Residential Solar Water Heating Systems Standard Systems with Single Wall Heat Exchanger for Potable Water Heating Only

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Instruction Manual RESIDENTIAL SOLAR WATER HEATING SYSTEMS STANDARD SYSTEMS WITH SINGLE WALL HEAT EXCHANGER FOR POTABLE WATER HEATING ONLY C US LISTED Solar Water Heater ™ Solar Collector SRCC OG-100 ™ Solar Water Heating System SRCC OG-300 ALL TECHNICAL AND WARRANTY QUESTIONS: SHOULD BE DIRECTED TO THE LOCAL DEALER FROM WHOM THE WATER HEATER WAS PURCHASED. IF YOU ARE UNSUCCESSFUL, PLEASE WRITE TO THE COMPANY LISTED ON THE RATING PLATE ON THE WATER HEATER. KEEP THIS MANUAL IN THE POCKET ON HEATER FOR FUTURE REFERENCE WHENEVER MAINTENANCE ADJUSTMENT OR SERVICE IS REQUIRED. PRINTED 0311 1 320008-001 SAFE INSTALLATION, USE AND SERVICE Your safety and the safety of others is extremely important in the installation, use, and servicing of this water heater. Many safety-related messages and instructions have been provided in this manual and on your own water heater to warn you and others of a potential injury hazard. Read and obey all safety messages and instructions throughout this manual. It is very important that the meaning of each safety message is understood by you and others who install, use, or service this water heater. This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death. DANGER indicates an imminently hazardous DANGER situation which, if not avoided, will result in death or injury. WARNING indicates a potentially hazardous situation which, if not avoided, could result in WARNING death or injury. CAUTION indicates a potentially hazardous situation which, if not avoided, could result in CAUTION minor or moderate injury. CAUTION used without the safety alert symbol indicates a potentially hazardous situation CAUTION which, if not avoided, could result in property damage. All safety messages will generally tell you about the type of hazard, what can happen if you do not follow the safety message, and how to avoid the risk of injury. The California Safe Drinking Water and Toxic Enforcement Act requires the Governor of California to publish a list of substances known to the State of California to cause cancer, birth defects, or other reproductive harm, and requires businesses to warn of potential exposure to such substances. WARNING: This product contains a chemical known to the State of California to cause cancer, birth defects, or other reproductive harm. This appliance can cause low-level exposure to some of the substances listed in the act. Hydrogen gas can be produced in a hot water system that has not been used for a long period of time (generally two weeks or more). Hydrogen gas is extremely flammable and can ignite when exposed to a spark or flame. To prevent the possibility of injury under these conditions, we recommend the hot water faucet be opened for several minutes at the kitchen sink before using any electrical appliance which is connected to the hot water system. If hydrogen is pres- ent, there will probably be an unusual sound such as air escaping through the faucet as water begins to flow. Do not smoke or have any open flame near the faucet at the time it is open. IMPORTANT DEFINITIONS • Qualified Installer: A qualified installer must have ability equivalent to a licensed tradesman in the fields of plumbing and electrical installation of these appliances. This would include a thorough understanding of the requirements of the National Electrical Code and applicable local electrical and plumbing codes (and tools necessary to confirm proper installation and operation of the water heater) as they relate to the installation of electric water heaters. The qualified installer must have a thorough understanding of the water heater Instruction Manual. • Service Agency: A service agency also must have ability equivalent to a licensed tradesman in the fields of plumbing and electrical installation of these appliances. This would include a thorough understanding of the requirements of the National Electrical Code and applicable local electrical and plumbing codes (and tools necessary to confirm proper installation and operation of the water heater) as they relate to the installation of electric water heaters. The service agency must have a thorough understanding of the water heater Instruction Manual. 2 GENERAL SAFETY 3 INTRODUCTION Thank You for purchasing this water heating system. PREPARING FOR THE INSTALLATION Properly installed and maintained, it should give you years of trouble free service. 1. Read the “General Safety” section of this manual first and Abbreviations Found In This Instruction Manual: then the entire manual carefully. If you don’t follow the • ANSI - American National Standards Institute safety rules, the water heater will not operate properly. It • ASME - American Society of Mechanical Engineers could cause DEATH, SERIOUS BODILY INJURY, AND/ • GAMA - Gas Appliance Manufacturers Association OR PROPERTY DAMAGE. • NEC - National Electrical Code This manual contains instructions for the installation, • NFPA - National Fire Protection Association operation, and maintenance of the solar water heater. • UL - Underwriters Laboratories Inc. It also contains warnings throughout the manual that • SRCC - Solar Rating and Certification Corp. you must read and understand. All warnings and all instructions are essential to the proper operation of SYSTEM DESCRIPTION the water heater and your safety. READ THE ENTIRE MANUAL BEFORE ATTEMPTING TO INSTALL OR This Solar Water Heating System consists of four main OPERATE THE WATER HEATER. parts — the solar collectors, the solar pump station, the solar storage tank, and the plumbing for the heat transfer 2. The installation must conform with these instructions fluid. and the local code authority having jurisdiction and the requirements of the power company. In the absence of The solar pump station uses a pump to circulate a heat- local code requirements follow NFPA-70, the National transfer fluid through the “collector loop”. This collector Electrical Code (current edition), which may be loop includes the solar collectors, the fluid lines or “line- ordered from: National Fire Protection Association, 1 set” and a heat exchanger. The collector loop is a “closed Batterymarch Park, Quincy, MA 02169. loop”, meaning there is no contact of the heat transfer fluid with your potable water or with the atmosphere. The collec- 3. If after reading this manual you have any questions or tor loop contains only a small volume of heat-transfer fluid do not understand any portion of the instructions, call the which is non-toxic and freeze-protected to -30°F (Freeze local utility or the manufacturer whose name appears on tolerance limits are based upon an assumed set of environ- the rating plate. mental conditions). Though freeze protection may not be 4. Carefully plan your intended placement of the water heater necessary in all areas, the heat-transfer fluid also contains and collectors. INSTALLATION OR SERVICE OF THIS corrosion inhibitors which protect the system components, WATER HEATER REQUIRES ABILITY EQUIVALENT has an elevated boiling point, and is suitable throughout TO THAT OF A LICENSED TRADESMAN IN THE FIELD North America. INVOLVED. PLUMBING AND ELECTRICAL WORK ARE When exposed to sunlight, the solar collectors get hot. REQUIRED. As the heat-transfer fluid passes through the collectors, Examine the location to ensure the water heater complies it absorbs the heat and then travels down the line-set to with the “Facts to Consider About the Location” section the tank. The hot fluid passes through the heat exchanger in this manual. and heat is transferred to the potable water. After giving up 5. For California installation this water heater must be its heat to the potable water, the cool heat-transfer fluid is braced, anchored, or strapped to avoid falling or moving pumped back to the solar collectors to be heated again. during an earthquake. See instructions for correct Hot potable water is stored in the solar storage tank. installation procedures. Instructions may be obtained The auxiliary or back-up electric-heating guarantees hot from California Office of the State Architect, 400 P Street, water even under poor solar conditions (at night or when Sacramento, CA 95814. very cloudy). The minimum acceptable temperature set- 6. Massachusetts Code requires this water heater to be point is specified in local plumbing codes. installed in accordance with Massachusetts 248-CMR You can save the most money on your water-heating bills 2.00: State Plumbing Code and 248-CMR 5.00. by using the backup heater on your system as little as pos- 7. The solar energy system described by this manual, when sible. If the sun shines brightly between 10 am and 3 pm, properly installed and maintained, meets the minimum enough heat will normally be generated to keep the water standards established by the SRCC. This certification hot throughout the rest of the day and night. does not imply endorsement or warranty of this product However, on days when the sky is cloudy or when large by SRCC. quantities of hot water are being used, we recommend leaving the backup heater turned on and set to 120° F to provide adequate hot water. 4 TABLE OF CONTENTS SAFE INSTALLATION, USE AND SERVICE............................2 General Considerations ..........................................13 Important Definitions .................................................2 Collector Orientation ..........................................14-15 GENERAL SAFETY .................................................................3
Recommended publications
  • Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Robb Aldrich Consortium for Advanced Residential Buildings

    Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Robb Aldrich Consortium for Advanced Residential Buildings

    Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Robb Aldrich Consortium for Advanced Residential Buildings February 2016 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at SciTech Connect http:/www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI http://www.osti.gov Phone: 865.576.8401 Fax: 865.576.5728 Email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS http://www.ntis.gov Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: [email protected] Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Prepared for: The National Renewable Energy Laboratory On behalf of the U.S.
  • Generating Your Own Energy Solar Water

    Generating Your Own Energy Solar Water

    GENERATING YOUR OWN ENERGY SOLAR WATER A planning guide for 2C householders, communities 1 and businesses Introduction This leaflet is part of an information pack for householders, communities and businesses who want to generate their own energy through small or community scale renewable energy technologies. This may be to benefit from the Clean Energy Cashback Scheme (also known as the Feed-in Tariff) and to help tackle climate change. The pack is intended to give you some useful information on what issues you should be considering when installing a renewable energy technology, including the current planning regulations and ways in which you can install the technology to reduce any impact on you, your neighbours and the local built and natural environment. Please read Leaflet 1 Generating Your Own Energy – A Planning Guide for Householders, Communities and Businesses. This can be found at www.wales.gov.uk/planning GENERATING YOUR OWN ENERGY 1 1 A planning guide for householders, communities and businesses 2 What is solar water? Solar water heating systems gather the sun’s free energy and convert it into hot water alongside a conventional water heater. They do this by retaining the heat from the sun’s rays and transfer this heat to a fluid, in order to preheat water for use in sinks, showers and other hot water applications. What is a solar water collector? • Solar water systems (also known as solar thermal) comprise three main components - Solar collectors – which collect the sun’s rays so that when the light shines on the panel it heats up the water - Hot water cylinder – to store the water that is heated up during the day and supplies it for use later - Plumbing system – piping to move the fluid around the system • Type: - There are two different tubes of solar collectors with different characteristics: flat plate and evacuated tubes.
  • Solar Water Heating System Requirements

    Solar Water Heating System Requirements

    Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document.
  • Solar Water Heating with Low-Cost Plastic Systems

    Solar Water Heating with Low-Cost Plastic Systems

    FEDERAL ENERGY MANAGEMENT PROGRAM Two U.S.-manufactured low-cost plastic packaged systems are now available, including the SunCache system (above left) and the FAFCO system (above right). The manufacturers use plastic materials that reduce production and installation costs. Photos from Harpiris Energy and FAFCO Solar Water Heating with Low-Cost Plastic Systems Newly developed solar water heating technology can help Federal agencies more affordably meet the EISA requirements for solar water heating in new construction and major renovations. Federal buildings consumed over 392,000 billion Btu of site- is reasonably comparable, and these systems are capable delivered energy for buildings during FY 2007 at a total cost of meeting the statutory requirements of 30% solar power of $6.5 billion.[1] Earlier data indicate that about 10% of this efficiently and cost-effectively. is used to heat water.[2] Targeting energy consumption in Federal buildings, the Overcoming the Cost Barrier Energy Independence and Security Act of 2007 (EISA) Benefits and applications of solar water heating are well- requires new Federal buildings and major renovations to meet known, and have been covered in many publications found 30% of their hot water demand with solar energy, provided in the references. However, the single biggest market barrier it is cost-effective over the life of the system. In October for solar water heaters is cost. For single-family systems with 2009, President Obama expanded the energy reduction national-average water draw, paybacks with conventional and performance requirements of EISA and its subsequent solar water heaters often exceed expected system life of regulations with his Executive Order 13514.
  • The Importance of Using Solar Water Heater As an Alternative Eco-Friendly Technology in Global Market: Some Lessons of Experiences for Bangladesh Economy

    The Importance of Using Solar Water Heater As an Alternative Eco-Friendly Technology in Global Market: Some Lessons of Experiences for Bangladesh Economy

    The Importance of Using Solar Water Heater as an Alternative Eco-Friendly Technology in Global Market: Some Lessons of Experiences for Bangladesh Economy Dr. Sakib Bin Amin Assistant Professor School of Business and Economics North South University Email:[email protected] Nuzhat Nuarey Mithila Correspondent Author and BS in Economics School of Business and Economics North South University Email:[email protected] 1 Electronic copy available at: https://ssrn.com/abstract=2928814 Abstract This research paper introduces alternative heating technology for Bangladesh in the form of solar water heater against conventional heating on the face of increasing demand for heating water. Solar water heater is that renewable technology which simply uses free sunlight to heat water. The main benefit of using this technology is that it is completely pollution free, unlike other non- renewable sources. However, from an economic point of view, it might not be a short term solution but will be economically viable in the long term. This technology also has the potential to ensure future energy security by diverting the energy load from non-renewable to renewable. This research paper gives a comparative analysis on the use of solar water heaters among different countries and Bangladesh. It also incorporates some useful measures that have attributed to the development of this industry. In this regard, many developed countries such as China, India, South Africa, Brazil, and Barbados along with small country like Tunisia have set up a remarkable example by patronizing this industry. This research paper has analyzed the factors and measures adopted for this technology in those countries and investigated the viability of solar water heating in the perspective of Bangladesh.
  • Sustainable Development for Solar Heating Systems in Taiwan

    Sustainable Development for Solar Heating Systems in Taiwan

    Sustainability 2015, 7, 1970-1984; doi:10.3390/su7021970 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Sustainable Development for Solar Heating Systems in Taiwan Keh-Chin Chang 1,†, Wei-Min Lin 2,† and Kung-Ming Chung 1,†,* 1 Energy Research Center, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan; E-Mail: [email protected] 2 Department of Accounting Information, Tainan University of Technology, No. 529, Zhongzheng Road, Yongkang District, Tainan 710, Taiwan; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-6-239-2811 (ext. 210); Fax: +886-6-239-1915. Academic Editor: Rachel J. C. Chen Received: 8 January 2015 / Accepted: 6 February 2015 / Published: 12 February 2015 Abstract: In response to the impact of the United Nations Framework Convention on Climate Change, developing and using renewable energy sources and technologies have become vital for managing energy supply and demand in Taiwan. The long-term subsidy programs (1986–1991, 2000–present) for solar water heaters (SWHs) launched by the Taiwanese government constitute the main driving force for market expansion. By the end of 2013, the cumulative area of installed solar collectors was 2.27 million m2. Approximately 0.3 million systems (or 1.545 million m2) are in operation. This corresponds to an annual collector yield of 0.92 TWh, which is equivalent to savings of 98.7 thousand tons of oil and 319 thousand tons of CO2,eq.
  • The Energy Saving Trust Here Comes the Sun: a Field Trial of Solar Water Heating Systems

    The Energy Saving Trust Here Comes the Sun: a Field Trial of Solar Water Heating Systems

    Here comes the sun: a field trial of solar water heating systems The Energy Saving Trust Here comes the sun: a field trial of solar water heating systems The Energy Saving Trust would like to thank our partners, who have made this field trial possible: Government organisations The Department of Energy and Climate Change The North West Regional Development Agency The Scottish Government The Welsh Government Sustainable Energy Authority Ireland Manufacturers Worcester Bosch Energy suppliers British Gas EDF Energy E.ON Firmus Energy Good Energy Scottish & Southern Energy PLC ScottishPower Energy Retail Ltd Technical consultants EA Technology Ltd Energy Monitoring Company GASTEC at CRE Ltd Southampton University The National Energy Foundation Energy Saving Trust project team Jaryn Bradford, project director Frances Bean, project manager with Tom Chapman and Tom Byrne 2 Here comes the sun: a field trial of solar water heating systems Contents Foreword 4 Executive summary 5 Definitions 6 The background 7 The field trial 7 What is a solar water heating system? 8 Undertaking the field trial 10 Selecting participants 10 Developing our approach 11 Installing monitoring equipment 12 Householder feedback 13 Findings of the field trial 14 Key findings 18 Conclusions 20 Advice for consumers 21 Consumer checklist 21 What’s next? 23 3 Here comes the sun: a field trial of solar water heating systems Foreword Boosting consumer confidence in green technologies is vital In line with the Energy Saving Trust’s previous field trials, in driving the uptake of renewables in the UK. The UK lags these results have been peer-reviewed by experts in the behind its European neighbours, with just 1.3 per cent of industry.
  • This Document, Concerning Solar Water Heaters Is an Action Issued by the Department of Energy

    This Document, Concerning Solar Water Heaters Is an Action Issued by the Department of Energy

    This document, concerning solar water heaters is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public’s access to this document. [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2014-BT-STD-0045] Energy Conservation Program for Consumer Products: Test Procedures and Energy Conservation Standards for Residential Water Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for information (RFI). SUMMARY: The U.S. Department of Energy (DOE) is requesting comments, data, and information related to solar-thermal water heating systems where solar components are paired with electric and/or fossil fuel-fired water heaters, which are utilized as secondary heat sources. Although this document contains several specific topics on which DOE is particularly interested in receiving written comment, DOE welcomes suggestions and information from the public on any subject related to solar water heaters. DATES: Written comments and information are requested on or before [INSERT DATE 30 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: Interested parties are encouraged to submit comments electronically. However, 1 interested persons may submit comments, identified by docket number EERE-2014-BT-STD- 0045 by any of the following methods: • Federal eRulemaking Portal: www.regulations.gov. Follow the instructions for submitting comments. • E-mail: [email protected].
  • Solar Water Heating

    Solar Water Heating

    DOE/GO-10096-050 FS 119 ENERGY March 1996 EFFICIENCY AND RCLEARINGHOUSE ENEWABLE ENERGY Solar Water Heating This publication provides basic informa- cost of solar water heaters is higher than tion on the components and types of solar that of conventional water heaters, the water heaters currently available and the fuel (sunshine) is free. Plus, they are economic and environmental benefits of environmentally friendly. To take advan- owning a system. Although the publica- tage of these heaters, you must have an tion does not provide information on unshaded, south-facing location (a roof, building and installing your own system, for example) on your property. it should help you discuss solar water heating systems intelligently with a solar These systems use the sun to heat either equipment dealer. water or a heat-transfer fluid, such as a water-glycol antifreeze mixture, in Solar water heaters, sometimes called collectors generally mounted on a roof. solar domestic hot water systems, may be The heated water is then stored in a tank a good investment for you and your fam- similar to a conventional gas or electric ily. Solar water heaters are cost competi- water tank. Some systems use an electric tive in many applications when you pump to circulate the fluid through the account for the total energy costs over the collectors. life of the system. Although the initial Homes such as this one use solar water heaters to supply most of the hot-water needs for the household. NT O ME F E T N R E A R P G This document was produced for the U.S.
  • Cold-Climate Solar Domestic Water Heating Systems: Life-Cycle Analyses and Opportunities for Cost Reduction

    Cold-Climate Solar Domestic Water Heating Systems: Life-Cycle Analyses and Opportunities for Cost Reduction

    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Cold-Climate Solar Domestic Conference Paper NREL/CP-550-37748 Water Heating Systems: December 2005 Life-Cycle Analyses and Opportunities for Cost Reduction J. Burch and J. Salasovich National Renewable Energy Laboratory T. Hillman University of Colorado Presented at the ISES Solar World Congress Orlando, Florida August 6–12, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
  • Solar Water Heating Techscope Market

    Solar Water Heating Techscope Market

    SOLAR WATER HEATING TECHSCOPE MARKET READINESS ASSESSMENT Prepared for UNEP, Division of Technology, Industry and Economics, Global Solar Water Heating Initiative ROGRAMME P NVIRONMENT E ATIONS N NITED U Copyright © United Nations Environment Programme, 2014 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, UNEP city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. promotes environmentally Moreover, the views expressed do not necessarily represent the decision sound practices or the stated policy of the United Nations Environment Programme, nor does citing of globally and in its own activities. trade names or commercial processes constitute endorsement. This publication has been printed on recycled-content paper with vegetablebased inks and other eco- friendly pactices. Our distribution policy aims to reduce
  • Solar Energy – Capturing and Using Power and Heat from the Sun

    Solar Energy – Capturing and Using Power and Heat from the Sun

    Solar Energy – Capturing and Using Power and Heat from the Sun Roger Taylor Tribal Energy Program Manager National Renewable Energy Laboratory Golden, CO NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Topics • Solar Resource Overview • Solar Hot Water Systems • Solar Photovoltaic Systems • CttiSlPStConcentrating Solar Power Systems National Renewable Energy Laboratory Innovation for Our Energy Future Clear Sky Direct (Beam) Global (Total) Diffuse (Sky) Partly Cloudy Sky Direct (Beam) Global (()Total) Diffuse (Sky) http://www.nrel.gov/rredc/ Topics • Solar Resource Overview • Solar Hot Water Systems • Solar Photovoltaic Systems • CttiSlPStConcentrating Solar Power Systems National Renewable Energy Laboratory Innovation for Our Energy Future Solar Thermal Technology & Applications Building Hot Water Energy Use average 125 kbtu/sf/year Health Care Grocery Store Energy for Water Heating School Office kBtu/sf/year Office 8.7 Mercantile 5.1 Education 17.4 Health Care 63.0 Lodging 51.4 Lodging Restaurant Pub Assembly 17.5 Food Service 27.5 Mercantile Church Warehouse 2.0 Food sales 9.1 Public Safety 23.4 Other 15.3 All Buildings 13.8 Heating Cooling Ventilation Hot Water Lights Eqqpuipment Solar Water Heating Is Not New! Before the advent of gas pipelines and electric utilities, the technology gained footholds in Florida and California before the 1920’s Over 1,000,000 systems are in use in American homes and business The technology is in widespread use in: - Caribbean basin - China - Israel - Greece - Japan - Australia Technical And Economic Viability Depends Upon Amount of annual sunshine Capital cost of the solar system Prices of conventional fuels Solar system annual O&M cost Annual energy requirement and energy use profile Temperature and amount of hot water (kWh produced) Rate at which conventional fuels are escalating in price Other (e.g.