Floerkea Proserpinacoides Willdenow False Mermaid-Weed

Total Page:16

File Type:pdf, Size:1020Kb

Floerkea Proserpinacoides Willdenow False Mermaid-Weed New England Plant Conservation Program Floerkea proserpinacoides Willdenow False Mermaid-weed Conservation and Research Plan for New England Prepared by: William H. Moorhead III Consulting Botanist Litchfield, Connecticut and Elizabeth J. Farnsworth Senior Research Ecologist New England Wild Flower Society Framingham, Massachusetts For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, December 2003 1 SUMMARY Floerkea proserpinacoides Willdenow, false mermaid-weed, is an herbaceous annual and the only member of the Limnanthaceae in New England. The species has a disjunct but widespread range throughout North America, with eastern and western segregates separated by the Great Plains. In the east, it ranges from Nova Scotia south to Louisiana and west to Minnesota and Missouri. In the west, it ranges from British Columbia to California, east to Utah and Colorado. Although regarded as Globally Secure (G5), national ranks of N? in Canada and the United States indicate some uncertainly about its true conservation status in North America. It is listed as rare (S1 or S2) in 20% of the states and provinces in which it occurs. Floerkea is known from only 11 sites total in New England: three historic sites in Vermont (where it is ranked SH), one historic population in Massachusetts (where it is ranked SX), and four extant and three historic localities in Connecticut (where it is ranked S1, Endangered). The Flora Conservanda: New England ranks it as a Division 2 (Regionally Rare) taxon. Floerkea inhabits open or forested floodplains, riverside seeps, and limestone cliffs in New England, and more generally moist alluvial soils, mesic forests, springy woods, and streamside meadows throughout its range. New England sites occur on calcareous substrates underlain by marble, slate, or trap rock. Floerkea is among the very earliest species to emerge in the growing season. Its seeds germinate in winter and seedlings are visible in late March to early April. Plants primarily self-pollinate; pollinators appear to be very few for this species. Plants live only 60-70 days, maturing an average of 4-12 seeds per individual and senescing by mid-June. The majority of seeds do not persist in the soil for longer than a year. Seeds disperse by gravity mainly over short distances, but water dispersal may allow infrequent, long-distance colonization of new sites. Potential threats to the species in New England include invasive species (Aegopodium podagraria, Alliaria petiolata, Ranunculus ficaria and others), trampling by dirt bikes and all-terrain vehicles, non-point-source pollution, hydrological change, and disturbance from construction of a greenway park. Two of the occurrences are on protected land, and others may be protected from habitat conversion by state wetlands legislation. Its unusual life history, as a non-seedbanking, autogamous annual with high fidelity to sites (some of which are disturbance-prone), may make this species vulnerable to local extinction. The conservation objective for Floerkea in New England is to maintain the four extant populations in Connecticut at a mean annual size of 1,000 to 100,000 stems, occupying at least several 100 m2 each. A secondary objective is to survey for populations in each of the states from which it was known historically, with an ultimate goal of locating and maintaining a total of eight populations of at least 1,000 stems each in three separate watersheds. This number reflects the historic distribution of known sites and acknowledges significant temporal variability in population size. Conservation actions to achieve these objectives include: concerted searches at historical and new sites; biennial, quantitative monitoring; assessments of threats from invasive species; notification of park designers of the species' existence; and ex-situ seedbanking and germination trials. i PREFACE This document is an excerpt of a New England Plant Conservation Program (NEPCoP) Conservation and Research Plan. Full plans with complete and sensitive information are made available to conservation organizations, government agencies, and individuals with responsibility for rare plant conservation. This excerpt contains general information on the species biology, ecology, and distribution of rare plant species in New England. The New England Plant Conservation Program (NEPCoP) of the New England Wild Flower Society is a voluntary association of private organizations and government agencies in each of the six states of New England, interested in working together to protect from extirpation, and promote the recovery of the endangered flora of the region. In 1996, NEPCoP published “Flora Conservanda: New England.” which listed the plants in need of conservation in the region. NEPCoP regional plant Conservation Plans recommend actions that should lead to the conservation of Flora Conservanda species. These recommendations derive from a voluntary collaboration of planning partners, and their implementation is contingent on the commitment of federal, state, local, and private conservation organizations. NEPCoP Conservation Plans do not necessarily represent the official position or approval of all state task forces or NEPCoP member organizations; they do, however, represent a consensus of NEPCoP’s Regional Advisory Council. NEPCoP Conservation Plans are subject to modification as dictated by new findings, changes in species status, and the accomplishment of conservation actions. Completion of the NEPCoP Conservation and Research Plans was made possible by generous funding from an anonymous source, and data were provided by state Natural Heritage Programs. NEPCoP gratefully acknowledges the permission and cooperation of many private and public landowners who granted access to their land for plant monitoring and data collection. This document should be cited as follows: Moorhead, W. H. III and E. J. Farnsworth. 2004. Floerkea proserpinacoides Willd. (False mermaid-weed) Conservation and Research Plan for New England. New England Wild Flower Society, Framingham, Massachusetts, USA. © 2004 New England Wild Flower Society ii I. BACKGROUND INTRODUCTION Floerkea proserpinacoides Willdenow, false mermaid-weed (Limnanthaceae), is an herbaceous, autogamous annual of calcareous floodplains, limestone cliffs, wet meadows, and mature, mesic forests. The genus Floerkea is monotypic, and Floerkea proserpinacoides is the only member of the Limnanthaceae in New England. Floerkea proserpinacoides is widespread in North America, with eastern and western segregates separated by the Great Plains. The species is regarded as Globally Secure (G5), but it is listed as rare (S1 or S2) in 20% of the states and provinces in which it occurs. In New England, Floerkea is known from only 11 sites total in New England: three historic sites in Vermont (where it is ranked "Historic"), one historic population in Massachusetts (where it is ranked "Extirpated"), and four extant and three historic localities in Connecticut (where it is ranked S1, Endangered). The Flora Conservanda: New England recognizes Floerkea as a Division 2 (Regionally Rare) taxon (Brumback and Mehrhoff et al. 1996). Floerkea proserpinacoides has been the focus of several detailed studies, so aspects of its life history are well-known. It is a very early spring ephemeral; its seeds germinate in winter and seedlings emerge in late March-early April. Self-pollination is the primary reproductive mode for this species; flower visitors are almost never seen. Plants complete their life cycle in 60-70 days, maturing an average of three seeds per plant, and senescing by mid-June. Most seeds do not persist in the soil seed bank for longer than a year. Dispersal occurs by gravity mainly over short distances, but water may disperse a few seeds (or seedlings), permitting infrequent, long-distance colonization of new sites. Actual threats to the species in New England are largely unknown, but may include invasive species (which are prevalent at at least three of the extant sites), trampling by dirt bikes and all-terrain vehicles, non-point-source pollution, and possible disturbance from construction of a greenway park. Two of the occurrences are encompassed wholly or in part by nature preserves, and wetlands legislation may protect the others from wholesale habitat conversion. Floerkea has an unusual life history; it is an autogamous annual with very low fecundity and minimal seedbanking capacity that appears to move and reestablish only sporadically among sites. These features make individual populations especially vulnerable to disturbance. This Conservation and Research plan reviews in detail the conservation status of Floerkea proserpinacoides, its biology, its biogeography, and the actions that are necessary to ensure its persistence in New England. These actions, including concerted searches at historical and new sites; biannual, quantitative monitoring; assessments of threats from invasive species; notification of park designers of the species' existence; and ex-situ seedbanking and germination trials, are designed to achieve the following overall conservation objective: to protect and maintain four populations of a mean annual size of 1 1,000 to 100,000 stems, occupying at least several 100 m2 each. A secondary objective is, through concerted survey, to relocate and maintain at least two populations in each of the states from which it was known historically (Vermont, Massachusetts,
Recommended publications
  • Electronic Appendix 2B. Phylogenetic Relationships of Ranunculus
    R. oxyspermus R. psilostachys R. rumelicus R. sprunerianus R. argyreus R. damascenus R. macrorrhynchus R. millefolius R. hierosolymitanus R. cicutarius R. garganicus R. millefoliatus R. heterorhizus R. illyricus R. montanus R. aduncus R. apenninus R. pollinensis R. sartorianus R. marschlinsii R. carinthiacus R. venetus R. pseudomontanus R. gouanii R. carpaticus R. villarsii R. afghanicus X I R. aucheri R. elbursensis R. termei R. leptorrhynchus R. linearilobus R. makaluensis R. macropodioides R. papyrocarpus R. regelianus R. paludosus R. pseudomillefoliatus R. olissiponensis R. bullatus R. gregarius R. spicatus R. cortusifolius_Tenerife R. gracilis R. asiaticus R. amblyolobus R. buhsei R. cappadocicus R. breyninus_Alps R. brachylobus R. fascicularis R. hispidus R. septentrionalis R. acriformis R. petiolaris R. hawaiiensis R. mauiensis R. maclovianus R. orthorhynchus R. diffusus R. oreophytus R. rarae R. tenuirostrus R. macounii R. repens R. marginatus R. muricatus R. cornutus R. trilobus R. serpens R. polyanthemos R. sardous R. submarginatus R. bulbosus R. neapolitanus R. multifidus R. pinnatus R. pensylvanicus R. silerifolius R. cantoniensis R. chinensis R. caprarum R. peduncularis R. bonariensis R. brutius R. dissectus R. caucasicus R. sojakii R. arvensis R. arvensis R. acris R. glabriusculus R. japonicus R. lanuginosus R. granatensis R. serbicus R. laetus_1750 R. laetus_1761 R. taisanensis R. grandiflorus R. kotschyi R. velutinus R. baldschuanicus R. cassius R. occidentalis R. uncinatus R. stagnalis R. tembensis R. chius R. parviflorus R. constantinopolitanus R. strigillosus R. sericeus R. pinardi R. cheirophyllus R. ficariifolius R. volkensii R. flagelliformis R. ophioglossifolius R. lateriflorus R. flammula R. reptans R. lingua R. alismifolius R. hydrophilus R. meyeri R. pulchellus R. brotherusii R. pseudopygmaeus R.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Multigene Phylogeny, Taxonomy and Reclassification of Hyaloperonospora on Cardamine
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Mycol Progress (2014) 13:131–144 DOI 10.1007/s11557-013-0900-z ORIGINAL ARTICLE Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine Hermann Voglmayr & Young-Joon Choi & Hyeon-Dong Shin Received: 23 January 2013 /Revised: 12 March 2013 /Accepted: 21 March 2013 /Published online: 14 April 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Based on sequence data from cox1, cox2, ITS and Keywords Dentaria . Host range . Obligate parasites . LSU rDNA, it is shown that at least six species of Peronospora . Peronosporaceae Hyaloperonospora occur on the genus Cardamine,mostof which were commonly classified under Peronospora dentariae. Based on sequences from their type hosts, Introduction Peronospora dentariae, Peronospora cardamines-laciniatae, Peronospora dentariae-macrophyllae, Peronospora malyi Recent molecular phylogenetic studies showed that the genus and Peronospora nasturtii-aquatici are combined into Hyaloperonospora, established by Constantinescu and Fatehi Hyaloperonospora, and their circumscription is clarified. (2002)forPeronospora species infecting Brassicaceae, Hyaloperonospora cardamines-enneaphyllos is described as Capparaceae, Cistaceae, Limnanthaceae, Resedaceae and a new species from Cardamine enneaphyllos. The host range Zygophyllaceae, comprises a high biodiversity, its species of Hyaloperonospora nasturtii-aquatici, described from usually being highly host specific (e.g. Riethmüller et al. Nasturtium officinale, is shown to extend to various 2002;Choietal.2003; Voglmayr 2003; Göker et al. 2003, Cardamine species. Host range of species is shown to be 2004, 2009a;Choietal.2011; Voglmayr and Göker 2011). highly diagnostic, with no overlap in their host range, but Therefore, a narrow species circumscription as already advo- species commonly cannot be distinguished by morphology catedbyGäumann(1918, 1923) has been confirmed, alone.
    [Show full text]
  • Cytogeography of Glechoma Hederacea Subsp. Grandis (Labiatae) in Japan
    © 2010 The Japan Mendel Society Cytologia 75(3): 255–260, 2010 Cytogeography of Glechoma hederacea subsp. grandis (Labiatae) in Japan Norihito Miura and Yoshikane Iwatsubo* Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930–8555, Japan Received February 26, 2010; accepted August 28, 2010 Summary In this study, we examined the chromosomal number for Glechoma hederacea subsp. grandis in a total of 1,030 specimens collected from different distribution areas in Japan. We found that G. hederacea subsp. grandis could be categorized into 3 cytotypes with 2nϭ36 (tetraploid), 2nϭ45 (pentaploid) and 2nϭ54 (hexaploid) chromosomes. Tetraploid plants were found throughout different areas in Japan; however, hexaploid plants were mainly distributed in central Honshu, Shikoku and Kyushu. Likewise, pentaploid plant distribution was found to overlap with hexaploid plant distribution areas. The pentaploid plant group appeared only in regions common to both tetraploid and hexaploid plants. All 3 cytotypes were found to have karyotypes which could be represented by the following equations: A) 6Mϩ4mϩ18smϩ8st for tetraploids, B) 6Mϩ15mϩ19smϩ5st for pentaploids, and C) 6Mϩ26mϩ20smϩ2st for hexaploids. Pentaploid specimen karyotypes had half the tetraploid and half the hexaploid chromosomal set, indicating that this specimen was a hybrid between tetraploid and hexaploid plants. Key words Geographic distribution, Glechoma hederacea subsp. grandis, Hybrid, Karyotype, Polyploidy. Glechoma L. (Labiatae), distributed across north temperate zones in Eurasia, is a small genus with 4 to 8 species (Budantsev 2004). One of its species, G. hederacea L., has a wide distribution range occurring spontaneously throughout Eurasia. Furthermore, this species can be divided into subsp. hederacea distributed in Europe, and subsp.
    [Show full text]
  • Phylogeny and Systematics of the Tribe Thlaspideae (Brassicaceae) and the Recognition of Two New Genera Shokouh Esmailbegi, Ihsan A
    Vol. 67 (2) • April 2018 International Journal of Taxonomy, Phylogeny and Evolution Electronic Supplement to Phylogeny and systematics of the tribe Thlaspideae (Brassicaceae) and the recognition of two new genera Shokouh Esmailbegi, Ihsan A. Al-Shehbaz, Milan Pouch, Terezie Mandáková, Klaus Mummenhoff, Mohammad Reza Rahiminejad, Mansour Mirtadzadini & Martin A. Lysak Taxon 67: 324–340 (https://doi.org/10.12705/672.4) https://doi.org/10.12705/672.4.S1 (DNA sequence alignment: https://doi.org/10.12705/672.4.S2) TAXON 67 (2) • April 2018 Electr. Suppl. to: Esmailbegi & al. • Phylogeny and systematics of Thlaspideae (Brassicaceae) Table S1. ITS and trnL-F primers used in phylogenetic study. Gene Primer Sequence Reference ITS ITS1 TCC GTA GGT GAA CCT GCG G White & al., 1990 ITS4 TCC TCC GCT TAT TGA TAT GC White & al., 1990 ITS-18F GGA AGG AGA AGT CGT AAC AAG G Mummenhoff & al., 1997 trnL-F tabC CGA AAT CGG TAG ACG CTA CG Shaw & al., 2005 tabF ATT TGA ACT GGT GAC ACG AG Shaw & al., 2005 White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 in: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.), PCR protocols: A guide to methods and applications. San Diego: Academic Press. Mummenhoff, K., Franzke, A. & Koch, M. 1997. Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s.l. (Brassicaceae). Bot. J. Linn. Soc. 125: 183–199. https://doi.org/10.1111/j.1095-8339.1997.tb02253.x Shaw, J., Lickey, E., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Evaluating Threats to the Rare Butterfly, Pieris Virginiensis
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2015 Evaluating Threats to the Rare Butterfly, Pieris Virginiensis Samantha Lynn Davis Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Environmental Sciences Commons Repository Citation Davis, Samantha Lynn, "Evaluating Threats to the Rare Butterfly, Pieris Virginiensis" (2015). Browse all Theses and Dissertations. 1433. https://corescholar.libraries.wright.edu/etd_all/1433 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Evaluating threats to the rare butterfly, Pieris virginiensis A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Samantha L. Davis B.S., Daemen College, 2010 2015 Wright State University Wright State University GRADUATE SCHOOL May 17, 2015 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY Samantha L. Davis ENTITLED Evaluating threats to the rare butterfly, Pieris virginiensis BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Don Cipollini, Ph.D. Dissertation Director Don Cipollini, Ph.D. Director, Environmental Sciences Ph.D. Program Robert E.W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Committee on Final Examination John Stireman, Ph.D. Jeff Peters, Ph.D. Thaddeus Tarpey, Ph.D. Francie Chew, Ph.D. ABSTRACT Davis, Samantha. Ph.D., Environmental Sciences Ph.D.
    [Show full text]
  • Saxifragaceae Saxifrage Family
    Saxifragaceae Page | 921 saxifrage family About 700 species in 40 genera comprise this family of herbs and shrubs. Nova Scotia has several representative species, ranging from the highland saxifrages to deciduous forest mitreworts. Calyx and corolla are 4-5-merous. Sepals appear to be lobes of the hypanthium. Petals are variable in size and dissection. Stamens are equal in number or double the number of sepals and petals. Pistils number one or three; carpels 2–5, united basally to form a compound ovary, which may be deeply lobed. Fruit is dehiscent. Leaves are alternate with or without stipules, basal or cauline. Several genera are cultivated, but not persisting outside of cultivation. Key to genera A. Leaves opposite, cauline; plant sprawling; flowers 4-merous; petals absent. Chrysosplenium aa. Leaves mostly in a basal rosette, or very small and alternate; plants erect; B flowers 5-merous; petals present. B. Flowers solitary; stamens equal in number to the petals. Parnassia bb. Flowers several to numerous; stamens double the number of petals. C C. Leaves small, crowded, sessile or nearly so. Saxifraga cc. Leaves mostly basal, on long petioles. D D. Leaves serrate; petals entire; capsule beak Tiarella acute. dd. Leaves crenate; petals finely cleft; capsule beak Mitella obtuse. Chrysosplenium L. Plants of cool regions, all 40 species have minute flowers. Petals are absent; calyx is four-merous. Flowers are perfect and perigynous. Hypanthium has eight lobes in its centre, with 4–8 stamens attached. Perennial creeping herbs, they are freely branched, their leaves simple. 3-81 Saxifragaceae Page | 922 Chrysosplenium americanum Schwein. Golden saxifrage; dorine d'Amérique A smooth, nearly succulent plant, it has many trailing branches, forming thick mats.
    [Show full text]
  • Gardening with the Masters
    Gardening with the Masters Growing, Gardening and Gaining Knowledge February 2019/March 2019 What’s Happening Editor’s Corner February By Marcia Winchester, Feb 6 - Plant A Row Workday Cherokee County Master Gardener Feb 7- Demo Garden Workday Feb 8 - Lecture, Seed Starting, Rose Creek Library Feb 15– Canton Arbor Day, February and March is a good time to reflect on your garden after you’ve Tree Give Away given up on your New Year’s resolutions. You might even set some gardening goals for 2019. One goal I’d like to set for my garden could be Feb 15-18 spending more time sitting and enjoying it. So often all I see is everything GREAT BACKYARD I have on my gardening to-do list. This year I want to acknowledge and BIRD COUNT take pleasure in my gardening accomplishments. Feb 19 - CCMG Monthly Mtg I’d also like to finish relabeling my daylilies. For some reason since my husband has taken over mowing the grass a large number of my daylily Feb 20 - Plant A Row Workday metal markers have disappeared. Unfortunately, they have to be blooming Feb 21- Demo Garden Workday in order to ID them from my pictures. Feb 22– Fruit Tree Field Day Two years ago I decided to down-size all of my planted containers on my deck. While I have eliminated some containers, I seem to be replacing Feb 23– Bee School http://cherokeebeeclub.com/ them with new planters. I’m also trying to down-size all of the plants in my index.php/2019/01/18/bee-school- gardens.
    [Show full text]
  • Prepared For: Prepared By
    RARE PLANT SURVEY FOR THE PROPOSED NOVA GAS TRANSMISSION LTD. KEARL EXTENSION PIPELINE PROJECT August 2010 6426 Prepared for: Prepared by: NOVA Gas Transmission Ltd. A Wholly-Owned Subsidiary of TERA Environmental Consultants TransCanada PipeLines Limited Suite 1100, 815 - 8th Avenue S.W. Calgary, Alberta T2P 3P2 Calgary, Alberta Ph: 403-265-2885 NOVA Gas Transmission Ltd. Rare Plant Survey Kearl Lake Pipeline Project August 2010 / 6426 TABLE OF CONTENTS Page 1.0 INTRODUCTION.............................................................................................................................. 1 1.1 Ecosystem Classification .................................................................................................... 1 1.2 Objectives ........................................................................................................................... 2 2.0 METHODS ....................................................................................................................................... 4 2.1 Pre-Field Assessment......................................................................................................... 4 2.2 Study Area Boundaries ....................................................................................................... 4 2.3 Rare Plant Surveys ............................................................................................................. 4 2.4 Non-Native and Invasive Species....................................................................................... 5 3.0
    [Show full text]
  • Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis Danielle Marie Thiemann Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Thiemann, Danielle Marie, "Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis" (2017). Browse all Theses and Dissertations. 1849. https://corescholar.libraries.wright.edu/etd_all/1849 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. IMPACTS OF INVASIVE ALLIARIA PETIOLATA ON TWO NATIVE PERIDAE BUTTERFLIES, ANTHOCHARIS MIDEA AND PIERIS VIRGINIENSIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By DANIELLE MARIE THIEMANN B.S., University of Dayton, 2014 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL April 20, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Danielle Marie Thiemann ENTITLED Impacts of Invasive Alliaria petiolata on Two Native Pieridae Butterflies, Anthocharis midea and Pieris virginiensis BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF Master of Science. ____________________________________ Donald F. Cipollini, Ph.D. Thesis Director ____________________________________ David L. Goldstein, Ph.D., Chair Department of Biological Sciences Committee on Final Examination ___________________________________ Donald F. Cipollini, Ph.D.
    [Show full text]
  • New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12
    New Orleans Botanical Garden Plant Sale Saturday September 14, 2013 Pelican Greenhouse 9-12 Fence Row Plectranthus Mona Lavender Greenhouse Row Split Leaf Philodendron Philodendron bipinnatifidum Crepe Ginger Costus speciosus Chinese Rain Bells Strobilanthes hamiltoniana Velvet Stepladder Ginger Costus malortieanus Dwarf Elephant Ear Colocasia fallax ‘Silver Dollar’ Costus erythrophyllus Imperial Taro Colocasia antiquorum ‘Illustris’ Costus ‘Green Mountain’ Angel Trumpet Brugmansia ‘Charles Grimaldi’ Orange Tulip Ginger Costus curvibracteatus Little White Soldiers Drimiopsis maculata Turmeric Costus longa Dorstenia contrajerva Curcuma hybrid ‘Choco Zebra Red’ Dusty Thalia Thalia dealbata Curcuma ‘Ribbon’ Chinese Taro Alocasia cucullata Curcuma ‘Purple Garden’ Indigo Indigofera decora Curcuma ‘Emperor’ Valerian Valerian officinalis Yellow Dancing Girl Globba schomburgkii Variegated Peppermint Scented Geranium Strap-leaf Ginger Stahlianthes involucratus Pseuderanthemum ‘Texas Tri-Star’ Purple Globe Ginger Globba globulifera Cocoa Plant Theobroma cacao Cat Palm Chamaedorea cataractarum Oyster Plant Tradescantia spathacea Assorted Ti Plants Red Buckeye Aesculus pavia Basket Plant Callisia fragrans Dianthera Dianthera nodosa ‘Pretty in Pink’ Asian Crocus Kaempferia rotunda Cuban Oregano Plectranthus amboinicus Aspidistra Milky Way Aspidistra elatior ‘Milky Way’ Southern Swamp Lily Crinum americanum Perilla ‘Magilla’ Bush Willow Salix integra ‘Hakuro Nishiki’ Mickey Mouse Taro Xanthosoma atrovirens Indigo Spires Sage Salvia ‘Indigo Spires’
    [Show full text]