Aliens: the Invasive Species Bulletin Newsletter of the IUCN/SSC Invasive Species Specialist Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America
REVIEW:BIOLOGICAL CONTROL-PARASITOIDS &PREDATORS The Ecology, Behavior, and Biological Control Potential of Hymenopteran Parasitoids of Woodwasps (Hymenoptera: Siricidae) in North America 1 DAVID R. COYLE AND KAMAL J. K. GANDHI Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 Environ. Entomol. 41(4): 731Ð749 (2012); DOI: http://dx.doi.org/10.1603/EN11280 ABSTRACT Native and exotic siricid wasps (Hymenoptera: Siricidae) can be ecologically and/or economically important woodboring insects in forests worldwide. In particular, Sirex noctilio (F.), a Eurasian species that recently has been introduced to North America, has caused pine tree (Pinus spp.) mortality in its non-native range in the southern hemisphere. Native siricid wasps are known to have a rich complex of hymenopteran parasitoids that may provide some biological control pressure on S. noctilio as it continues to expand its range in North America. We reviewed ecological information about the hymenopteran parasitoids of siricids in North America north of Mexico, including their distribution, life cycle, seasonal phenology, and impacts on native siricid hosts with some potential efÞcacy as biological control agents for S. noctilio. Literature review indicated that in the hymenop- teran families Stephanidae, Ibaliidae, and Ichneumonidae, there are Þve genera and 26 species and subspecies of native parasitoids documented from 16 native siricids reported from 110 tree host species. Among parasitoids that attack the siricid subfamily Siricinae, Ibalia leucospoides ensiger (Norton), Rhyssa persuasoria (L.), and Megarhyssa nortoni (Cresson) were associated with the greatest number of siricid and tree species. These three species, along with R. lineolata (Kirby), are the most widely distributed Siricinae parasitoid species in the eastern and western forests of North America. -
Notes on Southern Africa Jerusalem Crickets (Orthoptera: Stenopelmatidae: Sia)
Zootaxa 3616 (1): 049–060 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3616.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:C790EC39-8BE6-475A-9CA8-3FBC443D3F93 Notes on southern Africa Jerusalem crickets (Orthoptera: Stenopelmatidae: Sia) DAVID B. WEISSMAN1* & CORINNA S. BAZELET 2,3 1Department of Entomology, California Academy of Sciences, San Francisco, CA, 94118, U.S.A. 2Steinhardt Museum, Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL. 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, SOUTH AFRICA. *To whom correspondence should be addressed. E-mail: [email protected] Abstract The Old World Jerusalem cricket (JC) subfamily Siinae contains one genus, Sia, with two subgenera: Sia (Sia) with two fully winged species from southeast Asia, and Sia (Maxentius) with four wingless species from southern Africa. Because there is a dearth of published data about the behavior and biology of these insects, we present new field and laboratory research on southern African Sia (Maxentius), gather museum and literature information, and present guidelines for collecting and rearing specimens. While we make no taxonomic decisions, this review should be useful for future studies, including a needed taxonomic revision. We also compare results from these southern African JCs with recent investigations on related New World taxa, where fascinating biological traits and extensive cryptic biodiversity have been uncovered. DNA analysis reveals that these Old and New World JCs are polyphyletic. Key words: Stenopelmatoidea, Siinae, South Africa, Maxentius Introduction As presently understood, the orthopteran superfamily Stenopelmatoidea (=Gryllacridoidea) consists of six families (Eades et al. -
A New Shield-Faced Ant of the Genus Pheidole (Hymenoptera: Formicidae: Aberrans Group) from Argentina
TRANSACTIONS OF THE AMERICAN ENTOMOLOGICAL SOCIETY VOLUME 137, NUMBERS 3+4: 297-305, 2011 A New Shield-Faced Ant of the Genus Pheidole (Hymenoptera: Formicidae: aberrans Group) From Argentina William P. Mackay, Francisco J. Sola and Roxana Josens [WPM] Department of Biological Sciences, The University of Texas, El Paso, Texas USA 79968 [FJS and RJ] Grupo de Estudio de Insectos Sociales. IFIBYNE-CONICET Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II, Ciudad Universitaria (C1428 EHA), Buenos Aires, Argentina ABSTRACT We describe Pheidole acutiloba Mackay, based on the majors, minors, females and males, with the head of the major formed into a shield. This species is similar to P. aberrans and P. obscurifrons, and we discuss the similarities and differences between the majors of the three species. We provide an amendment to the key in Wilson’s monograph to accommodate the new species. RESUMEN Describimos la hormiga Pheidole acutilobata Mackay de Argentina, basada en los soldados, obreras, hembras y machos, con la cabeza del soldado en forma de escudo. Esta nueva especie es semejante a P. aberrans y P. obscurifrons; consideramos las características semejantes y diferentes de estas especies. Incluimos cambios en la clave de Wilson para identificar la nueva especie. INTRODUCTION METHODS AND MATERIALS The ant genus Pheidole is common in most Specimens were measured and illustrated using an terrestrial habitats of the world, including the ocular micrometer and grid in a Zeiss dissecting entire New World, and is considered to be in a microscope. The following abbreviations are used hyperdiverse genus (Wilson, 2003). Wilson’s (all measurements in mm): recent revision (2003) laid a solid foundation for further studies of this important monophyletic HL—Head length, from transverse line across genus, although many of the groups defined in the anteriormost edge of clypeus to transverse line monograph are not monophyletic (Moreau, 2008). -
Harmful Non-Indigenous Species in the United States
Harmful Non-Indigenous Species in the United States September 1993 OTA-F-565 NTIS order #PB94-107679 GPO stock #052-003-01347-9 Recommended Citation: U.S. Congress, Office of Technology Assessment, Harmful Non-Indigenous Species in the United States, OTA-F-565 (Washington, DC: U.S. Government Printing Office, September 1993). For Sale by the U.S. Government Printing Office ii Superintendent of Documents, Mail Stop, SSOP. Washington, DC 20402-9328 ISBN O-1 6-042075-X Foreword on-indigenous species (NIS)-----those species found beyond their natural ranges—are part and parcel of the U.S. landscape. Many are highly beneficial. Almost all U.S. crops and domesticated animals, many sport fish and aquiculture species, numerous horticultural plants, and most biologicalN control organisms have origins outside the country. A large number of NIS, however, cause significant economic, environmental, and health damage. These harmful species are the focus of this study. The total number of harmful NIS and their cumulative impacts are creating a growing burden for the country. We cannot completely stop the tide of new harmful introductions. Perfect screening, detection, and control are technically impossible and will remain so for the foreseeable future. Nevertheless, the Federal and State policies designed to protect us from the worst species are not safeguarding our national interests in important areas. These conclusions have a number of policy implications. First, the Nation has no real national policy on harmful introductions; the current system is piecemeal, lacking adequate rigor and comprehensiveness. Second, many Federal and State statutes, regulations, and programs are not keeping pace with new and spreading non-indigenous pests. -
Department of Sustainability, Environment, Water, Population and Communities; Formerly from Department of Primary Industries, Parks, Water and Environment (Tasmania)
The Minister included this species in the critically endangered category, effective from 26/02/2013. Advice to the Minister for Sustainability, Environment, Water, Population & Communities from the Threatened Species Scientific Committee (the Committee) on amendment to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Reason for Conservation Assessment by the Committee This advice follows assessment of information gathered through the Commonwealth’s partnership agreement with Tasmania, which is aimed at systematically reviewing species that are inconsistently listed under the EPBC Act and relevant Tasmanian legislation. The Committee provides the following assessment of the appropriateness of this species’ inclusion in the EPBC Act list of threatened species: Corybas sulcatus (grooved helmet-orchid) 2. Summary of Species Details Taxonomy Conventionally accepted as Corybas sulcatus (M.A.Clem. & D.L.Jones) G.N.Backh. Formerly Nematoceras sulcatum M.A.Clem. & D.L.Jones. State/Territory Listing This species is listed as endangered (as Nematoceras Status sulcatum) under the Tasmanian Threatened Species Protection Act 1995. Description A small, deciduous, tuberous terrestrial orchid that forms small clonal colonies. Leaves are solitary, circular (12–20 mm diameter) and flat to shallowly concave. They are light green above and silvery green beneath, with a thick-textured blade and fleshy leaf stalk 12–16 mm long. Flowers are 25–30 mm long and 10–14 mm wide, mostly dark red and held erect on a fleshy, green stalk that is 5–7 mm long (Clements and Jones, 2007). Distribution The grooved helmet-orchid is endemic to Macquarie Island (Tasmania). -
Orthopteran Communities in the Conifer-Broadleaved Woodland Zone of the Russian Far East
Eur. J. Entomol. 105: 673–680, 2008 http://www.eje.cz/scripts/viewabstract.php?abstract=1384 ISSN 1210-5759 (print), 1802-8829 (online) Orthopteran communities in the conifer-broadleaved woodland zone of the Russian Far East THOMAS FARTMANN, MARTIN BEHRENS and HOLGER LORITZ* University of Münster, Institute of Landscape Ecology, Department of Community Ecology, Robert-Koch-Str. 26, D-48149 Münster, Germany; e-mail: [email protected] Key words. Orthoptera, cricket, grasshopper, community ecology, disturbance, grassland, woodland zone, Lazovsky Reserve, Russian Far East, habitat heterogeneity, habitat specifity, Palaearctic Abstract. We investigate orthopteran communities in the natural landscape of the Russian Far East and compare the habitat require- ments of the species with those of the same or closely related species found in the largely agricultural landscape of central Europe. The study area is the 1,200 km2 Lazovsky State Nature Reserve (Primorsky region, southern Russian Far East) 200 km east of Vladi- vostok in the southern spurs of the Sikhote-Alin Mountains (134°E/43°N). The abundance of Orthoptera was recorded in August and September 2001 based on the number present in 20 randomly placed 1 m² quadrates per site. For each plot (i) the number of species of Orthoptera, (ii) absolute species abundance and (iii) fifteen environmental parameters characterising habitat structure and micro- climate were recorded. Canonical correspondence analysis (CCA) was used first to determine whether the Orthoptera occur in ecol- ogically coherent groups, and second, to assess their association with habitat characteristics. In addition, the number of species and individuals in natural and semi-natural habitats were compared using a t test. -
The Armenians
THE ARMENIANS By C.F. DIXON-JOHNSON “Whosoever does wrong to a Christian or a Jew shall find me his accuser on the day of judgment.” (EL KORAN) Printed and Published by GEO TOULMIN & SONS, LTD. Northgate, Blackburn. 1916 Preface The following pages were first read as a paper before the “Société d’Etudes Ethnographiques.” They have since been amplified and are now being published at the request of a number of friends, who believe that the public should have an opportunity of judging whether or not “the Armenian Question” has another side than that which has been recently so assiduously promulgated throughout the Western World. Though the championship of Greek, Bulgarian and other similar “Christian, civilized methods of fighting,” as contrasted with “Moslem atrocities” in the Balkans and Asia Minor, has been so strenuously undertaken by Lord Bryce and others, the more recent developments in the Near East may perhaps already have opened the eyes of a great many thinking people to the realization that, in sacrificing the traditional friendship of the Turk to all this more or less sectarian clamor, British diplomacy has really done nothing better than to exchange the solid and advantageous reality for a most elusive and unreliable, if not positively dangerous, set of shadows. It seems illogical that the same party which recalled the officials (and among them our present War Minister) appointed by Lord Beaconsfield to assist the Turkish Government in reforming their administration and collecting the revenue in Asia Minor, and which on the advent of the Young Turks refused to lend British Administrators to whom ample and plenary powers were assured, should now, in its eagerness to vilify the Turk, lose sight of their own mistakes which have led in the main to the conditions of which it complains, and should so utterly condemn its own former policy. -
How Things Fly Presentations
1A Crawford, Jasmine I Eagle 1A Elliott, Noah C Bumble Bee 1A Patel, Kishan H Hornet 1A Sutton, Ashley K Turkey 1B Ablorh, Marcellina A Birds 1B Bailey-Simpson, Tyron D Bumble Bee 1B Butler, Vidal M Hornet 1B Castor, Carnie Wasp 1B Clark, Micaylah J Butterfly 1B Fairley, Nicholas M Duck 1B Gaymer, Nicolas Falcon 1B Gomez, Luis G Eagle 1B Haines, Tynise N Geese 1B Harden, Travis E Ostrich 1B Henry, Nigel D Turkey 1B Jenkins, Myae'h J Birds 1B Johnson, Jeremy A Bumble Bee 1B Jordan, Justin A Hornet 1B Kovach, Alecia A Wasp 1B Marshall, Allison V Butterfly 1B Marshall, Alyssa M Duck 1B McLennon, Michael K Falcon 1B Milazzo, Matthew M Eagle 1B Okwuosa, Arinze A Geese 1B Smith, Chasity R Ostrich 1B Thomas, Jada L Turkey 1B Warren, Dierra L Birds 1B Weems, Destiny K Bumble Bee 2A Anderson, Jeremiah O Birds 2A Barrett, Dakota A Bumble Bee 2A Bates, Brooklyn J Hornet 2A Blue II, Neil Wasp 2A Brock, Devin A Butterfly 2A Clark, Jasmine M Duck 2A Coleman, Arrienna D Falcon 2A Fisher, M'Kayla M Eagle 2A Harris, Johnathan L Geese 2A Heintz, Michael H Ostrich 2A Hester, Jazlyn A Turkey 2A Hobbs, Kamilah D Birds 2A Jackson, Janise N Bumble Bee 2A Jenkins II, Harrison C Hornet 2A Jones, Lance K Wasp 2A Jones, Shicorreus L Butterfly 2A Logan, Tyshawn A Duck 2A Maduchem-Izundu, KachikwuluFalcon M 2A Matthews, Zackary G Eagle 2A Nguyen, Jimmy Geese 2A Norfleet, Nyhjae Q Ostrich 2A Paragon-singh, Andrew W Turkey 2A Parrish Brown, Jordan C Birds 2A Petty, Kristina A Bumble Bee 2A Pitchford, Colin C Hornet 2A Singleton, Isaiah D Wasp 2A Tucker, Cody D Butterfly -
A New Fossil Genus of Net-Winged Beetles, with a Brief Review of Amber Lycidae (Insecta: Coleoptera)
TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3608 (1): 94–100 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3608.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:17A52DF2-CD52-44B3-B9F0-CEA906584260 A new fossil genus of net-winged beetles, with a brief review of amber Lycidae (Insecta: Coleoptera) SERGEY V. KAZANTSEV Insect Centre, Donetskaya 13-326, Moscow 109651, Russia. E-mail: [email protected] Abstract A new fossil genus of net-winged beetles, Protolopheros gen. n., and a new species, Protolopheros hoffeinsorum sp. n., are described from the Baltic amber. The new taxon is placed in Erotini, next to Lopheros Leconte, 1881. The extant Pseudaplatopterus (Eropterus) Green, 1951, comb. n. is lowered in rank and placed as a subgenus of the fossil Pseudaplatopterus Kleine, 1940. The extant Kolibaceum (Laterialis) Kazantsev, 1990, comb. n. is lowered in rank and placed as a subgenus of the fossil Kolibaceum Winkler, 1987. Key words: Coleoptera, Lycidae, new genus, new species, taxonomy, Baltic amber, palaeoentomology, Eocene Introduction Although fossil specimens of net-winged beetles (of Dictyoptera sp.) were initially reported from the Baltic amber (Klebs, 1910), the first fossil lycid taxon was described from Florissant Fossil Beds (Upper Eocene/Lower Oligocene) in North America (Wickham, 1914). However, all consequent descriptions were based on amber inclusions, predominantly from the Baltic region. The first Baltic amber lycid taxon, Pseudaplatopterus Kleine, 1940, was presented in the middle of the last century (Kleine, 1940; 1941); afterwards were added another three genera, Hiekeolycus Winkler, 1987, Kolibaceum Winkler, 1987 and Pietrzeniukia Winkler, 1987 (Winkler, 1987). -
Conspicuousness, Phylogenetic Structure, and Origins of Müllerian
www.nature.com/scientificreports OPEN Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions Michal Motyka1, Dominik Kusy1, Michal Masek1, Matej Bocek1, Yun Li1, R. Bilkova1, Josef Kapitán2, Takashi Yagi3 & Ladislav Bocak1* Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals difer in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with diferently coloured unproftable relatives. -
Baldfaced Hornet & Aerial Yellowjacket
Colorado Insect of Interest Baldfaced Hornet & Aerial Yellowjacket Scientific Names: Dolichovespula maculata (L.) (baldfaced hornet), D. arenaria (Fabricius) (aerial yellowjacket) Figure 1. Baldfaced hornet collecting honeydew from oak galls. Order: Hymenoptera (Bees, Wasps, Ants, Sawflies and Relatives) Family: Vespidae Identification and Descriptive Features: Adults are prominently marked with either black and white (baldfaced hornet) or black and yellow (aerial yellowjacket) markings. The general body form is elongate with the hind end terminating in a blunt point (with stinger) and they are only sparsely hairy, unlike bees. The baldfaced hornet is the larger species, typically over 15 mm in length. Size range within a colony varies with workers being smaller, usually within the range of 10-14 mm. Adults of the aerial yellowjacket are quite similar Figure 2. Aerial yellowjacket chewing on to the western yellowjacket, Vespula pensylvanica weathered wood. (Saussure), in both size and general coloration. The pattern of markings on the abdomen can be used to separate these insects (Figures 6-9). Distribution in Colorado: Both the baldfaced hornet and aerial yellowjacket normally nests in trees or large shrubs and are native to forested areas. However, with landscaping provided around residential areas these wasps may now commonly be found in most towns and cities, with the exception of some in the eastern plain communities. The aerial yellowjacket, in particular, has also adapted to nest on buildings. Life History and Habits: The baldfaced hornet and aerial yellowjacket, the two primary representatives of the genus Dolichovespula in Colorado, make large above ground carton nests of a papery material. These nests are produced annually, initiated in spring by a single overwintered queen and abandoned at the end of the season. -
2021-22 Antarctic & Sub-Antarctic Sea Voyages Brochure
ANTARCTIC AND SUB-ANTARCTIC SEA VOYAGES 2021·22 SE ASO N The Falkland Islands (Islas Malvinas) | South Georgia | Antarctic Peninsula Exclusive Partner's Edition ANTARCTIC PENINSULA AND SOUTH SHETLAND ISLANDS SOUTH AMERICA Falkland Islands (Malvinas) CHILE Punta Arenas Port Stanley Atacama Desert (Chile) PACIFIC OCEAN Ushuaia ATLANTIC (Argentina) OCEAN Santiago Puerto Williams (Chile) South Georgia and the Cape Horn South Sandwich Islands (Chile) Puerto Montt Drake Passage SOUTH SHETLAND South Orkney Islands ISLANDS Elephant Island Torres del Paine King George Island Frei Station (Chile) Punta Arenas Fildes Bay Livingston Island Half Moon Island Hannah Point Deception Bransfield Strait Island Joinville Island O'Higgins Trinity Island Station Esperanza Brabant Island Gerlache (Chile) Strait Station Anvers Island (Argentina) ANTARCTICA Port Lockroy (UK) Paradise Bay Petermann Island Almirante Vernadsky Station Brown Station (Ukraine) (Argentina) Biscoe Island WEDDELL SEA Antarctic Polar Circle ANTARCTIC PENINSULA SUMMARY 5 Discover Antarctica and the 19 DATES & PRICES 28 PLANNING YOUR TRIP Southern Ocean 20 Dates & Prices 29 Arrival and Departure Details 6 Traveling on our Small Expedition Ships 21 Inclusions & Exclusions 30 Flight and Hotel Package 8 Our Company 31 Packing for Your Trip 22 EXPERIENCES & ADVENTURES 32 Useful Tips 9 ITINERARIES 23 The Antarctica21 Expedition 33 Important Trip Details 11 Falklands (Malvinas) & South Georgia Experience 12 Antarctica, South Georgia & 24 Sea Kayaking in Antarctica 35 TERMS & CONDITIONS The Falkland Islands 25 Hiking and Snowshoeing in Antarctica 14 Antarctic Small Ship Expedition 26 Life on Board 27 Education Program 15 VESSELS 16 Magellan Explorer 18 Ocean Nova Travel with Antarctica21 for a transformative, once-in-a-lifetime experience Hiking in Antarctica © K.