Future Expansion - Projectapollo

Total Page:16

File Type:pdf, Size:1020Kb

Future Expansion - Projectapollo Future Expansion - ProjectApollo http://nassp.sourceforge.net/wiki/Future_Expansion Future Expansion Categories: Spacecraft | Historical spacecraft | Fictional spacecraft From ProjectApollo There are plenty of candidates for future additions to the spacecraft simulated in Project Apollo after the basic historical Command/Service Module and Lunar Module are complete. Contents 1 Spacecraft 1.1 Command/Service Module 1.2 CSM Ferry 1.3 CSM Shuttle 1.4 Command/Cryogenic Service Module 1.5 Multi-Mission Module 1.6 Recycled/Renovated Command Modules 1.7 CM Parawing 1.8 CM Land-Landing System 1.9 Apollo Logistics Spacecraft 1.10 CSM Experiments Pallet 1.11 Lunar Shelter 1.12 LM/Apollo Telescope Mount 1.13 Nuclear-Ion, Lunar Logistics Spacecraft 1.14 HL-10 Lifting Body 1.15 Emergency Escape Device 1.16 Orbital Escape Device 1.17 LLRV/LLTV 2 Lunar Mobility Aids 2.1 Lunar Motorbike 2.2 Local Scientific Survey Module (LSSM) 2.3 Bell Aerospace One Man Lunar Flying Unit 2.4 North American/Rockwell One Man Lunar Flying Unit 2.5 Long-Range Flyer 2.6 Lunar Escape System 3 Moonbases 4 Projects and Missions 4.1 Original Saturn plans 4.2 AAP Mission 1a 4.3 Apollo to Venus 4.4 AAP Venus Flyby Mission 4.5 Apollo/Salyut/Soyuz Test Project 4.6 Satellite Rendezvous and Refurbishment Missions 4.7 High Orbit Laser Communications Test 4.8 High Orbit Optical Systems Experiment 4.9 High Orbit Interferometer Test 4.10 Orbital X-Ray Telescope 4.11 High Orbit Parabolic Antenna Test 4.12 Little Joe 2 Suborbital Test Flights 4.13 Mars Excursion Module Testing 4.14 Orbiting Primate Spacecraft 4.15 Passive Communications Satellite Test 4.16 Project Able LEM 4.17 Lunar Photo-Mapping LEM 4.18 Project Icarus 4.19 Project Horizon 4.20 Lunex Project 5 Unmanned Spacecraft 5.1 High Orbit Nuclear Powered Television Satellite 5.2 Advanced Mars Probe 5.3 Jupiter Orbiting Vehicle for Exploration (JOVE) 5.4 Jupiter Orbiting Spacecraft (JOSÉ) 6 Launch Vehicles 6.1 Little Joe 2 6.2 Saturn C-2 MLV 6.3 Saturn 1 6.4 Saturn 1b/Centaur 6.5 Saturn 1b MLV 6.6 Saturn 1b with multiple SRBs 6.7 Saturn 1 RIFT and Saturn V/Nuclear 6.8 Saturn INT-21 6.9 Saturn V/J-2S 6.10 Saturn S-ID stage 6.11 Saturn S-IVC stage 6.12 Saturn Cryogenic Planetary Injection Module 6.13 Saturn V-24 7 Skylab and Alternative Space Stations 7.1 Skylab 7.2 AAP Skylab 7.3 Interim Orbital Workshops 7.4 Orbital Launch Facility 7.5 Baseline Orbital Workshop 7.6 Boeing Single Launch Space Station Proposal 7.7 Self Deploying Space Station 7.8 Lockheed Modular Space Station 7.9 Artificial Gravity Space Station 7.10 SLA Workshop 8 Integrated Manned Programme 9 References Spacecraft 1 of 21 8/17/2010 3:18 PM Future Expansion - ProjectApollo http://nassp.sourceforge.net/wiki/Future_Expansion Command/Service Module Support may be added for the proposed Block-III CSM designed for extended orbital operations, the Block-IV CSM with batteries for power and LEM engines in place of the SPS and the Block-V intended for long duration lunar missions with one fuel cell replaced by two SNAP-27 RTGs. In addition, the inclusion of a Block-I CSM in future versions has been discussed. CSM Ferry In 1965, NASA considered the possibility that the Saturn V could not be 'man-rated' in time to permit a lunar landing in the 1960's. Had this occurred an alternative mission profile was developed. An unmanned CSM/LM stack would be launched into orbit atop a Saturn V. Then a manned CSM ferry fitted with a drogue docking unit would be launched atop a Saturn 1b. The ferry would rendezvous and dock with the CSM/LM stack and after a crew transfer be jettisoned prior to the TLI burn. See: Apollo launch-vehicle man-rating. Some considerations and an alternative contingency plan. (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov /19770078693_1977078693.pdf) Beyond Apollo: RAND's Apollo backup plan (http://beyondapollo.blogspot.com/2009/06/rands-apollo-backup-plan-1965.html) 'CSM Ferry' Proposal CSM Shuttle In 1967 North American Rockwell patented a proposal to turn the Apollo CSM into something resembling a miniature space shuttle with a payload bay in the Service Module, fins on the rear, retractable wings in the bottom of the SM, and X-15 style landing gear with a nose-wheel at the front of the SM and skids at the rear: "An aerospace vehicle comprising a substantially conical forward crew compartment or command module mated to a substantially cylindrical rearward service module. Aerodynamic fairings are provided along the midline on the sides of the cylindrical portion and a substantial distance aft thereof for providing lift at hypersonic velocities and approximately vertical fins are provided on the fairings for aerodynamic stability and control. Wings are mounted within the aerodynamic fairings at high velocities and pivotably extended therefrom at lower velocities and altitudes to provide low speed lift." This is explained in detail in US Patent 3,576,298 (http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL& p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=3,576,298.PN.&OS=PN/3,576,298&RS=PN/3,576,298) . 'CSM Shuttle' proposal Command/Cryogenic Service Module In 1964 NASA conducted a preliminary study into using the RL-10 engine which powered the S-IV stage to provide power for the SM. The resulting Cryogenic Service Module would also have carried the fuel for the LM (as it was planned at that time), thus saving weight during launch. See: Analysis of a Cryogenic Service Module for the Apollo mission. (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790076809_1979076809.pdf) and Advanced pressurization systems for cryogenic propellants. Final report, 20 Nov. 1963 - 25 Jun. 1965 (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov Cryogenic Service Module proposal /19670007276_1967007276.pdf) Multi-Mission Module In 1964 the Marshall Spaceflight Center patented the design of a booster stage that was intended to be the basis of a series of different spacecraft. In the illustration shown two such modules form the basis of a lunar logistics spacecraft. One proposed alternative use would have seen the modules used as a replacement for both the Service and Lunar modules for the Apollo missions. See: Comparative Design Study of Modular Stage Concepts - Volume III, Development Plans & Cost Analysis (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740073700_1974073700.pdf) 'Multi-Mission Module' based Apollo CSM/LM 'Multi-Mission Module' proposal Recycled/Renovated Command Modules 2 of 21 8/17/2010 3:18 PM Future Expansion - ProjectApollo http://nassp.sourceforge.net/wiki/Future_Expansion In 1966 North American/Rockwell proposed to NASA that recovered CSMs should be returned to the manufacturer for re-use, this ranged from a simple renovation of the Command Module to permit it to be re-launched in a future mission, to converting it into an experiment station/airlock for use on Apollo Applications flights. Three uses for a renovated Command Module CM Parawing In the late 1960's NASA studied the possibility of replacing the parachute based Earth Descent System with a parawing based system, allowing for the possibility of bringing the Apollo CMs down on land rather than at sea. See: 1. Fixed-base visual simulation of pilot controlled descents of an advanced Apollo spacecraft with an all-flexible parawing (http://ntrs.nasa.gov/archive /nasa/casi.ntrs.nasa.gov/19690011574_1969011574.pdf) 2. Fixed-base visual simulation of obstacle avoidance during terminal descent of advanced Apollo spacecraft with an all-flexible parawing (http://ntrs.nasa.gov /archive/nasa/casi.ntrs.nasa.gov/19700026611_1970026611.pdf) 3. Wind-tunnel investigation of the static aerodynamic characteristics of an 18-foot (5.49-meter) all-flexible parawing (http://ntrs.nasa.gov/archive /nasa/casi.ntrs.nasa.gov/19670017942_1967017942.pdf) 4. Inertia tests of a 24 foot single keel parawing, model 2 (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700011127_1970011127.pdf) Descent configuration of the CM/Parawing CM Land-Landing System One proposal for the later Apollo Extension/Apollo Applications missions was to equip the CM with a modified heat shield that would allow the CM to come down on land rather than in the ocean. See: 1. Mechanical Impact System Design for Advanced Spacecraft (MISDAS). Phase I - Design concept selection (http://ntrs.nasa.gov/archive /nasa/casi.ntrs.nasa.gov/19670005559_1967005559.pdf) 2. Mechanical Impact System Design for Advanced Spacecraft (MISDAS). Final Report (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov /19670005572_1967005572.pdf) 3. Mechanical Impact System Design for Advanced Spacecraft (MISDAS). Application to AES SPACECRAFT (http://ntrs.nasa.gov/archive /nasa/casi.ntrs.nasa.gov/19670005610_1967005610.pdf) CM fitted with six legged land-landing system Apollo Logistics Spacecraft This was an Apollo CSM modified to carry freight and six astronauts into orbit in support of Earth orbital Apollo Applications Program missions. The proposed craft, like the Block IV CSMs planned for the Apollo to Venus mission replaced the fuel cells with batteries and the SPS with a single LM descent engine Proposed launch vehicles included the Titan IIIc or Saturn Ib. See: MODAP (1963) (http://beyondapollo.blogspot.com/2009/05/modap-1963.html) Planned Apollo Logistics Module CSM Experiments Pallet Proposed modification of the Service Module to permit a variety of Earth/Lunar orbit experiments to be carried. One such experiment set evolved into the Apollo Telescope Mount fitted to Skylab.
Recommended publications
  • Victor Or Villain? Wernher Von Braun and the Space Race
    The Social Studies (2011) 102, 59–64 Copyright C Taylor & Francis Group, LLC ISSN: 0037-7996 print / 2152-405X online DOI: 10.1080/00377996.2010.484444 Victor or Villain? Wernher von Braun and the Space Race JASON L. O’BRIEN1 and CHRISTINE E. SEARS2 1Education Department, University of Alabama in Huntsville, Huntsville, Alabama, USA 2History Department, University of Alabama in Huntsville, Huntsville, Alabama, USA Set during the Cold War and space race, this historical role-play focuses on Wernher von Braun’s involvement in and culpability for the use of slave laborers to produce V-2 rockets for Nazi Germany. Students will grapple with two central questions. Should von Braun have been allowed to emigrate to the United States given his affiliation with the Nazis and use of slave laborers? Should the U.S. government and military have put Braun in powerful positions in NASA and military programs? This activity encourages students to hone their critical thinking skills as they consider and debate a complex, multi-layered historical scenario. Students also have opportunity to articulate persuasive arguments either for or against von Braun. Each character sketch includes basic information, but additional references are included for teachers and students who want a more in depth background. Keywords: role-play, Wernher von Braun, Space Race, active learning Victor or Villain? Wernher von Braun and the Space Role-Playing as an Instructional Strategy Race By engaging in historical role-plays, students can explore In 2009, the United States celebrated the fortieth anniver- different viewpoints regarding controversial topics (Clegg sary of the Apollo 11 crew’s landing on the moon.
    [Show full text]
  • An Early Manned Lunar Landing Q
    . ' - ,, ,, ,, . ... , " X64 80440 O~s7!- A FEASIBLE APPROACH FOR AN EARLY MANNED LUNAR LANDING Q PART I SUMMARY REPORT OF AD HOC TASK GROUP STU6Y (u) JUNE 16, 1961 Restriction/Classification Cancelled NA§A HEADQUARTERS, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ' I ------AD HOC TASK .GROUP . William A. Fleming - Chairman, Hq. Facilities Addison M. Rothrock - Deputy Chairman, Hq.· Albert J. Kelley - Hq. Samuel Snyder - Hq. Berg Paraghamian - Hq. Robert D. Briskman - ·Hq. Walter W. Haase - Hq. Secrest L. Berry - Hq. Spacecraft Llle Sciences . ..John H. Disher - Hq. James P. Nolan, Jr. - ·Hq • Merle. G•. Waugh - Hq. A.H. Schwichtenberg - Lovelace Foundation. Kenneth Kleinknecht - STG Alan B. Kehlet - STG Advanced Technology Launch Vehicles Ernesto. Pearson, Jr. - Hq. Eldon W. Hall - Hq. Space Sciences Melvyn Savage - Hq. Heinz H. Koelle .- MSFC · William Shipley - JPL William L. Lovejoy_~_Hq. Robert Fellows - Hq •.. Norman Raf el - Hq. Alfred M. Nelson - Hq. The effort: or the Ad Hoc Task Group were supplemented very signllicantly by major contributions in each technical area from a large number or other staff members at the various NASA Centers and at NASA Headquarters. Although these· added participants are too numerous to mention individually, their contributions are a vital part of the study results. i Restriction/Classification Cancelled lil TABLE OF CONTENTS INTRODUCTION ~ Purpose and Study Approach 1 Ground Rules and Guidelines 2 Program Elements 3 Use of the Sequenced Milestone System 4 Approach to Program Funding 5 PROGRAM PLAN ·objectives 6 Program Scope 8 Mission Approach 12 Spacecraft Requirements 24 Launch Vehicle Development 32_ Facilities 48 ' Supporting Research 62 Early .Managemen:b·;_ Actiort:s.
    [Show full text]
  • Sam Davis • Critical Essay by Elizabeth Howie
    weep not for the future: the photographs of Sam Davis • Critical Essay by Elizabeth Howie Sam Davis’s work, in particular images from his portfolios Tragic Heroes, Rocketships, and Tin, consists of a variety of approaches to exploring our longstanding fascination with outer space. Utilizing such devices as pinhole, medium format and 4x5 cameras, as well as processing ranging from daguerreotypes to tintypes, silver gelatin, and Chromira C-prints, Davis shows us our memories, dreams, and fantasies about our hopes and fears of the universe around us. Tragic Heroes, consisting almost entirely of panoramic shots, brings us into the proximity of solitary moon-suit clad figures. They are reminiscent of spacemen of cinema and television, such as the 1939 Buck Rogers movie serial, the 1952 serial Commando Cody, Earth vs. the Flying Saucers of 1956, 1959’s When Worlds Collide, or the all-too-earnest space travelers of the original Star Trek, which ran from 1966-69. The gadgets and spacecraft (also made by Davis) evoke even earlier examples, such as ray-guns from the 1936 film Flash Gordon. The above classic early sci-fi vehicles utilized special effects, which now appear quite clunky, to try to demonstrate the wonders and threats of the future.[1] Despite their retro stylings, Davis’s heroes have arrived in that future, and strangely, things have not advanced all that much. But some things are definitely different. Countering the myth of the NASA astronaut as idealized he-man, someone who possesses “the right stuff,”[2] Davis’s figures—and perhaps" spacemen" is a better word than "astronauts," to suggest their relation to science fiction— demonstrate instead a kind of wistful vulnerability we would never have been permitted to observe in the Apollo age.
    [Show full text]
  • Exploring How the Outer Space Treaty Will Impact American Commerce and Settlement in Space
    S. HRG. 115–219 REOPENING THE AMERICAN FRONTIER: EXPLORING HOW THE OUTER SPACE TREATY WILL IMPACT AMERICAN COMMERCE AND SETTLEMENT IN SPACE HEARING BEFORE THE SUBCOMMITTEE ON SPACE, SCIENCE, AND COMPETITIVENESS OF THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION MAY 23, 2017 Printed for the use of the Committee on Commerce, Science, and Transportation ( Available online: http://www.govinfo.gov U.S. GOVERNMENT PUBLISHING OFFICE 29–998 PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 10:53 May 15, 2018 Jkt 075679 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\29998.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION JOHN THUNE, South Dakota, Chairman ROGER F. WICKER, Mississippi BILL NELSON, Florida, Ranking ROY BLUNT, Missouri MARIA CANTWELL, Washington TED CRUZ, Texas AMY KLOBUCHAR, Minnesota DEB FISCHER, Nebraska RICHARD BLUMENTHAL, Connecticut JERRY MORAN, Kansas BRIAN SCHATZ, Hawaii DAN SULLIVAN, Alaska EDWARD MARKEY, Massachusetts DEAN HELLER, Nevada CORY BOOKER, New Jersey JAMES INHOFE, Oklahoma TOM UDALL, New Mexico MIKE LEE, Utah GARY PETERS, Michigan RON JOHNSON, Wisconsin TAMMY BALDWIN, Wisconsin SHELLEY MOORE CAPITO, West Virginia TAMMY DUCKWORTH, Illinois CORY GARDNER, Colorado
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Shroudlines Vol 13 Issue 1 11X17.Pub
    DARS NAR Section #308 SHROUDLINES Jan/Feb 2004 A Newsletter of the Dallas Area Rocket Society Volume 13, Issue 1 Dallas Area Rocket Society (“DARS”) In Memory of Beth Sapp By James Gartrell This issue of Shroudlines is devoted to Beth Sapp, loving and devoted wife of Tim Sapp, and loving and devoted mother of her two sons whom she loved so dearly, Alex and Eric. Although Beth has left this physical world, she will always remain in our hearts and minds. I know I speak for everyone from DARS when I say our deepest sympathies go Member - National Association out to Tim, Alex and Eric, and the rest of of Rocketry (“NAR”). their family. They will forever remain in my prayers, and I think that’s what Beth would want us all to do. Special points of interest: • In Memory of Beth Sapp - This Beth was also a dear friend and a wonderful Valwood Branch at: 13940 N. Stemmons Freeway, Suite A, Farmers Branch, TX 75234 issue is devoted to the memory person, DARS member and certified Level 2, of Beth Sapp. The first three Telephone (972) 406-1116, Fax (972) 406-9998, www.kinkos.com and much more. I don’t think there are pages include remembrances enough words or the right words to truly and photos of Beth. memorialize a person as special as Beth was, • Currently planned Launches, even though I’ve had a long time to think Outreach, and Contest Events about it since her funeral on January 24. The Dallas Area Rocket Society for 2004 are listed.
    [Show full text]
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Space Rescue Ensuring the Safety of Manned Space¯Ight David J
    Space Rescue Ensuring the Safety of Manned Space¯ight David J. Shayler Space Rescue Ensuring the Safety of Manned Spaceflight Published in association with Praxis Publishing Chichester, UK David J. Shayler Astronautical Historian Astro Info Service Halesowen West Midlands UK Front cover illustrations: (Main image) Early artist's impression of the land recovery of the Crew Exploration Vehicle. (Inset) Artist's impression of a launch abort test for the CEV under the Constellation Program. Back cover illustrations: (Left) Airborne drop test of a Crew Rescue Vehicle proposed for ISS. (Center) Water egress training for Shuttle astronauts. (Right) Beach abort test of a Launch Escape System. SPRINGER±PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason, B.Sc., M.Sc., Ph.D. ISBN 978-0-387-69905-9 Springer Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springer.com) Library of Congress Control Number: 2008934752 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2009 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a speci®c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • America's Greatest Projects and Their Engineers - VII
    America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft.
    [Show full text]
  • Abort Capabilities from Manned Mars Missions in 1986 David Harold Kruse Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Abort capabilities from manned Mars missions in 1986 David Harold Kruse Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Aerospace Engineering Commons Recommended Citation Kruse, David Harold, "Abort capabilities from manned Mars missions in 1986 " (1967). Retrospective Theses and Dissertations. 3190. https://lib.dr.iastate.edu/rtd/3190 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 8-5961 KRUSE, David Harold, 1941- ABORT CAPABILITIES FROM MANNED MARS MISSIONS IN 1986. Iowa State University, Ph.D., 1967 Engineering, aeronautical University Microfilms, Inc., Ann Arbor, Michigan ABORT CAPABILITIES PROM MANNED MARS MISSIONS IN I986 by David Harold Kruse A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirement for the Degree of DOCTOR OP PHILOSOPHY Major Subjects: Aerospace Engineering Mechanical Engineering Approved: Signature was redacted for privacy. :n'Charge or Major work Signature was redacted for privacy. Heads of Major Departments Signature was redacted for privacy. Dèan of Gradua' Iowa State University Of Science and Technology Ames, Iowa 1967 ii TABLE OF CONTENTS Page I. INTRODUCTION 1 A. Necessity for Rescue Research 1 B. Previous Work 3 C. Problem Definition 7 D.
    [Show full text]
  • Spacewalk Database
    Purchaser First Inscribed First ID Name Purchaser Last Name Name Inscribed Last Name Biographic_Infomation 01558 Beth / Forrest Goodwin Ron & Margo Borrup In 1957 CURTISS S. (ARMY) ARMSTRONG became a member of America's Space Team. His career began with the launch of Explorer I and Apollo programs. His tireless dedication has contributed to America's future. He is truly 00022 Cheryl Ann Armstrong Curtiss S. Armstrong an American Space Pioneer. Science teacher and aerospace educator since 00023 Thomas J. Sarko Thomas J. Sarko 1975. McDonnell Douglas 25 Years, AMF Board of 00024 Lowell Grissom Lowell Grissom Directors Joined KSC in 1962 in the Director's Protocol Office. Responsible for the meticulous details for the arrival, lodging, and banquets for Kings, Queens and other VIP worldwide and their comprehensive tours of KSC with top KSC 00025 Major Jay M. Viehman Jay Merle Viehman Personnel briefing at each poi WWII US Army Air Force 1st Lt. 1943-1946. US Civil Service 1946-1972 Engineer. US Army Ballistic Missile Launch Operations. Redstone, Jupiter, Pershing. 1st Satellite (US), Mercury 1st Flight Saturn, Lunar Landing. Retired 1972 from 00026 Robert F. Heiser Robert F. Heiser NASA John F. Kennedy S Involved in Air Force, NASA, National and Commercial Space Programs since 1959. Commander Air Force Space Division 1983 to 1986. Director Kennedy Space Center - 1986 to 1 Jan 1992. Vice President, Lockheed Martin 00027 Gen. Forrest S. McCartney Forrest S. McCartney Launch Operations. Involved in the operations of the first 41 manned missions. Twenty years with NASA. Ten years 00028 Paul C. Donnelly Paul C.
    [Show full text]