Minnesota's Top 124 Terrestrial Invasive Plants and Pests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mycelial Compatibility in Amylostereum Areolatum
Mycelial compatibility in Amylostereum areolatum Magrieta Aletta van der Nest © University of Pretoria © University of Pretoria Mycelial compatibility in Amylostereum areolatum by Magrieta Aletta van der Nest Promotor: Prof. B.D. Wingfield Co-promotor: Prof. M.J. Wingfield Prof. B. Slippers Prof. J. Stenlid Submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences, Department of Genetics at the University of Pretoria. September 2010 © University of Pretoria DECLARATION I, Magrieta Aletta van der Nest, declare that this thesis, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not been submitted by me at this or any other tertiary institution. SIGNATURE: DATE: © University of Pretoria TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................... i PREFACE ............................................................................................................................... ii CHAPTER 1 ........................................................................................................................... 1 LITERATURE REVIEW: The molecular basis of vegetative incompatibility in fungi, with specific reference to Basidiomycetes CHAPTER 2 ......................................................................................................................... 44 Genetics of Amylostereum species associated with Siricidae -
Multigene Phylogeny, Taxonomy and Reclassification of Hyaloperonospora on Cardamine
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Mycol Progress (2014) 13:131–144 DOI 10.1007/s11557-013-0900-z ORIGINAL ARTICLE Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine Hermann Voglmayr & Young-Joon Choi & Hyeon-Dong Shin Received: 23 January 2013 /Revised: 12 March 2013 /Accepted: 21 March 2013 /Published online: 14 April 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Based on sequence data from cox1, cox2, ITS and Keywords Dentaria . Host range . Obligate parasites . LSU rDNA, it is shown that at least six species of Peronospora . Peronosporaceae Hyaloperonospora occur on the genus Cardamine,mostof which were commonly classified under Peronospora dentariae. Based on sequences from their type hosts, Introduction Peronospora dentariae, Peronospora cardamines-laciniatae, Peronospora dentariae-macrophyllae, Peronospora malyi Recent molecular phylogenetic studies showed that the genus and Peronospora nasturtii-aquatici are combined into Hyaloperonospora, established by Constantinescu and Fatehi Hyaloperonospora, and their circumscription is clarified. (2002)forPeronospora species infecting Brassicaceae, Hyaloperonospora cardamines-enneaphyllos is described as Capparaceae, Cistaceae, Limnanthaceae, Resedaceae and a new species from Cardamine enneaphyllos. The host range Zygophyllaceae, comprises a high biodiversity, its species of Hyaloperonospora nasturtii-aquatici, described from usually being highly host specific (e.g. Riethmüller et al. Nasturtium officinale, is shown to extend to various 2002;Choietal.2003; Voglmayr 2003; Göker et al. 2003, Cardamine species. Host range of species is shown to be 2004, 2009a;Choietal.2011; Voglmayr and Göker 2011). highly diagnostic, with no overlap in their host range, but Therefore, a narrow species circumscription as already advo- species commonly cannot be distinguished by morphology catedbyGäumann(1918, 1923) has been confirmed, alone. -
Schematic Diagram of the Life Cycle of Agrilus Biguttatus on Native Oak Trees in Britain - from Egg to Adult
Forest Research Schematic diagram of the life cycle of Agrilus biguttatus on native oak trees in Britain - from egg to adult Sandra Denman and Nathan Brown, Forest Research As temperatures warm up, larvae continue to feed and grow, in widening galleries. As larvae ‘outgrow’ their skin they go through a moulting phase Early instar larvae enter Year 1 continued to a bigger size or ‘instar’. The fi rst overwintering period larvae go through 5 instar Feb M phases before pupation. n ar Ja A pr ec D M ay ov N Larvae approach Acute oak decline (AOD) is a condition of mature fully grown status native oak in Britain that appears to be increasing. 2 Aff ected trees are identifi ed by symptoms of t uly c J r a e profuse stem bleeding and signifi cant tree O y Larvae migrate to outer bark g Ju u n A o mortality. Two organisms are thought to play key e t Year 2 for 2nd overwintering, in pupal in g roles in AOD; bacteria and the buprestid beetle chamber in bark plate n i o g In warmer climates Agrilus biguttatus. This poster describes the life p e p development may S cycle of Agrilus biguttatus in Britian. e be completed in S Eggs hatch and larvae feed on one year O the cambial tissues creating c t sinuous galleries. N ov De A c u Ja Apr Females lay eggs in bark crevices g n F ar eb M Pupation takes place, adult ready for J emergence uly ay M START M year 1 id-en d June June Adults emerge Names Mating and egg laying begins Adult beetles feed on foliage in canopy. -
UNIVERSITÀ DEGLI STUDI DEL MOLISE Department
UNIVERSITÀ DEGLI STUDI DEL MOLISE Department of Agricultural, Environmental and Food Sciences Ph.D. course in: AGRICULTURE TECHNOLOGY AND BIOTECHNOLOGY (CURRICULUM: Sustainable plant production and protection) (CYCLE XXIX) Ph.D. thesis NEW INSIGHTS INTO THE BIOLOGY AND ECOLOGY OF THE INSECT VECTORS OF APPLE PROLIFERATION FOR THE DEVELOPMENT OF SUSTAINABLE CONTROL STRATEGIES Coordinator of the Ph.D. course: Prof. Giuseppe Maiorano Supervisor: Prof. Antonio De Cristofaro Co-Supervisor: Dr. Claudio Ioriatti Ph.D. student: Tiziana Oppedisano Matr: 151603 2015/2016 “Nella vita non c’è nulla da temere, c’è solo da capire.” (M. Curie) Index SUMMARY 5 RIASSUNTO 9 INTRODUCTION 13 Phytoplasmas 13 Taxonomy 13 Morphology 14 Symptomps 15 Transmission and spread 15 Detection 17 Phytoplasma transmission by insect vectors 17 Phytoplasma-vector relationship 18 Homoptera as vectors of phytoplasma 19 ‘Candidatus Phytoplasma mali’ 21 Symptomps 21 Distribution in the tree 22 Host plant 24 Molecular characterization and diagnosis 24 Geographical distribution 25 AP in Italy 25 Transmission of AP 27 Psyllid vectors of ‘Ca. P. mali’ 28 Cacopsylla picta Förster (1848) 29 Cacopsylla melanoneura Förster (1848) 32 Other known vectors 36 Disease control 36 Aims of the research 36 References 37 CHAPTER 1: Apple proliferation in Valsugana: three years of disease and psyllid vectors’ monitoring 49 CHAPTER 2: Evaluation of the current vectoring efficiency of Cacopsylla melanoneura and Cacopsylla picta in Trentino 73 CHAPTER 3: The insect vector Cacopsylla picta vertically -
Biodiversa-Project Description-Final Version-110213
1.A. Detailed description of the research area and research plan Context of the proposal Biological invasions (bioinvasions) are defined as the successful establishment and spread of species outside their native range. They act as a major driver of global changes in species distribution. Diverse organisms and ecosystems may be involved, and although not all invasions have a negative impact, the ecological consequences often include the loss of native biological diversity and changes in community structure and ecosystem activity. There may also be additional negative effects on agriculture, forests, fisheries, and human health. National governments, intergovernmental structures like the European Commission and international organizations such as EPPO, CABI and IUCN have therefore mobilized to (i) introduce international laws on invasive species, (ii) organize international networks of scientists and stakeholders to study bioinvasions, and (iii) formalize the cooperation between national environmental or agricultural protection agencies (e.g. the French Agence Nationale de Sécurité Sanitaire, ANSES). Several billion euros are spent annually to address the problems caused by bioinvasions and the scientific community has focused on predicting and controlling future invasions by understanding how they occur. A peer-reviewed journal entitled "Biological Invasions” has been published since 1999. Ecologists have long drawn attention to the negative ecological effects of invasive species, whereas the evolutionary aspects of bioinvasions have received comparatively little attention. This reflects the fact that: i) invasive populations were thought to experience significant bottlenecks during their introduction to new environments and thus possess a limited potential to evolve; and ii) evolution was considered too slow to play a significant role given the relatively short timescale of the invasion process. -
ANNUAL REPORT 2020 Plant Protection & Conservation Programs
Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County . -
Proceedings, 23Rd U.S. Department of Agriculture Interagency Research
United States Department of Proceedings Agriculture 23rd U.S. Department of Agriculture Forest Service Northern Interagency Research Forum on Research Station Invasive Species 2012 General Technical Report NRS-P-114 The findings and conclusions of each article in this publication are those of the individual author(s) and do not necessarily represent the views of the U.S. Department of Agriculture or the Forest Service. All articles were received in digital format and were edited for uniform type and style. Each author is responsible for the accuracy and content of his or her paper. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal, agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fi sh or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Cover graphic by Vincent D’Amico, U.S. Forest Service, Northern Research Station. Manuscript received for publication August 2012 Published by: For additional copies: U.S. -
Diseases of Trees in the Great Plains
United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here. -
VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<! -
Putative Source of the Invasive Sirex Noctilio Fungal Symbiont, Amylostereum Areolatum, in the Eastern United States and Its Association with Native Siricid Woodwasps
mycological research 113 (2009) 1242–1253 journal homepage: www.elsevier.com/locate/mycres Putative source of the invasive Sirex noctilio fungal symbiont, Amylostereum areolatum, in the eastern United States and its association with native siricid woodwasps Charlotte NIELSENa, David W. WILLIAMSb, Ann E. HAJEKa,* aDepartment of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853-2601, USA bUSDA APHIS, PPQ, CPHST, Otis Laboratory, Buzzards Bay, MA 02542, USA article info abstract Article history: Two genotypes of the fungal symbiont Amylostereum areolatum are associated with the Received 16 March 2009 invasive woodwasp Sirex noctilio first found in North America in 2004. S. noctilio is native Received in revised form to Europe but has been introduced to Australasia, South America and Africa where it has 30 July 2009 caused enormous losses in pine plantations. Based on nucleotide sequence data from Accepted 3 August 2009 the intergenic spacer region (IGS) of the nuclear ribosomal DNA, the A. areolatum genotypes Available online 27 August 2009 found in North America are most similar to genotypes found in Europe, and not to Corresponding Editor: Roy E. Halling genotypes from the southern hemisphere. Although two IGS strains of A. areolatum were found in North America it cannot be stated whether A. areolatum was introduced to North Keywords: America from Europe once or twice based on our study. Genetic groupings formed by Fungal symbiont sequencing data were in most cases supported by vegetative compatibility groups Homobasidiomycete (VCGs). Other siricid woodwasp species in the genus Sirex are native to North America. Invasive species The North American native Sirex edwardsii emerging from the same tree as S. -
Bioreplicated Visual Features of Nanofabricated Buprestid Beetle Decoys Evoke Stereotypical Male Mating Flights
Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights Michael J. Dominguea,1, Akhlesh Lakhtakiab, Drew P. Pulsiferb, Loyal P. Halla, John V. Baddingc, Jesse L. Bischofc, Raúl J. Martín-Palmad, Zoltán Imreie, Gergely Janikf, Victor C. Mastrog, Missy Hazenh, and Thomas C. Bakera,1 Departments of aEntomology, bEngineering Science and Mechanics, cChemistry, and dMaterials Science and Engineering, Pennsylvania State University, University Park, PA 16802; ePlant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-3232 Budapest, Hungary; fDepartment of Forest Protection, Forest Research Institute, H-1022 Mátrafüred, Hungary; gAnimal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology, US Department of Agriculture, Buzzards Bay, MA 02542; and hHuck Institutes of the Life Sciences Microscope Facilities, Pennsylvania State University, University Park, PA 16802 Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved August 19, 2014 (received for review July 7, 2014) Recent advances in nanoscale bioreplication processes present the and detection of pest species, but the communication efficacy of potential for novel basic and applied research into organismal the bioreplica needs to be validated under field conditions using behavioral processes. Insect behavior potentially could be affected naturally occurring (i.e., wild) populations. by physical features existing at the nanoscale level. We used nano- In contrast, biomimicry of chemical signals, such as insect pher- bioreplicated visual decoys of female emerald ash borer beetles omones, has been a burgeoning field for more than half a century. (Agrilus planipennis) to evoke stereotypical mate-finding behav- Synthetically reproduced pheromones have been successfully ap- ior, whereby males fly to and alight on the decoys as they would plied under field conditions to manipulate insect behavior for in- on real females. -
Floerkea Proserpinacoides Willdenow False Mermaid-Weed
New England Plant Conservation Program Floerkea proserpinacoides Willdenow False Mermaid-weed Conservation and Research Plan for New England Prepared by: William H. Moorhead III Consulting Botanist Litchfield, Connecticut and Elizabeth J. Farnsworth Senior Research Ecologist New England Wild Flower Society Framingham, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2003 1 SUMMARY Floerkea proserpinacoides Willdenow, false mermaid-weed, is an herbaceous annual and the only member of the Limnanthaceae in New England. The species has a disjunct but widespread range throughout North America, with eastern and western segregates separated by the Great Plains. In the east, it ranges from Nova Scotia south to Louisiana and west to Minnesota and Missouri. In the west, it ranges from British Columbia to California, east to Utah and Colorado. Although regarded as Globally Secure (G5), national ranks of N? in Canada and the United States indicate some uncertainly about its true conservation status in North America. It is listed as rare (S1 or S2) in 20% of the states and provinces in which it occurs. Floerkea is known from only 11 sites total in New England: three historic sites in Vermont (where it is ranked SH), one historic population in Massachusetts (where it is ranked SX), and four extant and three historic localities in Connecticut (where it is ranked S1, Endangered). The Flora Conservanda: New England ranks it as a Division 2 (Regionally Rare) taxon. Floerkea inhabits open or forested floodplains, riverside seeps, and limestone cliffs in New England, and more generally moist alluvial soils, mesic forests, springy woods, and streamside meadows throughout its range.