Skylab: the Human Side of a Scientific Mission

Total Page:16

File Type:pdf, Size:1020Kb

Skylab: the Human Side of a Scientific Mission SKYLAB: THE HUMAN SIDE OF A SCIENTIFIC MISSION Michael P. Johnson, B.A. Thesis Prepared for the Degree of MASTER OF ARTS UNIVERSITY OF NORTH TEXAS May 2007 APPROVED: J. Todd Moye, Major Professor Alfred F. Hurley, Committee Member Adrian Lewis, Committee Member and Chair of the Department of History Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Johnson, Michael P. Skylab: The Human Side of a Scientific Mission. Master of Arts (History), May 2007, 115pp., 3 tables, references, 104 titles. This work attempts to focus on the human side of Skylab, America’s first space station, from 1973 to 1974. The thesis begins by showing some context for Skylab, especially in light of the Cold War and the “space race” between the United States and the Soviet Union. The development of the station, as well as the astronaut selection process, are traced from the beginnings of NASA. The focus then shifts to changes in NASA from the Apollo missions to Skylab, as well as training, before highlighting the three missions to the station. The work then attempts to show the significance of Skylab by focusing on the myriad of lessons that can be learned from it and applied to future programs. Copyright 2007 by Michael P. Johnson ii ACKNOWLEDGEMENTS This thesis would not be possible without the help of numerous people. I would like to begin, as always, by thanking my parents. You are a continuous source of help and guidance, and you have never doubted me. Of course I have to thank my brothers and sisters. You may be older than me but you have always treated me as an equal and have always supported me. I owe much to the guidance of Dr. J. Todd Moye. Thank you for going out of your way, and out of your field, to help me with this project. Thank you also to the other instructors at the University of North Texas who have guided the beginning of my graduate work, especially Dr. Adrian Lewis, Dr. Al Hurley, and Dr. Richard Lowe. Since I stepped foot on campus I have been amazed by the quality of professors in the History department. Thank you so much for all those who worked on the Skylab program. Your hard work and dedication greatly influenced me and kept me motivated, and of course without it this work would not be possible. I would especially like to thank those who took time out of their busy schedules to talk with me: John Aaron, Lee Briscoe, Ed Fendell, Charles Lewis, Zach Kirkland, Gene Kranz, Earl Thompson, and Milton Windler. Finally, thank you to my many friends who have helped me and put up with me through this procedure. I especially thank Karen DiValerio and my other friends from Space Center Houston, my original inspiration. I thank my Aggie Awakening families for their spiritual support. Last but certainly not least, thanks to the graduate students in the History department who have struggled alongside me, especially Cody, Justin, Brian, Paul, Bianca, the ever helpful and ever patient Lisa, and all the others in the History Help Center. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.........................................................................................................iii LIST OF TABLES.......................................................................................................................vi INTRODUCTION ........................................................................................................................ 1 DEVELOPMENT......................................................................................................................... 6 ASTRONAUT SELECTION...................................................................................................... 13 ASTRONAUT BACKGROUNDS............................................................................................. 16 MISSION CONTROL ................................................................................................................ 22 FROM APOLLO TO SKYLAB ................................................................................................. 26 TRAINING ................................................................................................................................. 33 SKYLAB LAYOUT AND EXPERIMENTS............................................................................. 38 SKYLAB I .................................................................................................................................. 47 SKYLAB II................................................................................................................................. 52 SKYLAB III................................................................................................................................ 57 SKYLAB IV ............................................................................................................................... 61 RESEARCH................................................................................................................................ 68 FROM SKYLAB TO THE SHUTTLE ...................................................................................... 71 LESSONS LEARNED................................................................................................................ 77 CONCLUSION........................................................................................................................... 82 NOTES........................................................................................................................................ 83 Appendix A. HOURS FOR EACH MISSION....................................................................... 101 iv B. SKYLAB EVAs................................................................................................ 103 C. LIST OF ACRONYMS .................................................................................... 105 REFERENCE............................................................................................................................ 109 v LIST OF TABLES Page 1. Skylab Astronauts ........................................................................................................... 13 2. Skylab Crew Branch Assignments.................................................................................. 32 3. Crew Assignments .......................................................................................................... 34 vi INTRODUCTION When President Dwight Eisenhower signed the National Aeronautics and Space Act on July 29, 1958, he officially created one of the largest and most influential government agencies of the United States. Through this act, the National Aeronautics and Space Administration [NASA] replaced the National Advisory Committee for Aeronautics [NACA] and changed the focus from aeronautics to space exploration.1 The creation of NASA came almost directly as a response to the launch of Sputnik I by the Soviet Union on October 4, 1957. At this time, the United States and the Soviet Union were embroiled in the Cold War, a major post-Second World War struggle between the democratic and communist nations. After the launch of this first satellite, the United States people felt threatened by the possibility of space being dominated by their rivals. This brought about the need for NASA. The two nations began the virtually unstated but ever present “Space Race” to reach the Moon and conquer space. The Soviet Union, with its early start, boasted much of the early “firsts” in space travel. On November 3, 1957, Laika, a dog, became the first living thing to orbit the Earth. Yuri Gagarin was the first human in space on April 12, 1961, a major victory in the space race. Alexei Leonov completed the first space walk on March 18, 1965. While the Russians first achieved a number of other accomplishments, NASA was only months behind. NASA truly took the lead in 1968, when the astronauts of Apollo VIII became the first humans to reach and orbit the Moon. The agency began with rather meager goals. The Mercury Project, with flights from 1961 to 1963, simply wanted to prove that humans could reach space consistently with one-man missions.2 With the Gemini Program, from 1964 to 1966, NASA slightly expanded its goals. This time each mission would include two astronauts who would demonstrate tasks, such as 1 rendezvous and Extravehicular Activities [EVAs or space walks], that were necessary for missions to the Moon.3 These first two programs led NASA to a much larger objective. On May 25, 1961, President John F. Kennedy delivered what would become the most important speech in NASA’s brief history. Before a joint session of Congress, Kennedy declared that “I believe that this nation should commit itself to achieving the goal, before the decade is out, of landing a man on the Moon and returning him safely to the Earth.”4 A year later, on September 29, 1962, at Rice University in Houston, Texas, a city which soon would be home of the Manned Spacecraft Center, Kennedy outlined the immediate future of the space program. We choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we will accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.5 Later in the speech, he reiterated that “this will be done in the decade of the Sixties.” Gene Kranz calls Kennedy’s challenge a “marvelous piece of timing” because it gave NASA a goal
Recommended publications
  • Interview Transcript
    ORAL HISTORY 7 TRANSCRIPT GLYNN S. LUNNEY INTERVIEWED BY CAROL BUTLER HOUSTON, TX – 18 OCTOBER 1999 BUTLER: Today is October 18, 1999. This oral history with Glynn Lunney is being conducted in the offices of the Signal Corporation in Houston, Texas, for the Johnson Space Center Oral History Project. Carol Butler is the interviewer and is assisted by Kevin Rusnak and Jason Abbey. Thank you for joining us today, again. LUNNEY: You're welcome. Glad to be here. BUTLER: We began talking the last time about Apollo-Soyuz [Test Project (ASTP)], and you told us a little bit about how you got involved with it and how Chris [Christopher C.] Kraft [Jr.] had called you up and asked you to become a part of this program, and how that was a little bit of a surprise, but you jumped into it. What did you think about working with the Soviet Union and people that had for so long been considered enemies, who you'd been in competition with on the space program, but were also enemies of the nation, to say? LUNNEY: Especially on the front end, it's a fairly foreboding and intimidating kind of an idea. Of course, I was raised and came of age in the fifties and sixties, and we went through a great deal of scare with respect to the Soviet Union. The newsreels had the marches through Red Square, you know, with the missiles and so on, tanks. A lot of things happened to reinforce that. There was, of course, the Cuban Missile Crisis early in [President] John [F.] Kennedy's administration.
    [Show full text]
  • CENTRIPETAL FORCE from GRAVITY Unit 14 & 8
    CENTRIPETAL FORCE FROM GRAVITY Unit 14 & 8 Dr. John P. Cise, Professor of Physics, Austin Com. College, Austin , Tx. [email protected] & New York Times November 7, 2017 by Richard Goldstein. Dedicated to all the American Apollo Astronauts in 1960s & 1970s. -------------------------------------------------------------------------------------------------------------------------------------------------------------- Richard Gordon, Astronaut Who Reached for Moon (1969)and Very Nearly Made It, Dies at 88 INTRODUCTION: Gordon commanded the command module Yankee Clipper from 60 miles above moon surface in 1969. The other 2 Apollo Astronauts went to Lunar surface in lunar lander. The radius of moon is 1079 miles. Gordon did 45 orbits of moon over 89 hrs. (3.7 days). Gravity provides centripetal force. G m M/R2 = m v2/R , v = Rω = 2π R/T, thus Solving for M = [4π2/6.67 X 10-11](R3/T2) , Kepler’s 3rd. Law. Richard Gordon, center, with Charles Conrad, left, QUESTIONS: (a) Find R from center of moon?, (b)Find period T of lunar and Alan Bean, aboard the U.S.S. Hornet, an aircraft orbit?, (c) Find mass of moon? See below for Hints and Answers. carrier, after their spacecraft splashed down. Richard Gordon, who undertook what became a harrowing and abortive spacewalk in a 1966 NASA mission, then orbited the moon three years later, but never achieved his dream of walking on the lunar surface, died on Monday at his home in San Marcos, Calif., near San Diego. He was 88. His death was confirmed by NASA. Mr. Gordon piloted the command module ((Yankee Clipper ))during its orbit of the moon in November 1969 while Mr.
    [Show full text]
  • CHARLA Conspiracion Lunar.Pdf
    El hombre en la Luna: ¿una gran producción de NASA o Hollywood? Javier Peralta (IAA/CSIC) 1969: El acontecimiento más importante del siglo XX Y este fue el gran momento !! Definición de “CREER” 1. Asumir como verdad lo que no está comprobado o demostrado. 2. Asumir con firmeza las verdades reveladas por Dios. 3. Pensar, juzgar, sospechar de algo o estar convencido. 4. Tener confianza en alguien. Navaja de Occam “Si existen varias explicaciones para un fenómeno, la más sencilla suele ser la más correcta.” SI FUNCIONASE, ¿LO ESTÁN TEORÍA LOCA LAS EMPRESAS LO USANDO? USARÍAN PARA Clarividencia Búsqueda de Petróleo Radiestesia Auras Reducir los Gastos Homeopatía Hospitalarios Reiki Astrología Bolsa y Mercado de Tarot Valores Cristales de Energía Controlar energía Maldiciones Armas Militares Relatividad Dispositivos GPS Electrodinámica Circuitos Semicondutores Cuántica Pero lo de la conspiración Lunar es diferente… hay pruebas !! El programa Apolo es un Fraude porque ... 1º) La calidad de las fotos es demasiado buena para 1969! El programa Apolo es un Fraude porque ... 2º) No aparecen estrellas en ninguna de las fotos. El programa Apolo es un Fraude porque ... 3º) Ángulo de las sombras y luces son inconsistentes. El programa Apolo es un Fraude porque ... 4º) En las fotos aparecen artefactos como la 'C' que aparece en un roca del fondo (¿¿decorado??). El programa Apolo es un Fraude porque ... 5º) Hay fondos idénticos en fotos que, por sus títulos, fueron hechas a varios kms una de la otra. El programa Apolo es un Fraude porque ... 6º) Los Astronautas y algunos objetos están iluminados en las sombras Usaron varios focos de estudio.
    [Show full text]
  • Apollo Spacecraft
    APOLLO NEWS REFERENCE APOLLO SPACECRAFT The Apollo spacecraft comprises the lunar occupies the right flight station. The astronauts module, the command module, theservice module, transfer to the ascent stage, through the docking the spacecraft-lunar module adapter, and the tunne l, after the LM has docked with the CM and launch escape system. The five parts, 82 feet tall both have attained lunar orbit. The ascent stage when assembled, are carried atop the launch comprises three major areas: crew compartment, vehicle. midsection, and aft equipment bay. The cabin, comprising the crew compartment and midsection, After the launch escape system and the launch has an overa ll volume of 235 cubic feet. vehicle have been jettisoned, the three modu les remain to form the basic spacecraft. The command module carries the three astronauts to and from Because the LM is operated in either the weight­ lunar orbit. The service modu le contains the pro­ lessness of space or in lunar gravity, the cabin pulsion system that propels the spacecraft during contains harness- like restraint equipment rather the trans lunar and transearth flights. The lunar than the foldable couches provided in the CM. The module carries two astronauts, the Commander restraints al low the astronauts sufficient freedom and the Lunar Module Pilot, to and from the of movement to operate al l LM controls while in a moon, and serves as the base of operations during re lativelyupright position. the lunar stay. LUNAR MODULE The lunar module wil l be operated in the vacuum of space; there was no need, therefore,for it to have the aerodynamic symmetry of the com· mand module.
    [Show full text]
  • PEANUTS and SPACE FOUNDATION Apollo and Beyond
    Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children.
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell
    Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell “One small step for…” Though no American has stepped onto the surface of the moon since 1972, the exiting of the Earth’s atmosphere today is almost commonplace. Once covered live over all TV and radio networks, increasingly US space launches have been relegated to a fleeting mention on the nightly news, if mentioned at all. But there was a time when leaving the planet got the full attention it deserved. Certainly it did in July of 1969 when an American man, Neil Armstrong, became the first human being to ever step foot on the moon’s surface. The pictures he took and the reports he sent back to Earth stopped the world in its tracks, especially his eloquent opening salvo which became as famous and as known to most citizens as any words ever spoken. The mid-1969 mission of NASA’s Apollo 11 mission became the defining moment of the US- USSR “Space Race” usually dated as the period between 1957 and 1975 when the world’s two superpowers were competing to top each other in technological advances and scientific knowledge (and bragging rights) related to, truly, the “final frontier.” There were three astronauts on the Apollo 11 spacecraft, the US’s fifth manned spaced mission, and the third lunar mission of the Apollo program. They were: Neil Armstrong, Edwin “Buzz” Aldrin, and Michael Collins. The trio was launched from Kennedy Space Center in Florida on July 16, 1969 at 1:32pm.
    [Show full text]
  • The Newsletter of the Barnard-Seyfert Astronomical Society
    June TheECLIPSE 2020 The Newsletter of the Barnard-Seyfert Astronomical Society From the President It’s been another long, strange month. Lots of things have been happening that aren’t in the Next Membership Meeting: realm of astronomy and I have been distracted by Stay tuned to the BSAS Google Group it all. As you know, we haven’t had a meeting in a or Night Sky Network email for couple of months, and I am really starting to miss information about future meetings. the meetings. It is nice to get out of the house and socialize with people that share a common interest. Hopefully this month is the month that we can come together as a group and get back into a new normal routine. Watch for emails and Facebook updates regarding the monthly meeting. Last month did have a big space event with the In this Issue: launch of the SpaceX Crew Dragon capsule to the Happy Birthday Pete Conrad ISS late in the month. It marks a return to U.S. byRobinByrne 3 spaceflight and NASA working with private corporations to get astronauts into space. I hope Summer Triangle Corner: Vega you had a chance to watch the launch on TV or by David Prosper and VivianWhite 8 the Internet, it was very exciting to see. I have not been around long enough to remember the Apollo BSAS Board Minutes launch days, but it did bring back memories of the May6,2020 10 shuttle launches for me. I hope this gets America excited about space travel again and brings back Membership Information 13 talk of getting people to the moon.
    [Show full text]
  • Apollo Soyuz Test Project
    https://ntrs.nasa.gov/search.jsp?R=20190025708 2019-08-31T11:45:11+00:00Z Karol J. Bobko Background • Soviet –American cooperation in space had been discussed as early as 1962 by NASA’s Hugh Dryden and Academician Blagonrovov. • The major objectives for a cooperative space mission were: – 1) Demonstration in space of the new androgynous docking system, and – 2) Improvement of communication and reduction of Cold War tensions between East and West • In October 1970 R. Gilruth headed a small NASA delegation for a visit to Moscow to promote space cooperation. That visit was successful. • Following additional meetings, when President Nixon visited Moscow in May 1972, he and Alexei Kosygin signed an agreement providing for cooperation and the peaceful uses of space – The leaders specifically approved the Apollo-Soyuz flight being planned and they agreed on a 1975 launch. • Dr. Glynn Lunney was appointed as the U.S. technical director of the project • The US crew was announced in January; the USSR crew in May of 1973 • The first training visit was cosmonauts visiting JSC in July of 1973 System Changes • A Docking Module was developed to: – Act as an airlock between the two spacecraft • The Apollo operated with a 100% oxygen but at .34 atmospheres • The Soyuz normally operated at 1.0 atmospheres but for this flight it operated at .68 atmospheres • Since the difference between the modules was only .34 atmospheres it was felt the danger of going from one pressure to the other, without pre-breathe, was minimal. – The Docking Module had extra oxygen and nitrogen and executed the change in pressures to allow passage back and forth between the modules – The docking module had no capability to remove CO2 Docking Module (Cont.) • The front end of the Docking Module had the APDS, which was used to dock with the Soyuz • The rear part of the Docking Module had the probe and drogue system which was used to dock with the Apollo Command Module.
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Apollo 13 Mission Review
    APOLLO 13 MISSION REVIEW HEAR& BEFORE THE COMMITTEE ON AERONAUTICAL AND SPACE SCIENCES UNITED STATES SENATE NINETY-FIRST CONGRESS SECOR’D SESSION JUR’E 30, 1970 Printed for the use of the Committee on Aeronautical and Space Sciences U.S. GOVERNMENT PRINTING OFFICE 47476 0 WASHINGTON : 1970 COMMITTEE ON AEROKAUTICAL AND SPACE SCIENCES CLINTON P. ANDERSON, New Mexico, Chairman RICHARD B. RUSSELL, Georgia MARGARET CHASE SMITH, Maine WARREN G. MAGNUSON, Washington CARL T. CURTIS, Nebraska STUART SYMINGTON, bfissouri MARK 0. HATFIELD, Oregon JOHN STENNIS, Mississippi BARRY GOLDWATER, Arizona STEPHEN M.YOUNG, Ohio WILLIAM B. SAXBE, Ohio THOJfAS J. DODD, Connecticut RALPH T. SMITH, Illinois HOWARD W. CANNON, Nevada SPESSARD L. HOLLAND, Florida J4MES J. GEHRIG,Stad Director EVERARDH. SMITH, Jr., Professional staffMember Dr. GLENP. WILSOS,Professional #tad Member CRAIGVOORHEES, Professional Staff Nember WILLIAMPARKER, Professional Staff Member SAMBOUCHARD, Assistant Chief Clerk DONALDH. BRESNAS,Research Assistant (11) CONTENTS Tuesday, June 30, 1970 : Page Opening statement by the chairman, Senator Clinton P. Anderson-__- 1 Review Board Findings, Determinations and Recommendations-----_ 2 Testimony of- Dr. Thomas 0. Paine, Administrator of NASA, accompanied by Edgar M. Cortright, Director, Langley Research Center and Chairman of the dpollo 13 Review Board ; Dr. Charles D. Har- rington, Chairman, Aerospace Safety Advisory Panel ; Dr. Dale D. Myers, Associate Administrator for Manned Space Flight, and Dr. Rocco A. Petrone, hpollo Director -___________ 21, 30 Edgar 11. Cortright, Chairman, hpollo 13 Review Board-------- 21,27 Dr. Dale D. Mvers. Associate Administrator for Manned SDace 68 69 105 109 LIST OF ILLUSTRATIOSS 1. Internal coinponents of oxygen tank So. 2 ---_____-_________________ 22 2.
    [Show full text]
  • Science Fiction Review 29 Geis 1979-01
    JANUARY-FEBRUARY 1979 NUMBER 29 SCIENCE FICTION REVIEW $1.50 NOISE LEVEL By John Brunner Interviews: JOHN BRUNNER MICHAEL MOORCOCK HANK STINE Orson Scott Card - Charles Platt - Darrell Schweitzer Elton Elliott - Bill Warren SCIENCE FICTION REVIEW Formerly THE ALIEN CRITIC RO. Bex 11408 COVER BY STEPHEN FABIAN January, 1979 — Vol .8, No.l Based on a forthcoming novel, SIVA, Portland, OR WHOLE NUMBER 29 by Leigh Richmond 97211 ALIEN TOUTS......................................3 RICHARD E. GEIS, editor & piblisher SUBSCRIPTION INFORMATION INTERVIEW WITH JOHN BRUWER............. 8 PUBLISHED BI-MONTHLY CONDUCTED BY IAN COVELL PAGE 63 JAN., MARCH, MAY, JULY, SEPT., NOV. NOISE LEVEL......................................... 15 SINGLE COPY ---- $1.50 A COLUMN BY JOHN BRUNNER REVIEWS-------------------------------------------- INTERVIEW WITH MICHAEL MOORCOCK.. .18 PHOfC: (503) 282-0381 CONDUCTED BY IAN COVELL "seasoning" asimov's (sept-oct)...27 "swanilda 's song" analog (oct)....27 THE REVIEW OF SHORT FICTION........... 27 "LITTLE GOETHE F&SF (NOV)........28 BY ORSON SCOTT CARD MARCHERS OF VALHALLA..............................97 "the wind from a burning WOMAN ...28 SKULL-FACE....................................................97 "hunter's moon" analog (nov).....28 SON OF THE WHITE WOLF........................... 97 OCCASIONALLY TENTIONING "TUNNELS OF THE MINDS GALILEO 10.28 SWORDS OF SHAHRAZAR................................97 SCIENCE FICTION................................ 31 "the incredible living man BY DARRELL SCHWEITZER BLACK CANAAN........................................
    [Show full text]