Mycelial Compatibility in Amylostereum Areolatum

Total Page:16

File Type:pdf, Size:1020Kb

Mycelial Compatibility in Amylostereum Areolatum Mycelial compatibility in Amylostereum areolatum Magrieta Aletta van der Nest © University of Pretoria © University of Pretoria Mycelial compatibility in Amylostereum areolatum by Magrieta Aletta van der Nest Promotor: Prof. B.D. Wingfield Co-promotor: Prof. M.J. Wingfield Prof. B. Slippers Prof. J. Stenlid Submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences, Department of Genetics at the University of Pretoria. September 2010 © University of Pretoria DECLARATION I, Magrieta Aletta van der Nest, declare that this thesis, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not been submitted by me at this or any other tertiary institution. SIGNATURE: DATE: © University of Pretoria TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................... i PREFACE ............................................................................................................................... ii CHAPTER 1 ........................................................................................................................... 1 LITERATURE REVIEW: The molecular basis of vegetative incompatibility in fungi, with specific reference to Basidiomycetes CHAPTER 2 ......................................................................................................................... 44 Genetics of Amylostereum species associated with Siricidae woodwasps CHAPTER 3 ......................................................................................................................... 61 Characterization of the systems governing sexual and self-recognition in the white rot homobasidiomycete Amylostereum areolatum CHAPTER 4 ......................................................................................................................... 101 Genetic linkage map for Amylostereum areolatum reveals an association between vegetative growth and sexual and self recognition CHAPTER 5 ......................................................................................................................... 137 Influence of symbiosis on the evolution and mode of reproduction of two white rot fungi CHAPTER 6 .................................................................................................................................... 184 Gene expression associated with vegetative incompatibility in Amylostereum areolatum SUMMARY ........................................................................................................................ 244 © University of Pretoria Acknowledgments I want to thank the following people and institutions: My study leaders Professors Brenda Wingfield, Mike Wingfield, Bernard Slippers and Jan Stenlid for their encouragement, guidance and patience. My mother (Trisce Jane van der Nest), my grandparents (Grieta and Lambert van der Nest), Emma Steenkamp, Tuan Duong, Karlien van Zyl and Markus Wilken for their help and support. The Fabians for their advice, help and support, especially the people in the Shaw laboratory. FABI support staff Helen Doman, Eva Muller, Jenny Hale, Rose Louw and Martha Mahlangu, Valentina Nkosi, Maretha van der Merwe and Lydia Twala, as well as the staff at the DNA sequence facility Renate Zipfel and Gladys Mthembu for technical assistance. The National Research Foundation (NRF), members of the Tree Protection Co- operative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry (DTI), South Africa for financial support. The Department of Genetics at the University of Pretoria for the use of their facilities. i © University of Pretoria Preface Amylostereum areolatum is a basidiomycete fungus that lives in symbiotic relationship with Siricid woodwasps. Like other fungi, A. areolatum utilizes a range of mechanisms to recognize individuals of its own and other species. Our current knowledge of the processes underlying these recognition mechanisms are based almost exclusively on the recognition systems of the model fungi. Even less is known for the recognition systems of fungi involved in symbiotic relationships with other eukaryotes and specifically insects. The research in this thesis focuses specifically on interactions among A. areolatum individuals, as well as how its biology and evolution could have been influenced by the association of woodwasps. The thesis is presented as six chapters, each of which is written as independent units (two of which have already been published). Thus there has been some obvious repetition of certain aspects among the chapters. Two independent systems regulate interactions among A. areolatum individuals. The one system (referred to as sexual compatibility) regulates mycelial compatibility between homokaryons and is controlled by the genes encoded at the mating type (mat) loci, while the second system (referred to as vegetative compatibility) regulates mycelial compatibility between heterokaryons and is controlled by the genes encoded at the heterokaryon incompatibility (het) loci. Sexual recognition in fungi has been well-studied and is thoroughly documented in the literature. The existing literature also addresses specific key issues regarding sexual recognition, including literature about the origins and evolution of the mat genes and molecular processes involved in sexual recognition. Although good reviews regarding fungal vegetative compatibility are available, the current literature has a gap regarding the processes and pathways involved in vegetative incompatibility. The first chapter of this thesis, therefore, presents a critical review of literature on the molecular mechanisms underlying vegetative incompatibility in fungi. The focus is on Basidiomycetes and a discussion of the possible processes and pathways associated with this phenomenon is included. The second chapter of this thesis provides a brief review on the research that has broadened our knowledge regarding the phylogenetics, population genetics and biology of Amylostereum spp. and in particular A. areolatum. Much of the existing literature on these issues was generated due the fact that A. areolatum and its symbiont, the Sirex noctilio woodwasp, threaten pine forestry in countries where they have been introduced. Despite ii © University of Pretoria considerable efforts to control the wasp, the Amylostereum-Sirex complex continues to kill significant numbers of trees. In this chapter, research that increased our understanding of the biology of Amylostereum spp., as well as their taxonomy and evolution, are considered. The diversity of these fungi and their interactions with the wasp and host plant are also discussed. Characterization of the sexual mating systems of Basidiomycetes has almost exclusively been limited to the model fungi. Almost no information is available about the het genes of Basidiomycetes. The aim of Chapter 3 of the thesis was, therefore, to characterize the mat and het loci in the non-model homobasidiomycete A. areolatum. We were able to determine the number of het loci in A. areolatum, as well as obtain portions of a putative pheromone receptor encoded at the mat-B locus and a gene (mitochondrial intermediate peptidase) linked to the mat-A locus of this fungus. Findings from this chapter provided some insight into the structure, organization, function and evolution of the recognition loci in Basidiomycetes, as well as the role these loci play in the development and evolution of these and other fungi. Genetic linkage maps have been used to study the recognition loci of eukaryotes. In a similar way, the aim of Chapter 4 of this thesis was to position the recognition loci (mat and het) of A. areolatum on a genetic linkage map. For this purpose amplified fragment length polymorphisms (AFLPs) were used for map construction, and AFLP-based bulked segregant analysis (BSA) was used to identify markers closely linked to the recognition loci. As has been shown previously for other eukaryotes, the recognition loci of A. areolatum are subject to evolutionary forces that are markedly different from those acting on the rest of the genome. The findings were analysed in terms of the in vitro growth rate of the fungus, which showed a possible association between the recognition loci and the genes involved in fitness. A possible explanation for the association between fitness and the recognition loci could be attributed to the evolutionary forces acting on these loci that keep them highly diverse. The aim of the study presented in Chapter 5 was to explore the evolutionary forces acting on the genes governing sexual recognition in A. areolatum. For this purpose, DNA sequence information was obtained from the pheromone receptor gene (RAB1) encoded at the mat-B locus and two nuclear regions (i.e. the eukaryotic translation elongation factor 1α gene and the ribosomal RNA internal transcribed spacer region). For comparative purposes, A. chailletii was included in this study. The findings suggest that balancing selection, but not positive selection, is keeping the mat genes of these fungi diverse. The aim of the study presented in Chapter 6 was to increase our understanding of the molecular mechanisms underlying vegetative incompatibility in A. areolatum. For this purpose, genes selectively expressed during incompatibility were identified using suppression iii © University of Pretoria subtractive hybridization, 454-based pyrosequencing and quantitative
Recommended publications
  • The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America
    REVIEW:BIOLOGICAL CONTROL-PARASITOIDS &PREDATORS The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America 1 DAVID R. COYLE AND KAMAL J. K. GANDHI Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 Environ. Entomol. 41(4): 731Ð749 (2012); DOI: http://dx.doi.org/10.1603/EN11280 ABSTRACT Native and exotic siricid wasps (Hymenoptera: Siricidae) can be ecologically and/or economically important woodboring insects in forests worldwide. In particular, Sirex noctilio (F.), a Eurasian species that recently has been introduced to North America, has caused pine tree (Pinus spp.) mortality in its non-native range in the southern hemisphere. Native siricid wasps are known to have a rich complex of hymenopteran parasitoids that may provide some biological control pressure on S. noctilio as it continues to expand its range in North America. We reviewed ecological information about the hymenopteran parasitoids of siricids in North America north of Mexico, including their distribution, life cycle, seasonal phenology, and impacts on native siricid hosts with some potential efÞcacy as biological control agents for S. noctilio. Literature review indicated that in the hymenop- teran families Stephanidae, Ibaliidae, and Ichneumonidae, there are Þve genera and 26 species and subspecies of native parasitoids documented from 16 native siricids reported from 110 tree host species. Among parasitoids that attack the siricid subfamily Siricinae, Ibalia leucospoides ensiger (Norton), Rhyssa persuasoria (L.), and Megarhyssa nortoni (Cresson) were associated with the greatest number of siricid and tree species. These three species, along with R. lineolata (Kirby), are the most widely distributed Siricinae parasitoid species in the eastern and western forests of North America.
    [Show full text]
  • A Review of the Genus Amylostereum and Its Association with Woodwasps
    70 South African Journal of Science 99, January/February 2003 Review Article A review of the genus Amylostereum and its association with woodwasps B. Slippers , T.A. Coutinho , B.D. Wingfield and M.J. Wingfield Amylostereum.5–7 Today A. chailletii, A. areolatum and A. laevigatum are known to be symbionts of a variety of woodwasp species.7–9 A fascinating symbiosis exists between the fungi, Amylostereum The relationship between Amylostereum species and wood- chailletii, A. areolatum and A. laevigatum, and various species of wasps is highly evolved and has been shown to be obligatory siricid woodwasps. These intrinsic symbioses and their importance species-specific.7–10 The principal advantage of the relationship to forestry have stimulated much research in the past. The fungi for the fungus is that it is spread and effectively inoculated into have, however, often been confused or misidentified. Similarly, the new wood, during wasp oviposition.11,12 In turn the fungus rots phylogenetic relationships of the Amylostereum species with each and dries the wood, providing a suitable environment, nutrients other, as well as with other Basidiomycetes, have long been unclear. and enzymes that are important for the survival and develop- Recent studies based on molecular data have given new insight ment of the insect larvae (Fig. 1).13–17 into the taxonomy and phylogeny of the genus Amylostereum. The burrowing activity of the siricid larvae and rotting of the Molecular sequence data show that A. areolatum is most distantly wood by Amylostereum species makes this insect–fungus symbio- related to other Amylostereum species. Among the three other sis potentially harmful to host trees, which include important known Amylostereum species, A.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Amylostereum Laevigatum Associated with the Japanese Horntail, Urocerusjaponicus
    421 Mycoscience 38: 421-427, 1997 Amylostereum laevigatum associated with the Japanese horntail, Urocerusjaponicus Masanobu Tabata 1~ and Yasuhisa Abe z) 1~ Shikoku Research Center, Forestry and Forest Products Research Institute, 915, Asakura-tei, Kochi 780, Japan 2~ Forestry and Forest Products Research Institute, P. O. Box 16, Tsukuba, Ibaraki 305, Japan Accepted for publication 30 October 1997 The fungus associated with the Japanese horntail, Urocerus japonicus, in Kochi, Kagawa and Ehime Prefectures was studied. Cultures isolated from the mycangia of 113 adult females of the horntail showed the same cultural charac- teristics. Four of basidiocarps found on felled logs of Cryptomeriajaponica were identified as Amylostereumlaevigatum based on morphological characteristics. This was the first record of A. laevigatum from Japan. The cultures isolated from the basidiocarps had the same cultural characteristics as those from the mycangia of U.japonicus. One mycangial isolate produced basidiocarps on artificially inoculated stem segments of Cr. japonica after a 6-too incubation and was identified as A. laevigatum. One isolate from the basidiocarps of A. laevigatum and one from the mycangium of U. japonicus were artificially inoculated into five trees each of Chamaecyparis obtusa and Cr. japonica. The wood of all in- oculated trees showed discoloration, with no difference in shape and pattern of discoloration between the two isolates. The inoculated fungi were reisolated from the areas of discoloration in the inoculated trees. Key Words- Amylostereum laevigatum; Japanese horntail; symbiont; Urocerusjaponicus; wood discoloration. Of the five recorded species of Amylostereum (Chamuris, quired to identify the symbionts exactly by teleomorph, 1988), onlyA, areolatum (Fr.: Fr.) Boidin and A.
    [Show full text]
  • Aliens: the Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group
    Aliens: The Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group ISSN 1173-5988 Issue Number 31, 2011 Coordinator CONTENTS Piero Genovesi, ISSG Chair, ISPRA Editors Editorial pg. 1 Piero Genovesi and Riccardo Scalera News from the ISSG pg. 2 Assistant Editor ...And other news pg. 4 Anna Alonzi Monitoring and control modalities of a honeybee predator, the Yellow Front Cover Photo legged hornet Vespa velutina The yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: © Photo by Quentin Rome Vespidae) pg. 7 Improving ant eradications: details of more successes, The following people a global synthesis contributed to this issue and recommendations pg. 16 Shyama Pagad, Carola Warner Introduced reindeer on South Georgia – their impact and management pg. 24 Invasive plant species The newsletter is produced twice a year and in Asian elephant habitats pg. 30 is available in English. To be added to the AlterIAS: a LIFE+ project to curb mailing list, or to download the electronic the introduction of invasive version, visit: ornamental plants in Belgium pg. 36 www.issg.org/newsletter.html#Aliens Investigation of Invasive plant Please direct all submissions and other ed- species in the Caucasus: itorial correspondence to Riccardo Scalera current situation pg. 42 [email protected] The annual cost of invasive species to the British economy quantified pg. 47 Published by Eradication of the non-native ISPRA - Rome, Italy sea squirt Didemnum vexillum Graphics design from Holyhead Harbour, Wales, UK pg. 52 Franco Iozzoli, ISPRA Challenges, needs and future steps Coordination for managing invasive alien species Daria Mazzella, ISPRA - Publishing Section in the Western Balkan Region pg.
    [Show full text]
  • Diversity of Macromycetes in the Botanical Garden “Jevremovac” in Belgrade
    40 (2): (2016) 249-259 Original Scientific Paper Diversity of macromycetes in the Botanical Garden “Jevremovac” in Belgrade Jelena Vukojević✳, Ibrahim Hadžić, Aleksandar Knežević, Mirjana Stajić, Ivan Milovanović and Jasmina Ćilerdžić Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia ABSTRACT: At locations in the outdoor area and in the greenhouse of the Botanical Garden “Jevremovac”, a total of 124 macromycetes species were noted, among which 22 species were recorded for the first time in Serbia. Most of the species belong to the phylum Basidiomycota (113) and only 11 to the phylum Ascomycota. Saprobes are dominant with 81.5%, 45.2% being lignicolous and 36.3% are terricolous. Parasitic species are represented with 13.7% and mycorrhizal species with 4.8%. Inedible species are dominant (70 species), 34 species are edible, five are conditionally edible, eight are poisonous and one is hallucinogenic (Psilocybe cubensis). A significant number of representatives belong to the category of medicinal species. These species have been used for thousands of years in traditional medicine of Far Eastern nations. Current studies confirm and explain knowledge gained by experience and reveal new species which produce biologically active compounds with anti-microbial, antioxidative, genoprotective and anticancer properties. Among species collected in the Botanical Garden “Jevremovac”, those medically significant are: Armillaria mellea, Auricularia auricula.-judae, Laetiporus sulphureus, Pleurotus ostreatus, Schizophyllum commune, Trametes versicolor, Ganoderma applanatum, Flammulina velutipes and Inonotus hispidus. Some of the found species, such as T. versicolor and P. ostreatus, also have the ability to degrade highly toxic phenolic compounds and can be used in ecologically and economically justifiable soil remediation.
    [Show full text]
  • Minnesota's Top 124 Terrestrial Invasive Plants and Pests
    Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings
    [Show full text]
  • Prospecting Russula Senecis: a Delicacy Among the Tribes of West Bengal
    Prospecting Russula senecis: a delicacy among the tribes of West Bengal Somanjana Khatua, Arun Kumar Dutta and Krishnendu Acharya Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India ABSTRACT Russula senecis, a worldwide distributed mushroom, is exclusively popular among the tribal communities of West Bengal for food purposes. The present study focuses on its reliable taxonomic identification through macro- and micro-morphological features, DNA barcoding, confirmation of its systematic placement by phylogenetic analyses, myco-chemicals and functional activities. For the first time, the complete Internal Transcribed Spacer region of R. senecis has been sequenced and its taxo- nomic position within subsection Foetentinae under series Ingratae of the subgen. Ingratula is confirmed through phylogenetic analysis. For exploration of its medic- inal properties, dried basidiocarps were subjected for preparation of a heat stable phenol rich extract (RusePre) using water and ethanol as solvent system. The an- tioxidant activity was evaluated through hydroxyl radical scavenging (EC50 5 µg/ml), chelating ability of ferrous ion (EC50 0.158 mg/ml), DPPH radical scavenging (EC50 1.34 mg/ml), reducing power (EC50 2.495 mg/ml) and total antioxidant activity methods (13.44 µg ascorbic acid equivalent/mg of extract). RusePre exhibited an- timicrobial potentiality against Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, diVerent parameters were tested to investigate its chemical composition, which revealed the presence of appreciable quantity of phenolic compounds, along with carotenoids and ascorbic acid. HPLC- UV fingerprint indicated the probable existence of at least 13 phenolics, of which 10 were identified (pyrogallol > kaempferol > quercetin > chlorogenic acid > ferulic Submitted 29 November 2014 acid, cinnamic acid > vanillic acid > salicylic acid > p-coumaric acid > gallic acid).
    [Show full text]
  • Hylobius Abietis
    On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46
    [Show full text]
  • Assessment Giant Woodwasp, Urocerus Gigas L
    Mini Risk Assessment Giant Woodwasp, Urocerus gigas L. [Hymenoptera: Siricidae] Erica E. Davis1, Sarah French1, & Robert C. Venette2 1-Department of Entomology, University of Minnesota, St. Paul, MN 2-North Central Research Station, USDA Forest Service, St. Paul, MN September 28, 2005 A B C Figure 1. Urocerus gigas gigas: (A) Adult female; (B) external damage to tree; and (C) galleries produced by larvae. [Images from www.forestryimages.org, (A) Paula Klasmer, (B-C) Gyorgy Csoka] Table of Contents Introduction......................................................................................................................... 2 1. Ecological Suitability.................................................................................................. 2 2. Host Specificity/Host Availability.............................................................................. 3 3. Survey Methodology................................................................................................... 6 4. Taxonomic Recognition.............................................................................................. 7 5. Entry Potential............................................................................................................ 8 6. Destination of Infested Material ................................................................................. 8 7. Potential Economic Impact......................................................................................... 9 8. Potential Environmental Impact. ...............................................................................
    [Show full text]
  • Microbial Diversity and Community Structure in Deadwood of Fagus
    Microbial diversity and community structure in deadwood of Fagus sylvatica L. and Picea abies (L.) H. Karst Inaugural-Dissertation zur Erlangung der Doktorwürde der Fakultät für Umwelt und Natürliche Ressourcen der Albert-Ludwigs-Universität Freiburg i. Brsg. vorgelegt von Dipl.-Forstwirt Björn Hoppe Freiburg im Breisgau Dekan: Prof. Dr. Tim Freytag Referent: Prof. Dr. François Buscot Korreferent: Prof. Dr. Siegfried Fink Disputationsdatum: 03.02.2015 ii Zusammenfassung Zusammenfassung Totholz wird im Rahmen forstwirtschaftlicher Aktivitäten zunehmend größere Bedeu- tung zuteil. Die Forstwirtschaft hat unlängst realisiert, dass die Förderung und der Er- halt natürlicher Totholzvorkommen von immenser Wichtigkeit für Ökosystemdienst- leistungen sind, nicht zuletzt, weil Totholz ein Reservoir für biologische und funktionel- le Diversität darstellt. Das Hauptziel dieser umfassenden Studie bestand zum einen in der Untersuchung des Einflusses unterschiedlicher Waldbewirtschaftungsstrategien auf die mikrobielle Diver- sität an Totholz zweier in Deutschland forstlich relevanter Baumarten Fagus sylvatica and Picea abies. Zum anderen sollte der Zusammenhang zwischen baumartspezifischen physikalischen und chemischen Parametern und den damit verbundenen Veränderungen der mikrobiellen Diversität aufgeklärt werden. Ein nicht unerheblicher methodischer Fokus lag hierbei in der Verknüpfung moderner molekularbiologischer Techniken („Next-generation sequencing“) mit klassischer, auf Observation basierender Feldmyko- logie. Die vorliegende Arbeit umfasst
    [Show full text]
  • Evidence for UV-Green Dichromacy in the Basal Hymenopteran Sirex Noctilio
    www.nature.com/scientificreports OPEN Evidence for UV‑green dichromacy in the basal hymenopteran Sirex noctilio (Siricidae) Quentin Guignard 1*, Johannes Spaethe 2, Bernard Slippers 3, Martin Strube‑Bloss 2,5 & Jeremy D. Allison 1,4 A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawfies, woodwasps, horntails). Most apocritan species possess three diferent photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied the Symphyta Sirex noctilio, which belongs to the superfamily Siricoidea, a closely related group of the Apocrita suborder. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identifed three opsins in the genome, homologous to the hymenopteran green or long‑wavelength sensitive (LW) LW1, LW2 and ultra‑violet sensitive (UV) opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a blue or short‑wavelength sensitive (SW) homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV‑green dichromate. Te ability to see colours, i.e.
    [Show full text]