geochemical toxic hazards Project Title: Mitigation of mining-related mercury pollution hazards Reference number: R6226 Bibliographic reference: C J Mitchell, E J Evans & M T Styles, A review of gold particle-size and recovery methods BGS Technical Report WC/97/14 Keywords: Gold, mineral processing, Malaysia, Zimbabwe, New Zealand, Papua New Guinea, Canada Front cover illustration: Processing of gold ore using a sluice box, Malaysia 0NERC 1997 Keyworth, Nottingham, British Geological Survey, 1997 Mitigation of mining-related mercury pollution hazards BRITISH GEOLOGICAL SURVEY Mineralogy & Petrology Group Technical Report WC/97/14 A REVIEW OF GOLD PARTICLE-SIZE AND RECOVERY METHODS CJ Mitchell, EJ Evans & MT Styles 1. INTRODUCTION This report reviews published literature concerning the particle-size distribution of gold occurring in alluvial and bed-rock deposits and the various methods used for its recovery. The aim of this review is to recommend methods for the recovery of fine- grained gold (generally less than 100 pm in size) as an alternative to the environmentally damaging use of mercury amalgamation. This work has been carried out as part of an ODA / BGS Technology Development Research (TDR) project R6226 "Mitigation of mining-related mercury pollution hazards".