The Illumination Conditions of the South Pole Region of the Moon

Total Page:16

File Type:pdf, Size:1020Kb

The Illumination Conditions of the South Pole Region of the Moon EPSC Abstracts, Vol. 4, EPSC2009-314, 2009 European Planetary Science Congress, © Author(s) 2009 The Illumination Conditions of the South Pole Region Of The Moon E.A.Kozlova. (1) Sternberg State Astronomical Institute, Moscow State University. [email protected] The “Lunar Prospector” spacecraft, horizon during only 24% time of diurnal period for launched by NASA toward the Moon in 1998, this point. revealed the areas of high hydrogen content near Fig.2. shows the topographic profile of the both poles of the Moon. The South Pole of the crater Shoemaker (88º S, 38º E, D = 51 km) Moon is located in the southern part of the giant accordingly to date from KAGUYA (SELENE). topographic depression – the South Pole - Aitken The average depth of a crater has made 3,1 kms, basin. This region is heavily cratered and some an inclination of walls - 13º. The small crater is in craters at the poles are never exposed to direct the central part of the flat floor of Shoemaker. sunlight. High hydrogen content was found in the Earlier, we computed the permanently areas coinciding with such craters as Shoemaker shadowed area in the polar regions of the Moon (88º S, 38º E) and Faustini (87,2º S, 75,8º E) and for the real distribution of craters taking into other craters [1]. These craters can presumably be account the variations of the elevation of the Sun considered as "cold traps" in the South Polar during the 230 solar days that make up the period region of the Moon. of regression of the nodes of the lunar orbit [3]. In this work we used the laser altimeter data onboard the Japanese lunar orbiter KAGUYA (SELENE) [2] to obtain the illumination condition Distance (km) 0 near South Pole of the Moon for the diurnal 1 6 11 16 21 26 31 36 41 46 51 56 61 66 -500 variation in the altitude of the sun above the -1000 horizon (Fig.1). -1500 -2000 Degrees -2500 8 (m) Topography -3000 7 -3500 Horizon -4000 6 -4500 5 Sun Figure 2: Topographic profiles of crater 4 Shoemaker (88º S, 38º E, D = 51 km) at 88º S. 3 According to these results the permanently 2 shaded area is occur 59% of inner part of crater 1 Shoemaker, and 50 % of inner part of craters 0 Faustini. The altimetry date from KAGUYA 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 (SELENE) [2] was used to calculate the permanently shaded area in these craters. Azimuth of the sun interval According to our results the crater Shoemaker is one of the most shadowed among large craters: it Figure 1: Diurnal variation in the altitude of the has 65% of its area permanently shadowed. The 59 sun and the high of horizon for the point in the % of inner part of crater Faustini remained in central part of crater Shoemaker. The x-axis is the shadow during a lunar day. number of the sun azimuth interval, each separated The lighting conditions were mapped over a by 2,5º. The altitude of the sun exceeds the region of the crater Shoemaker and Faustini (Fig.3). EPSC Abstracts, Vol. 4, EPSC2009-314, 2009 European Planetary Science Congress, © Author(s) 2009 Figure 3: Illumination map of the craters Shoemaker and Faustini region. S – crater Shoemaker, F – crater Faustini. References: [1] Feldman W.C. et al. (2001) J. Geophys. Res., V. 106, p. 23231-23252. [2] http: wms.selena. jaxa. jp [3] Kozlova E.A. et al. (2001) 34-th Int. Microsymp. on Planetology. Abstr. #MS065. .
Recommended publications
  • SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
    SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe­ ESO was but one of many profes­ material was secured. It quickly became maker-Levy 9, for simplicity often re­ sional observatories where observations evident that infrared observations, es­ ferred to as "SL-9", was indeed spectac­ had been planned long before the critical pecially imaging with the far-IR instru­ ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day­ during six hectic days in July 1994 will major observatories in the world were in­ time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep­ The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac­ the bright summer nights and the very recorded with them.
    [Show full text]
  • Planning a Mission to the Lunar South Pole
    Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed.
    [Show full text]
  • Technology Today Spring 2013
    Spring 2012 TECHNOLOGY® today Southwest Research Institute® San Antonio, Texas Spring 2012 • Volume 33, No. 1 TECHNOLOGY today COVER Director of Communications Craig Witherow Editor Joe Fohn TECHNOLOGY Assistant Editor today Deborah Deffenbaugh D018005-5651 Contributing Editors Tracey Whelan Editorial Assistant Kasey Chenault Design Scott Funk Photography Larry Walther Illustrations Andrew Blanchard, Frank Tapia Circulation Southwest Research Institute San Antonio, Texas Gina Monreal About the cover Full-scale fire tests were performed on upholstered furniture Technology Today (ISSN 1528-431X) is published three times as part of a project to reduce uncertainty in determining the each year and distributed free of charge. The publication cause of fires. discusses some of the more than 1,000 research and develop- ment projects under way at Southwest Research Institute. The materials in Technology Today may be used for educational and informational purposes by the public and the media. Credit to Southwest Research Institute should be given. This authorization does not extend to property rights such as patents. Commercial and promotional use of the contents in Technology Today without the express written consent of Southwest Research Institute is prohibited. The information published in Technology Today does not necessarily reflect the position or policy of Southwest Research Institute or its clients, and no endorsements should be made or inferred. Address correspondence to the editor, Department of Communications, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510, or e-mail [email protected]. To be placed on the mailing list or to make address changes, call (210) 522-2257 or fax (210) 522-3547, or visit update.swri.org.
    [Show full text]
  • South Pole-Aitken Basin
    Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole.
    [Show full text]
  • High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E00H33, doi:10.1029/2011JE003979, 2012 High spatial resolution studies of epithermal neutron emission from the lunar poles: Constraints on hydrogen mobility W. V. Boynton,1 G. F. Droege,1,2 I. G. Mitrofanov,3 T. P. McClanahan,4 A. B. Sanin,3 M. L. Litvak,3 M. Schaffner,1 G. Chin,4 L. G. Evans,5 J. B. Garvin,4 K. Harshman,1 A. Malakhov,3 G. Milikh,6 R. Sagdeev,6 and R. Starr7 Received 3 October 2011; revised 17 September 2012; accepted 18 September 2012; published 15 December 2012. [1] The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 Æ 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions.
    [Show full text]
  • Detection of Small Lunar Secondary Craters in Circular Polarization Ratio Radar Images Kassandra S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E06008, doi:10.1029/2009JE003491, 2010 Click Here for Full Article Detection of small lunar secondary craters in circular polarization ratio radar images Kassandra S. Wells,1 Donald B. Campbell,1 Bruce A. Campbell,2 and Lynn M. Carter2 Received 20 August 2009; revised 4 February 2010; accepted 22 February 2010; published 17 June 2010. [1] The identification of small (D < a few kilometers) secondary craters and their global distributions are of critical importance to improving our knowledge of surface ages in the solar system. We investigate a technique by which small, distal secondary craters can be discerned from the surrounding primary population of equivalent size based on asymmetries in their ejecta blankets. The asymmetric ejecta blankets are visible in radar circular polarization ratio (CPR) but not as optical albedo features. Measurements with our new technique reveal 94 secondary craters on the Newton and Newton‐A crater floors near the lunar south pole. These regions are not in an obvious optical ray, but the orientation of asymmetric secondary ejecta blankets suggests that they represent an extension of the Tycho crater ray that crosses Clavius crater. Including the secondary craters at Newton and Newton‐A skews the terrain age inferred by crater counts. It is reduced by few percentages by their removal, from 3.8 to 3.75 Gyr at Newton‐A. Because “hidden rays” like that identified here may also occur beyond the edges of other optically bright lunar crater rays, we assess the effect that similar but hypothetical populations would have on lunar terrains of various ages.
    [Show full text]
  • An Atlas of Antient [I.E. Ancient] Geography
    'V»V\ 'X/'N^X^fX -V JV^V-V JV or A?/rfn!JyJ &EO&!AElcr K T \ ^JSlS LIBRARY OF WELLES LEY COLLEGE PRESENTED BY Ruth Campbell '27 V Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium Member Libraries http://www.archive.org/details/atlasofantientieOObutl AN ATLAS OP ANTIENT GEOGRAPHY BY SAMUEL BUTLER, D.D. AUTHOR OF MODERN AND ANTJENT GEOGRAPHY FOR THE USE OF SCHOOLS. STEREOTYPED BY J. HOWE. PHILADELPHIA: BLANQHARD AND LEA. 1851. G- PREFATORY NOTE INDEX OF DR. BUTLER'S ANTIENT ATLAS. It is to be observed in this Index, which is made for the sake of complete and easy refer- ence to the Maps, that the Latitude and Longitude of Rivers, and names of Countries, are given from the points where their names happen to be written in the Map, and not from any- remarkable point, such as their source or embouchure. The same River, Mountain, or City &c, occurs in different Maps, but is only mentioned once in the Index, except very large Rivers, the names of which are sometimes repeated in the Maps of the different countries to which they belong. The quantity of the places mentioned has been ascertained, as far as was in the Author's power, with great labor, by reference to the actual authorities, either Greek prose writers, (who often, by the help of a long vowel, a diphthong, or even an accent, afford a clue to this,) or to the Greek and Latin poets, without at all trusting to the attempts at marking the quantity in more recent works, experience having shown that they are extremely erroneous.
    [Show full text]
  • Geology of Shackleton Crater and the South Pole of the Moon Paul D
    GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14201, doi:10.1029/2008GL034468, 2008 Geology of Shackleton Crater and the south pole of the Moon Paul D. Spudis,1 Ben Bussey,2 Jeffrey Plescia,2 Jean-Luc Josset,3 and Ste´phane Beauvivre4 Received 28 April 2008; revised 10 June 2008; accepted 16 June 2008; published 18 July 2008. [1] Using new SMART-1 AMIE images and Arecibo and details new results on the lighting conditions of the poles Goldstone high resolution radar images of the Moon, we [e.g., Bussey et al., 2008]. investigate the geological relations of the south pole, including the 20 km-diameter crater Shackleton. The south 2. Geological Setting of the South Pole pole is located inside the topographic rim of the South Pole- Aitken (SPA) basin, the largest and oldest impact crater on [3] The dominant feature that influences the geology and the Moon and Shackleton is located on the edge of an topography of the south polar region is the South Pole- interior basin massif. The crater Shackleton is found to be Aitken (SPA) basin, the largest and oldest impact feature on older than the mare surface of the Apollo 15 landing site the Moon [e.g., Wilhelms, 1987]. This feature is over 2600 (3.3 Ga), but younger than the Apollo 14 landing site km in diameter, averages 12 km depth, and is approximately (3.85 Ga). These results suggest that Shackleton may have centered at 56° S, 180° [Spudis et al., 1994]. The basin collected extra-lunar volatile elements for at least the last formed sometime after the crust had solidified and was rigid 2 billion years and is an attractive site for permanent human enough to support significant topographic expression; thus, presence on the Moon.
    [Show full text]
  • Official 2019 Half Marathon Results Book
    OFFICIAL RESULTS BOOK November 8-10, 2019 2019 Official Race Results 3 Thanks For Your Participation 4 Elite Review 6 Event Statistics 7 Ad-Merchandise Blowout Sale 8 Half Marathon Finisher & Divisional Winners - Male 9 Half Marathon Overall Results - Male 20 Half Marathon Finisher & Divisional Winners - Female 21 Half Marathon Overall Results - Female 39 By-the-Bay 3K & Pacific Grove Lighthouse 5K 40 5K Divisional Results - Male & Female 41 5K Overall Results - Male 44 5K Overall Results - Female 48 3K Results (alphabetical) 50 Half Marathon Memories 51 Our Volunteers 52 Our Sponsors & Supporters 53 Our Family of Events MONTEREYBAYHALFMARATHON.ORG P.O. Box 222620 Carmel, CA 93922-2620 831.625.6226 [email protected] A Big Sur Marathon Foundation Event James Short Cover photo by Andrew Tronick Thanks For Your Participation Thank you for your participation in the Monterey the Name of Love in June and the year-round Bay Half Marathon weekend of events! JUST RUN® youth fitness program. Our mission is to create beautiful events that promote health and We were so happy to host you this year. After the benefit the community. Each year, our organization cancellation of the Half Marathon in 2018, it was distributes more than $400,000 in grants to other great to finally see the streets of Monterey and non-profit organizations and agencies. Your entry Pacific Grove filled with runners. The conditions for fees and support of our events makes this possible. the Saturday and Sunday races were excellent and we know many of you ran personal bests on our The race wouldn’t happen without our dedicated scenic courses.
    [Show full text]
  • Science Concept 3: Key Planetary
    Science Concept 4: The Lunar Poles Are Special Environments That May Bear Witness to the Volatile Flux Over the Latter Part of Solar System History Science Concept 4: The lunar poles are special environments that may bear witness to the volatile flux over the latter part of solar system history Science Goals: a. Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. b. Determine the source(s) for lunar polar volatiles. c. Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. d. Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. e. Determine what the cold polar regolith reveals about the ancient solar environment. INTRODUCTION The presence of water and other volatiles on the Moon has important ramifications for both science and future human exploration. The specific makeup of the volatiles may shed light on planetary formation and evolution processes, which would have implications for planets orbiting our own Sun or other stars. These volatiles also undergo transportation, modification, loss, and storage processes that are not well understood but which are likely prevalent processes on many airless bodies. They may also provide a record of the solar flux over the past 2 Ga of the Sun‟s life, a period which is otherwise very hard to study. From a human exploration perspective, if a local source of water and other volatiles were accessible and present in sufficient quantities, future permanent human bases on the Moon would become much more feasible due to the possibility of in-situ resource utilization (ISRU).
    [Show full text]
  • The Near-Earth Asteroid Rendezvous (NEAR-Shoemaker) Mission / Howard E
    I-38738 NEAR BookCVR.Fin2 3/10/05 11:58 AM Page 1 d National Aeronautics and Space Administration Office of External Relations Low-CostLow-Cost History Division Washington, DC 20546 InnovationInnovation inin SpaceflightSpaceflight TheThe NearNear EarthEarth AsteroidAsteroid RendezvousRendezvous (NEAR)(NEAR) ShoemakerShoemaker MissionMission Monographs in Aerospace History No. 36 • SP-2005-4536 fld I-38738 NEAR BookCVR.Fin2 3/10/05 11:58 AM Page 2 Cover (from the top): The cover combines a closeup image of Eros, a photograph of the 1996 launch of the Near Earth Asteroid Rendezvous (NEAR) expedition, and a picture of the mission operations center taken during the second year of flight. NEAR operations manager Mark Holdridge stands behind the flight consoles. Asteroid and operations center photographs courtesy of Johns Hopkins University/Applied Physics Laboratory. Launch photograph courtesy of the National Aeronautics and Space Administration. (NASA KSC-96PC-308) Howard E. McCurdy Low-Cost Innovation in Spaceflight The Near Earth Asteroid Rendezvous (NEAR) Shoemaker Mission The NASA History Series Monographs in Aerospace History Number 36 NASA SP-2005-4536 National Aeronautics and Space Administration Office of External Relations History Division Washington, DC 2005 Library of Congress Cataloging-in-Publication Data McCurdy, Howard E. Low cost innovation in spaceflight : the Near-Earth Asteroid Rendezvous (NEAR-Shoemaker) Mission / Howard E. McCurdy. p. cm. — (Monographs in aerospace history ; no. 36) 1. Microspacecraft. 2. Eros (Asteroid)
    [Show full text]
  • Artemis III EVA Opportunities Along a Ridge Extending from Shackleton Crater Towards De Gerlache Crater
    Science NASADefinition-requested Team for input Artemis for the (2020 Artemis) III Science Definition Team, delivered September 8, 2020. 2042.pdf Artemis III EVA Opportunities along a Ridge Extending from Shackleton Crater towards de Gerlache Crater David A. Kring*, Natasha Barrett, Sarah J. Boazman, Aleksandra Gawronska, Cosette M. Gilmour, Samuel H. Halim, Harish, Katie McCanaan, Animireddi V. Satyakumar, and Jahnavi Shah Introduction. The 3.15 Ga [1], 21-km-diameter [2] Shackleton crater penetrated a 1900-m-high massif [3] along the margin of the 2,400-km-diameter [4] South Pole-Aitken (SPA) basin. Although the origin of massifs is still uncertain due to insufficient in situ field studies, massifs are thought to be blocks of crystalline crust – solidified portions of the lunar magma ocean and subsequent intrusive magmas – that were mobilized by basin-size impact events and covered with ejecta from those impact events and younger impact events. The surface of the massif will be dominated by reworked ejecta from the Shackleton crater. Hydrocode simulations of the impact that produced Shackleton [5] suggest the ejecta is ~150 m thick and covers target material uplifted >1 km to form the crater rim. That ejecta layer thins with radial distance from the point of impact, but should have covered the entire length of a ridge in the massif that extends from the rim of Shackleton crater (Fig. 1, left panel) towards de Gerlache crater. Points of illumination. Two topographically high points in the area receive an unusually large amount of solar illumination (Fig. 1, center panel). An ~1700 m-high point on the rim of Shackleton crater has an average solar illumination of 85% [6] or greater [7] and an ~1900 m-high point on a massif ridge has an average solar illumination of 89% [6].
    [Show full text]