Parabolic-Trough Solar Water Heating

Total Page:16

File Type:pdf, Size:1020Kb

Parabolic-Trough Solar Water Heating Federal Technology Parabolic-Trough Solar Alert Water Heating Renewable technology for reducing water-heating costs A publication series Parabolic-trough solar water heating is also explains energy savings performance designed to speed the a well-proven technology that directly sub- contracting (ESPC), a method for financing adoption of energy- stitutes renewable energy for conventional Federal facility energy conservation and energy in water heating. Parabolic-trough renewable energy projects. ESPC is avail- efficient and renewable collectors can also drive absorption cooling able for parabolic-trough systems and offers technologies in the systems or other equipment that runs off a many important advantages. thermal load. There is considerable potential Parabolic-trough collectors use mirrored Federal sector for using these technologies at Federal facil- surfaces curved in a linearly extended ities in the Southwestern United States or parabolic shape to focus sunlight on a dark- other areas with high direct-beam solar radi- surfaced absorber tube running the length ation. Facilities such as jails, hospitals, and of the trough. A mixture of water and Prepared by the barracks that consistently use large volumes antifreeze or other heat transfer fluid is of hot water are particularly good candi- pumped through the absorber tube to pick New Technology dates. Use of parabolic-trough systems helps up the solar heat, and then through heat Demonstration Program Federal facilities comply with Executive exchangers to heat potable water or a ther- Order 12902's directive to reduce energy use mal storage tank. Because the trough mir- by 30% by 2005 and advance other efforts rors will reflect only direct-beam sunlight, to get the Federal government to set a good parabolic-trough systems use single-axis example in energy use reduction, such as the tracking systems to keep them facing 1997 Million Solar Roofs Initiative. the sun. This Federal Technology Alert (FTA) from the Federal Energy Management Application Program (FEMP) is one of a series on new Use of parabolic-trough systems is more energy-efficiency and renewable energy limited by geography and system size than technologies. It describes the technology of are other types of solar water heating, but parabolic-trough solar water-heating and where parabolic troughs are usable they absorption-cooling systems, the situations often have very attractive economics. As in which parabolic-trough systems are likely concentrating systems, parabolic troughs use to be cost effective, and considerations in only direct radiation, so are less effective selecting and designing a system. This FTA The U.S. Department of Energy requests that no alterations be made without permission in any reproduction of this document. Warren Gretz, NREL/PIX01019 Warren where skies are cloudy and much more Renewables Program at the National collectors to provide domestic hot water likely to be effective in areas such as the Renewable Energy Laboratory (NREL). for the Federal Correctional Institution in Southwestern United States that have good (See Federal Program Contacts on page 20.) Phoenix, Arizona. Although this project was solar resources dominated by direct-beam IST can more specifically assess negotiated prior to granting of the IDIQ sunlight. It is also more cost effective to prospects for a trough system at a particular contract, it is being built on an ESPC basis. build large systems that will be used on a facility. The FEMP Help Desk can provide The facility, which houses about 1200 continuous basis. Parabolic-trough solar manuals and software for detailed economic inmates, now depends on electric-resistance water heating (and air-conditioning) is evaluation and more information on ESPC water heating. The new solar system was therefore most effective for large, 7-days-a- financing. (See manufacturer’s information specifically designed to avoid peak demand week, domestic hot-water users, such as and Federal Program Contacts.) ESPC, charges from the utility by using a 21,000- Federal hospitals, prisons, or barracks. (For which IST can provide under the Super gallon (79,494-liter) thermal storage tank most situations, about 500 gallons per day ESPC IDIQ contract, allows Federal facili- controlled to deliver solar heat during facil- of hot water use is a minimum for a viable ties to repay contractors for solar water- ity peak periods. This will allow the system parabolic-trough system.) Troughs also heating systems through bills for energy to meet a projected 82% of the facility’s work well for district space or water heating savings instead of paying for initial con- hot-water use. The solar system will dis- systems serving multiple buildings from a struction. The Super ESPC with IST offers place 15 billion Btus per year of fossil fuel central steam or hot-water plant. The cost many significant advantages: combustion, avoiding more than 80,000 of the collector system is a main economic • No financial outlay by the facility to kilograms of nitrogen oxides and nearly factor, but as with any capital-intensive determine feasibility 100,000 kilograms of sulfur dioxide pollu- energy conservation or renewable energy tion over the project’s life. • No need to seek competitive proposals installation, the critical factor is likely to be current cost of energy. Facilities that • Pre-identified savings Implementation Barriers • No responsibility for operation and pay high utility rates for conventional water There are no technological barriers to maintenance heating will always be the best prospects for using parabolic-trough solar water heating. cost-effective parabolic-trough solar water • The current system stays in place as a However, trough collectors are by nature heating or air-conditioning. backup for high reliability limited geographically to areas with high • Guaranteed savings direct-beam solar resources. They are also Technology Selection • The facility pays only for energy savings by nature more cost effective for facilities The FTA series targets energy efficiency it realizes that use large amounts of hot water 7 days and renewable energy technologies that • The facility can benefit indirectly from a week. But, because they directly replace appear to have significant untapped Federal- tax incentives available only to private conventional energy use, parabolic-trough sector potential and for which some Federal companies collectors will provide energy savings and installation experience exists. Many of the • The facility can get credit for energy use environmental benefits proportional to their alerts are about new technologies identified reduction in compliance with Executive use. From a financial perspective, however, through advertisements in the Commerce Order 12902 (mandatory 30% reduction relatively high conventional water-heating Business Daily and trade journals, and by 2005) without reducing hot-water use costs will be the biggest enabling factor. through direct correspondence soliciting ESPC financing also provides advantages • Switching to a more economical conven- technology ideas. This FTA describes a such as tax breaks for private investors that tional water heater or other related effi- renewable energy technology with known are important to project economics. ciency measures can be included in and energy, cost, and environmental benefits that financed by the ESPC project. Improvements in reflective and absorbent has substantial untapped potential for the coatings and development of triple-effect Federal sector. The U.S. Department of Case Studies absorption cooling will incrementally Energy has signed a "Super ESPC" indefi- improve economics, but there are no known nite delivery/indefinite quantity (IDIQ) This FTA describes two examples of technological developments that could dra- contract with Industrial Solar Technology parabolic-trough solar water heating instal- matically lower the cost of parabolic-trough Corporation (IST), the only current manu- lations by IST on a payment-for-energy- solar water-heating or absorption-cooling facturer of parabolic-trough collectors. This savings basis. systems. Much higher sales volume would contract encourages Federal facilities to use The first case study is the parabolic- likely lower costs, but that would depend parabolic-trough technology by greatly trough system at the Adams County on the new technology being able to consis- facilitating financing and implementation Detention Facility in Brighton, Colorado, tently compete with low-cost conventional through ESPC. which has been operating since 1987. The energy. Parabolic-trough solar water heating First, a preliminary analysis should be 7200-square-foot (669-square-meter) collec- is likely to remain most cost effective where conducted on whether solar water heating tor system displaces about 2 billion British natural gas is not available or is relatively generally or parabolic-trough systems thermal units (Btus) per year of natural gas expensive, and where consistent high- particularly would be cost effective for any water heating, about 40% of that needed for volume use provides economies of scale. situation on the basis of energy load, con- the more than 800 inmates. ventional energy costs, and the location’s In the second case study, IST is just solar radiation. Software that performs this starting construction of 18,000 square feet task is available from FEMP's Federal (1672 square meters) of parabolic-trough Federal Parabolic-Trough Solar Water Heating Technology Renewable technology
Recommended publications
  • Parabolic Trough Solar Thermal Electric Power Plants
    Parabolic Trough Solar Thermal Electric Power Plants Parabolic trough solar collector technology offers an environmentally sound and increasingly cost-effective energy source for the future. U.S. Energy Supply and Solar Resource Potential Parabolic Trough Solar Power Technology Each year the United States is becoming more de- Although many solar technologies have been dem- pendent on foreign sources of energy. Already more onstrated, parabolic trough solar thermal electric than 50% of the oil consumed in the United States power plant technology represents one of the major is imported. Environmental pressures to improve air renewable energy success stories of the last two quality and reduce CO2 generation are driving a shift decades. Parabolic troughs are one of the lowest cost from coal to natural gas for new electric generation solar electric power options available today and have plants. Domestic sources of natural gas are not able signifi cant potential for further cost reduction. Nine to keep up with growing demand, causing supplies of parabolic trough plants, totaling over 350 MWe of this key energy source to become increasingly depen- dent on foreign imports as well. The use of natural gas as a source of hydrogen could further aggravate this situation in the future. Solar energy represents a huge domestic energy resource for the United States, particularly in the Southwest where the deserts have some of the best solar resource levels in the world. For example, an area approximately 12% the size of Nevada (15% of Federal lands in Nevada) has the potential to supply all of the electric needs of the United States.
    [Show full text]
  • Parabolic Trough Solar Collectors: a General Overview of Technology, Industrial Applications, Energy Market, Modeling, and Standards
    Green Processing and Synthesis 2020; 9: 595–649 Review Article Pablo D. Tagle-Salazar, Krishna D.P. Nigam, and Carlos I. Rivera-Solorio* Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards https://doi.org/10.1515/gps-2020-0059 received May 28, 2020; accepted September 28, 2020 Nomenclature Abstract: Many innovative technologies have been devel- oped around the world to meet its energy demands using Acronyms renewable and nonrenewable resources. Solar energy is one of the most important emerging renewable energy resources in recent times. This study aims to present AOP advanced oxidation process fl the state-of-the-art of parabolic trough solar collector ARC antire ective coating technology with a focus on different thermal performance CAPEX capital expenditure fl analysis methods and components used in the fabrication CFD computational uid dynamics ffi of collector together with different construction materials COP coe cient of performance and their properties. Further, its industrial applications CPC compound parabolic collector (such as heating, cooling, or concentrating photovoltaics), CPV concentrating photovoltaics solar energy conversion processes, and technological ad- CSP concentrating solar power vancements in these areas are discussed. Guidelines on DNI direct normal irradiation fi - ff commercial software tools used for performance analysis FDA nite di erence analysis fi - of parabolic trough collectors, and international standards FEA nite element analysis related to performance analysis, quality of materials, and FO forward osmosis fi durability of parabolic trough collectors are compiled. FVA nite volume analysis Finally, a market overview is presented to show the im- GHG greenhouse gasses portance and feasibility of this technology.
    [Show full text]
  • Water Scenarios Modelling for Renewable Energy Development in Southern Morocco
    ISSN 1848-9257 Journal of Sustainable Development Journal of Sustainable Development of Energy, Water of Energy, Water and Environment Systems and Environment Systems http://www.sdewes.org/jsdewes http://www.s!ewes or"/js!ewes Year 2021, Volume 9, Issue 1, 1080335 Water Scenarios Modelling for Renewable Energy Development in Southern Morocco Sibel R. Ersoy*1, Julia Terrapon-Pfaff 2, Lars Ribbe3, Ahmed Alami Merrouni4 1Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 2Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 3Institute for Technology and Resources Management, Technical University of Cologne, Betzdorferstraße 2, 50679 Köln, Germany e-mail: [email protected] 4Materials Science, New Energies & Applications Research Group, Department of Physics, University Mohammed First, Mohammed V Avenue, P.O. Box 524, 6000 Oujda, Morocco Institut de Recherche en Energie Solaire et Energies Nouvelles – IRESEN, Green Energy Park, Km 2 Route Régionale R206, Benguerir, Morocco e-mail: [email protected] Cite as: Ersoy, S. R., Terrapon-Pfaff, J., Ribbe, L., Alami Merrouni, A., Water Scenarios Modelling for Renewable Energy Development in Southern Morocco, J. sustain. dev. energy water environ. syst., 9(1), 1080335, 2021, DOI: https://doi.org/10.13044/j.sdewes.d8.0335 ABSTRACT Water and energy are two pivotal areas for future sustainable development, with complex linkages existing between the two sectors. These linkages require special attention in the context of the energy transition.
    [Show full text]
  • Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Robb Aldrich Consortium for Advanced Residential Buildings
    Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Robb Aldrich Consortium for Advanced Residential Buildings February 2016 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at SciTech Connect http:/www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI http://www.osti.gov Phone: 865.576.8401 Fax: 865.576.5728 Email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS http://www.ntis.gov Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: [email protected] Indirect Solar Water Heating in Single-Family, Zero Energy Ready Homes Prepared for: The National Renewable Energy Laboratory On behalf of the U.S.
    [Show full text]
  • Generating Your Own Energy Solar Water
    GENERATING YOUR OWN ENERGY SOLAR WATER A planning guide for 2C householders, communities 1 and businesses Introduction This leaflet is part of an information pack for householders, communities and businesses who want to generate their own energy through small or community scale renewable energy technologies. This may be to benefit from the Clean Energy Cashback Scheme (also known as the Feed-in Tariff) and to help tackle climate change. The pack is intended to give you some useful information on what issues you should be considering when installing a renewable energy technology, including the current planning regulations and ways in which you can install the technology to reduce any impact on you, your neighbours and the local built and natural environment. Please read Leaflet 1 Generating Your Own Energy – A Planning Guide for Householders, Communities and Businesses. This can be found at www.wales.gov.uk/planning GENERATING YOUR OWN ENERGY 1 1 A planning guide for householders, communities and businesses 2 What is solar water? Solar water heating systems gather the sun’s free energy and convert it into hot water alongside a conventional water heater. They do this by retaining the heat from the sun’s rays and transfer this heat to a fluid, in order to preheat water for use in sinks, showers and other hot water applications. What is a solar water collector? • Solar water systems (also known as solar thermal) comprise three main components - Solar collectors – which collect the sun’s rays so that when the light shines on the panel it heats up the water - Hot water cylinder – to store the water that is heated up during the day and supplies it for use later - Plumbing system – piping to move the fluid around the system • Type: - There are two different tubes of solar collectors with different characteristics: flat plate and evacuated tubes.
    [Show full text]
  • Solar Water Heating System Requirements
    Solar Water Heating Installation Requirements Adapted from The Bright Way to Heat Water™ technical requirements V 27 Energy Trust of Oregon Solar Water Heating Installation Requirements Revisions Energy Trust updates these installation requirements annually. Many thanks to the industry members and technical specialists that have invested their time to help keep this document current. The current document (v 27) underwent significant changes from previous installation requirements. Much of the redundant commentary material was removed and many requirements were evaluated based on cost effectiveness and removed or relaxed. The revisions table below summarizes many of the new changes however this document should be read in its entirety to understand the changes. August, 2012 Revisions Section Revision 2.2 Changed requirement for avoiding galvanic action, allowing aluminum Materials to galvanized steel connections. Requirements related to overheat and freeze protection were moved 2.3 to the new Solar Water Heating System Design and Eligibility Equipment and Installation Requirements document. Water quality requirements were removed. Requirements related to heat exchanger materials were moved to the 2.6 new Solar Water Heating System Design and Eligibility Requirements Plumbing document. Parts of Section 2.10 from v 26 were integrated into section 2.6. Backup water heater requirements were removed and/or deferred to code. 2.8 Anti-convective piping requirements were removed. Backup Water Heater Backup water heater R-10 floor pad was removed. Parts of Section 2.10 from v 26 were integrated into section 2.8 2.9 Storage to collector ratios were revised for single tank systems and moved to the new Solar Water Heating System Design and Eligibility Solar Storage Tank Requirements document.
    [Show full text]
  • Solar Water Heating with Low-Cost Plastic Systems
    FEDERAL ENERGY MANAGEMENT PROGRAM Two U.S.-manufactured low-cost plastic packaged systems are now available, including the SunCache system (above left) and the FAFCO system (above right). The manufacturers use plastic materials that reduce production and installation costs. Photos from Harpiris Energy and FAFCO Solar Water Heating with Low-Cost Plastic Systems Newly developed solar water heating technology can help Federal agencies more affordably meet the EISA requirements for solar water heating in new construction and major renovations. Federal buildings consumed over 392,000 billion Btu of site- is reasonably comparable, and these systems are capable delivered energy for buildings during FY 2007 at a total cost of meeting the statutory requirements of 30% solar power of $6.5 billion.[1] Earlier data indicate that about 10% of this efficiently and cost-effectively. is used to heat water.[2] Targeting energy consumption in Federal buildings, the Overcoming the Cost Barrier Energy Independence and Security Act of 2007 (EISA) Benefits and applications of solar water heating are well- requires new Federal buildings and major renovations to meet known, and have been covered in many publications found 30% of their hot water demand with solar energy, provided in the references. However, the single biggest market barrier it is cost-effective over the life of the system. In October for solar water heaters is cost. For single-family systems with 2009, President Obama expanded the energy reduction national-average water draw, paybacks with conventional and performance requirements of EISA and its subsequent solar water heaters often exceed expected system life of regulations with his Executive Order 13514.
    [Show full text]
  • The Importance of Using Solar Water Heater As an Alternative Eco-Friendly Technology in Global Market: Some Lessons of Experiences for Bangladesh Economy
    The Importance of Using Solar Water Heater as an Alternative Eco-Friendly Technology in Global Market: Some Lessons of Experiences for Bangladesh Economy Dr. Sakib Bin Amin Assistant Professor School of Business and Economics North South University Email:[email protected] Nuzhat Nuarey Mithila Correspondent Author and BS in Economics School of Business and Economics North South University Email:[email protected] 1 Electronic copy available at: https://ssrn.com/abstract=2928814 Abstract This research paper introduces alternative heating technology for Bangladesh in the form of solar water heater against conventional heating on the face of increasing demand for heating water. Solar water heater is that renewable technology which simply uses free sunlight to heat water. The main benefit of using this technology is that it is completely pollution free, unlike other non- renewable sources. However, from an economic point of view, it might not be a short term solution but will be economically viable in the long term. This technology also has the potential to ensure future energy security by diverting the energy load from non-renewable to renewable. This research paper gives a comparative analysis on the use of solar water heaters among different countries and Bangladesh. It also incorporates some useful measures that have attributed to the development of this industry. In this regard, many developed countries such as China, India, South Africa, Brazil, and Barbados along with small country like Tunisia have set up a remarkable example by patronizing this industry. This research paper has analyzed the factors and measures adopted for this technology in those countries and investigated the viability of solar water heating in the perspective of Bangladesh.
    [Show full text]
  • Sustainable Development for Solar Heating Systems in Taiwan
    Sustainability 2015, 7, 1970-1984; doi:10.3390/su7021970 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Sustainable Development for Solar Heating Systems in Taiwan Keh-Chin Chang 1,†, Wei-Min Lin 2,† and Kung-Ming Chung 1,†,* 1 Energy Research Center, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan; E-Mail: [email protected] 2 Department of Accounting Information, Tainan University of Technology, No. 529, Zhongzheng Road, Yongkang District, Tainan 710, Taiwan; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-6-239-2811 (ext. 210); Fax: +886-6-239-1915. Academic Editor: Rachel J. C. Chen Received: 8 January 2015 / Accepted: 6 February 2015 / Published: 12 February 2015 Abstract: In response to the impact of the United Nations Framework Convention on Climate Change, developing and using renewable energy sources and technologies have become vital for managing energy supply and demand in Taiwan. The long-term subsidy programs (1986–1991, 2000–present) for solar water heaters (SWHs) launched by the Taiwanese government constitute the main driving force for market expansion. By the end of 2013, the cumulative area of installed solar collectors was 2.27 million m2. Approximately 0.3 million systems (or 1.545 million m2) are in operation. This corresponds to an annual collector yield of 0.92 TWh, which is equivalent to savings of 98.7 thousand tons of oil and 319 thousand tons of CO2,eq.
    [Show full text]
  • The Energy Saving Trust Here Comes the Sun: a Field Trial of Solar Water Heating Systems
    Here comes the sun: a field trial of solar water heating systems The Energy Saving Trust Here comes the sun: a field trial of solar water heating systems The Energy Saving Trust would like to thank our partners, who have made this field trial possible: Government organisations The Department of Energy and Climate Change The North West Regional Development Agency The Scottish Government The Welsh Government Sustainable Energy Authority Ireland Manufacturers Worcester Bosch Energy suppliers British Gas EDF Energy E.ON Firmus Energy Good Energy Scottish & Southern Energy PLC ScottishPower Energy Retail Ltd Technical consultants EA Technology Ltd Energy Monitoring Company GASTEC at CRE Ltd Southampton University The National Energy Foundation Energy Saving Trust project team Jaryn Bradford, project director Frances Bean, project manager with Tom Chapman and Tom Byrne 2 Here comes the sun: a field trial of solar water heating systems Contents Foreword 4 Executive summary 5 Definitions 6 The background 7 The field trial 7 What is a solar water heating system? 8 Undertaking the field trial 10 Selecting participants 10 Developing our approach 11 Installing monitoring equipment 12 Householder feedback 13 Findings of the field trial 14 Key findings 18 Conclusions 20 Advice for consumers 21 Consumer checklist 21 What’s next? 23 3 Here comes the sun: a field trial of solar water heating systems Foreword Boosting consumer confidence in green technologies is vital In line with the Energy Saving Trust’s previous field trials, in driving the uptake of renewables in the UK. The UK lags these results have been peer-reviewed by experts in the behind its European neighbours, with just 1.3 per cent of industry.
    [Show full text]
  • This Document, Concerning Solar Water Heaters Is an Action Issued by the Department of Energy
    This document, concerning solar water heaters is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public’s access to this document. [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EERE-2014-BT-STD-0045] Energy Conservation Program for Consumer Products: Test Procedures and Energy Conservation Standards for Residential Water Heaters AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for information (RFI). SUMMARY: The U.S. Department of Energy (DOE) is requesting comments, data, and information related to solar-thermal water heating systems where solar components are paired with electric and/or fossil fuel-fired water heaters, which are utilized as secondary heat sources. Although this document contains several specific topics on which DOE is particularly interested in receiving written comment, DOE welcomes suggestions and information from the public on any subject related to solar water heaters. DATES: Written comments and information are requested on or before [INSERT DATE 30 DAYS AFTER DATE OF PUBLICATION IN THE FEDERAL REGISTER]. ADDRESSES: Interested parties are encouraged to submit comments electronically. However, 1 interested persons may submit comments, identified by docket number EERE-2014-BT-STD- 0045 by any of the following methods: • Federal eRulemaking Portal: www.regulations.gov. Follow the instructions for submitting comments. • E-mail: [email protected].
    [Show full text]
  • Solar Water Heating
    DOE/GO-10096-050 FS 119 ENERGY March 1996 EFFICIENCY AND RCLEARINGHOUSE ENEWABLE ENERGY Solar Water Heating This publication provides basic informa- cost of solar water heaters is higher than tion on the components and types of solar that of conventional water heaters, the water heaters currently available and the fuel (sunshine) is free. Plus, they are economic and environmental benefits of environmentally friendly. To take advan- owning a system. Although the publica- tage of these heaters, you must have an tion does not provide information on unshaded, south-facing location (a roof, building and installing your own system, for example) on your property. it should help you discuss solar water heating systems intelligently with a solar These systems use the sun to heat either equipment dealer. water or a heat-transfer fluid, such as a water-glycol antifreeze mixture, in Solar water heaters, sometimes called collectors generally mounted on a roof. solar domestic hot water systems, may be The heated water is then stored in a tank a good investment for you and your fam- similar to a conventional gas or electric ily. Solar water heaters are cost competi- water tank. Some systems use an electric tive in many applications when you pump to circulate the fluid through the account for the total energy costs over the collectors. life of the system. Although the initial Homes such as this one use solar water heaters to supply most of the hot-water needs for the household. NT O ME F E T N R E A R P G This document was produced for the U.S.
    [Show full text]