109Th Annual Report of the State Geologist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Description of the Physical Environment and Coal-Mining History of West-Central Indiana, with Emphasis on Six Small Watersheds
Description of the Physical Environment and Coal-Mining History of West-Central Indiana, with Emphasis on Six Small Watersheds United States Geological Survey Water-Supply Paper 2368-A AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-year issues of the monthly catalog "New Publicati6ns of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. ' Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated monthly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Tech Books of the U.S. Geological Survey are available over the niques of Water-Resources Investigations, Circulars, publications of counter at the following U.S. -
Italic Page Numbers Indicate Major References]
Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67. -
Geologic Names of North America Introduced in 19364955
Geologic Names of North America Introduced in 19364955 ^GEOLOGICAL SURVEY BULLETIN 1056-A Names of North America Introduced in 1936-1955 By DRUID WILSON, WILLIAM J. SANDO? and RUDOLPH W. KOPF Prepared with the assistance of BARBARA BEDETTE, JEAN L. EGGLETON, GRACE C. KEROHER, CAROLYN MANN, WILLIAM G. MELTON, JR., KATHERINE DENNISON PALMER, and JACK E. SMEDLEY GEOLOGIC NAMES OF NORTH AMERICA -G E O L O G I C AL SURVEY BULLETIN 1056-A A compilation of new geologic names of North America, including Greenland, the finest Indies, the Pacific Island pos sessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director ' For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1. (paper cover) FOEEWOBD The "Lexicon of geologic names of the United States" by M. Grace Wilmarth, published in 1938 and reprinted in 1951 and 1957, met a long standing need and continuing demand for a compilation of geologic names. Plans made for future compilations as new names and revisions appeared were interrupted during the years of World War II. In 1952 a sustained effort was begun toward review of geo logic publications necessary to furnish a background for preparation of a new edition. After the review was brought up to date in 1956, the present compilation was prepared in order to furnish to the geo logic profession, as quickly as possible, some of the essential data concerning the new names that have appeared since 1935. -
Geologic Overview
Chapter C National Coal Resource Assessment Geologic Overview By J.R. Hatch and R.H. Affolter Click here to return to Disc 1 Chapter C of Volume Table of Contents Resource Assessment of the Springfield, Herrin, Danville, and Baker Coals in the Illinois Basin Edited by J.R. Hatch and R.H. Affolter U.S. Geological Survey Professional Paper 1625–D U.S. Department of the Interior U.S. Geological Survey Contents Coal Formation ..................................................................................................................................... C1 Plant Material ............................................................................................................................. 1 Phases of Coal Formation ......................................................................................................... 1 Stratigraphic Framework of the Illinois Basin Coals ..................................................................... 1 Raccoon Creek Group ............................................................................................................... 4 Carbondale Formation or Group ............................................................................................... 6 McLeansboro Group................................................................................................................... 6 Structural Setting ............................................................................................................................... 6 Descriptions of the Springfield, Herrin, Danville, and -
GROUND-WATER HYDROLOGY However, Fine-Grained Deposits Such As Clays and Silts May Also Have Secondary Porosity, Commonly in the Form of Frac- Tures
GROUND-WATER HYDROLOGY However, fine-grained deposits such as clays and silts may also have secondary porosity, commonly in the form of frac- tures. Ground-water supplies are obtained from aquifers, which The size, shape, and sorting of material determine the are subsurface units of rock and unconsolidated sediments amount and interconnection of intergranular pores. Sand and capable of yielding water in usable quantities to wells and gravel deposits have a high proportion of pore space and high springs. The hydrologic characteristics of aquifers and natur- permeability; whereas, fine-grained or clay-rich deposits al chemistry of ground water determine the availability and have a greater proportion of pores, but a lower degree of per- suitability of ground-water resources for specific uses. meability. Aquifers have porosity and permeability sufficient to absorb, store, and transmit water in usable quantities. Ground-Water Resources Aquitards consist of materials with low permeability that restrict ground-water movement. An aquitard overlying an Ground water is the part of precipitation that enters the aquifer may limit the recharge to the aquifer but may also pro- ground and percolates downward through unconsolidated tect the aquifer from surface contamination. materials and openings in bedrock until it reaches the water Where an aquitard overlies an aquifer, the water in the table (figure 8). The water table is the surface below which all aquifer is said to be confined because the aquitard prevents or openings in the rock or unconsolidated materials are filled restricts upward movement of water from the aquifer. Such with water. Water entering this zone of saturation is called an aquifer is referred to as a confined or artesian aquifer. -
Proceedings of the Indiana Academy of Science Geology and Geography 341
GEOLOGY AND GEOGRAPHY Chair: Konrad J. Bananzak U.S. Geological Survey Water Resources Division 6023 Guion Rd., Suite 201 Indianapolis, Indiana 46260 (317) 927-8640 Chair-elect: Thomas Miller Department of Geology and Geography Indiana State University Terre Haute, Indiana 47803 (812) 232-2255 ABSTRACTS Remote Sensing with Fiber Optics in Oil and Soil Exploration. Torsten Alvager, Department of Physics, Indiana State University, Terre Haute, Indiana 47809; Ashok Puri, Department of Physics, University of New Orleans, New Orleans, Louisiana and Ramnath Raymond, Department of Physics, Indiana State University, Terre Haute, Indiana 47809. The recent introduction of fiber optical light guides for remote spectroscopic sensing has opened a new era of studies of hostile or otherwise inaccessible environments. The method is also of importance in a variety of other situations such as in studies of solid state systems and systems related to damage and environmental control, as well as in experiments devoted to search for oil and other similar commodities, which is the topic of this investigation. An instrument especially designed for in situ investigations has recently been built at Indiana State University for this purpose. This makes it possible to study scattering as well as fluorescence from samples of interest. Results with model systems indicate that the method is suitable for field use in oil and soil exploration. Bedrock Joint and Fracture Patterns in Indiana: A Progress Report. Curtis H. Ault, Indiana Geological Survey, 611 N. Walnut Grove, Bloomington, Indiana 47405. Bedrock joints and fractures are ubiquitous where bedrock is exposed in Indiana. Recent studies of the patterns, orientation, and density of jointing in Indiana have revealed a consistent east-northeasterly orientation for major jointing and a correspond- ing north-northwesterly orientation for secondary orthogonal jointing. -
ROCKS ASSOCIATED with the MISSISSIPPIAN-PENNSYLVANIAN UNCONFORMITY in SOUTHWESTERN INDIANA Indiana Department of Conservation
ROCKS ASSOCIATED WITH THE MISSISSIPPIAN-PENNSYLVANIAN UNCONFORMITY IN SOUTHWESTERN INDIANA Indiana Department of Conservation GEOLOGICAL SURVEY Field Conference Guidebook No. 9 1957 STATE OF INDIANA Harold W. Handley, Governor DEPARTMENT OF CONSERVATION E. Kenneth Marlin, Director GEOLOGICAL SURVEY Charles F. Deiss, State Geologist Bloomington ______________________________________________________________________________________ Field Conference Guidebook No. 9 ______________________________________________________________________________________ ROCKS ASSOCIATED WITH THE MISSISSIPPIAN-PENNSYLVANIAN UNCONFORMITY IN SOUTHWESTERN INDIANA CONFERENCE SPONSORED BY Geological Survey, Indiana Department of Conservation and Department of Geology, Indiana University, October 4, 5, and 6, 1957 CONFERENCE COMMITTEE Henry H. Gray, Chairman; T. A. Dawson; Duncan J. McGregor; T. G. Perry; and William J. Wayne Printed by authority of the State of Indiana BLOOMINGTON, INDIANA October 1957 ______________________________________________________________________________________ For sale by Geological Survey, Indiana Department of Conservation, Bloomington, Indiana Price $1.00 This page intentionally blank CONTENTS 3 Page Page Introduction ---------------------------------------5 Glossary of rock-type terms ---------------------32 Physiography ----------------------------------5 Literature cited ------------------------------------33 Paleozoic stratigraphy ------------------------5 Postconference road logs ------------------------35 Geomorphic history ---------------------------7 -
Bedrock Geology of Williamson County, Illinois
STATEMAP Williamson County-BG Bedrock Geology of Williamson County, Illinois W. John Nelson 2020 615 East Peabody Drive Champaign, Illinois 61820-6918 (217) 244-2414 http://www.isgs.illinois.edu © 2020 University of Illinois Board of Trustees. All rights reserved. For permission information, contact the Illinois State Geological Survey. R. 4 E. R. 1 E. R. 2 E. R. 3 E. Pond Crk Freeman Pond ver k Spur Cree Creek Pond Bush 148 57 Big M Hurst Big Muddy Ri ud dy Rive r Lake Cree 149 k Johnston T. 8 S. Wade City Pond Creek Madison Prairie Lake Colp ek B r H re ushy u C Creek r Herrin r Johnston e i L ak c Bear Cree a City Lake n e C 37 r e k White Pittsburg Cambria e k Energy Ash Spillertown Buckley Carterville Herrin Reservoir Rock Cree Cree Crainville k k P 13 ig e Li o ttl ab Orcha ek n e Cr rd re Marion C C k Rock Creek r T. 9 S. e e k Cana Cr 13 Crab Crab Bankston For Or char d Orchard k Lake k 1 Caplinger Cree rd Pond rcha Brier Crab O C r e e k W k olf For S k ali e Marion h n k Cree Sou t e h ee re nc r a C C Reservoir 37 r k r B st y a k 166 o s g L s R a u iv r k e e S r G e r 57 L 148 k itt C h l e c k e Cana Cree n Cree e r r a e v sy r C e R i s B n a i r y l T. -
Ground-Water Resources in the White and West Fork White River Basin, Indiana
GROUND-WATER RESOURCES IN THE WHITE AND WEST FORK WHITE RIVER BASIN, INDIANA STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER 2002 GROUND-WATER RESOURCES IN THE WHITE AND WEST FORK WHITE RIVER BASIN, INDIANA STATE OF INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER Water Resource Assessment 2002-6 Printed By Authority of the State of Indiana Indianapolis, Indiana: 2002 STATE OF INDIANA Frank O'Bannon, Governor DEPARTMENT OF NATURAL RESOURCES John Goss, Director DIVISION OF WATER Michael W. Neyer, Director Project Manager: Judith E. Beaty Editor: Judith E. Beaty This report was prepared by the Basin Studies Section Greg Schrader and Ralph Spaeth And The Ground Water Section Bill Herring, Glenn Grove, and Randy Meier For sale by Division of Water, Indianapolis, Indiana CONTENTS page INTRODUCTION . .1 Purpose and scope . .1 Previous investigations . .1 Acknowledgements . .3 GEOLOGY . .4 Sources of geologic data . .4 Regional physiography . .4 Overview of glacial history and deposits . .5 Summary of major Quaternary deposits . .9 Glacial terrains . .10 Bedrock geology . .12 Bedrock physiography . .13 Bedrock stratigraphy and lithology . .14 GROUND-WATER HYDROLOGY . .19 Ground-water resources . .19 Ground-water levels . .19 Potentiometric surface maps . .21 Aquifer systems . .21 Unconsolidated aquifer systems . .21 Tipton Till Plain Aquifer System . .24 Tipton Till Plain Aquifer Subsystem . .27 Dissected Till and Residuum Aquifer System . .29 White River and Tributaries Outwash Aquifer System . .29 White River and Tributaries Outwash Aquifer Subsystem . .29 Buried Valley Aquifer System . .30 Lacustrine and Backwater Deposits Aquifer System . .30 Bedrock aquifer systems . .30 Ordovician/Maquoketa Group . .31 Silurian and Devonian Carbonates . .32 Devonian and Mississippian/ New Albany Shale . -
Index to the Geologic Names of North America
Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________ -
Roceedings of The
roceedings of the o sho onsored by the lllinois State Geological Survey Indiana Geological Survey Kentucky Geological Survey Open-File Report 94-4 Open-File Report 94-1 2 Open-File Report 94-1 2 and the Open-File Report 94-298 The Illinois Basin, which covers about 110,000 square miles in Illinois, Indiana, and Kentucky, con- tains a wealth of energy and industrial- and metallic-mineral resources. These resources are an important constituent of the economies of states located in the basin. Because new deposits of these resources will be needed to sustain and enhance the economies of this region, there is a continued need to further our under- standing of the geology of the basin and how it relates to energy and mineral resources and to environmen- tal problems. In 1989, the Illinois Basin Consortium (IBC), consisting of the Illinois, Indiana, and Kentucky state geological surveys, was formed to advance the understanding of the geology of the Illinois Basin, by coor- dinating the various state survey studies, and by utilizing the surveys' collective expertise. The IBC and the US. Geological Survey entered into a collaborative effort in 1990 to integrate their geochemical and fluid- flow expertise with ongoing state surveys' research. The IBC (surveys) continued to study problems re- lated to the structural formation of the basin, sedimentology of strata filling the basin, and formation and distribution of hydrocarbon, and industrial- and metallic-mineral resources. The USGS focused on aspects of basin-scale fluid flow and its link to regional patterns of diagenesis, sedimentary metal deposits, and hydrocarbon accumulations. -
Storage, Retrieval, and Analysis of Compacted Shale Data
14 Storage, Retrieval, and Analysis of Compacted Shale Data Dirk J. A. van Zyl, L.E. Wood, and C. W. Lovell, Department of Civil Engineering, Purdue University, West Lafayette, Indiana W. J. Sisiliano, Indiana State Highway Commission La1ge amounts of soil test data aro beir,g gonoroted by states testing materials fr-om three Joint Highway Research Project (J.HRP) reports for new highway facillties. Of particular Interest to ,omo states Is tho occur completed at Purdue University @, !, ID. A complete rence of shale os a highway motorlal. This paper describes a storage and rotrioval system for compacted lndlnnn shale data (163 setsl. Statistical analyses in summary of all the data available and descriptions of the cluded frequency analysis, bivariate correlation analysis, nnd multiple rogres, geology of Indiana shales and the physiography of Indiana sion analysis. Histograms of the frequency distributions and o summary table are given by van Zyl (§). The table below gives a summary of all the dlfferont statistical descriptors of the parameters are given. Bivariate of the data sets according to geological description. correlation analysis (ono•to-one torrolations) was done for all dota lumped and for data grouped by geologic unit. The multiple regression, concentrated on five-parameter models for predicting Califomla bearing rotio values. It was Geological No. of also found by multlple tllgrenion that the various value, of sloko durabilily in System Geological Stage Data Sets dices can be estimated by using second•ordor equotions. The analyses aro of potontia! value to practicing engineers as a first approximation in design and Pennsylvanian Shelburn formation 3 moy prove useful to engineers rosoarching compacted shale behavior.