Geology of Shackleton Crater and the South Pole of the Moon Paul D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lunar Impact Crater Identification and Age Estimation with Chang’E
ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy. -
SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter
SL-9/JUPITER ENCOUNTER - SPECIAL Comet Shoemaker-Levy 9 Collides with Jupiter THE CONTINUATION OF A UNIQUE EXPERIENCE R.M. WEST, ESO-Garching After the Storm Six Hectic Days in July eration during the first nights and, as in other places, an extremely rich data The recent demise of comet Shoe ESO was but one of many profes material was secured. It quickly became maker-Levy 9, for simplicity often re sional observatories where observations evident that infrared observations, es ferred to as "SL-9", was indeed spectac had been planned long before the critical pecially imaging with the far-IR instru ular. The dramatic collision of its many period of the "SL-9" event, July 16-22, ment TIMMI at the 3.6-metre telescope, fragments with the giant planet Jupiter 1994. It is now clear that practically all were perfectly feasible also during day during six hectic days in July 1994 will major observatories in the world were in time, and in the end more than 120,000 pass into the annals of astronomy as volved in some way, via their telescopes, images were obtained with this facility. one of the most incredible events ever their scientists or both. The only excep The programmes at most of the other predicted and witnessed by members of tions may have been a few observing La Silla telescopes were also successful, this profession. And never before has a sites at the northernmost latitudes where and many more Gigabytes of data were remote astronomical event been so ac the bright summer nights and the very recorded with them. -
Exploring the Bombardment History of the Moon
EXPLORING THE BOMBARDMENT HISTORY OF THE MOON Community White Paper to the Planetary Decadal Survey, 2011-2020 September 15, 2009 Primary Author: William F. Bottke Center for Lunar Origin and Evolution (CLOE) NASA Lunar Science Institute at the Southwest Research Institute 1050 Walnut St., Suite 300 Boulder, CO 80302 Tel: (303) 546-6066 [email protected] Co-Authors/Endorsers: Carlton Allen (NASA JSC) Mahesh Anand (Open U., UK) Nadine Barlow (NAU) Donald Bogard (NASA JSC) Gwen Barnes (U. Idaho) Clark Chapman (SwRI) Barbara A. Cohen (NASA MSFC) Ian A. Crawford (Birkbeck College London, UK) Andrew Daga (U. North Dakota) Luke Dones (SwRI) Dean Eppler (NASA JSC) Vera Assis Fernandes (Berkeley Geochronlogy Center and U. Manchester) Bernard H. Foing (SMART-1, ESA RSSD; Dir., Int. Lunar Expl. Work. Group) Lisa R. Gaddis (US Geological Survey) 1 Jim N. Head (Raytheon) Fredrick P. Horz (LZ Technology/ESCG) Brad Jolliff (Washington U., St Louis) Christian Koeberl (U. Vienna, Austria) Michelle Kirchoff (SwRI) David Kring (LPI) Harold F. (Hal) Levison (SwRI) Simone Marchi (U. Padova, Italy) Charles Meyer (NASA JSC) David A. Minton (U. Arizona) Stephen J. Mojzsis (U. Colorado) Clive Neal (U. Notre Dame) Laurence E. Nyquist (NASA JSC) David Nesvorny (SWRI) Anne Peslier (NASA JSC) Noah Petro (GSFC) Carle Pieters (Brown U.) Jeff Plescia (Johns Hopkins U.) Mark Robinson (Arizona State U.) Greg Schmidt (NASA Lunar Science Institute, NASA Ames) Sen. Harrison H. Schmitt (Apollo 17 Astronaut; U. Wisconsin-Madison) John Spray (U. New Brunswick, Canada) Sarah Stewart-Mukhopadhyay (Harvard U.) Timothy Swindle (U. Arizona) Lawrence Taylor (U. Tennessee-Knoxville) Ross Taylor (Australian National U., Australia) Mark Wieczorek (Institut de Physique du Globe de Paris, France) Nicolle Zellner (Albion College) Maria Zuber (MIT) 2 The Moon is unique. -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Alternative Artemis III EVA Opportunities Near De Gerlache Crater D
Science NASADefinition-requested Team for input Artemis for the (2020 Artemis) III Science Definition Team, delivered September 8, 2020. 2044.pdf Alternative Artemis III EVA Opportunities near de Gerlache Crater D. A. Kring*, J. M. Bretzelder, I. Ganesh, N. Kumari, A. Lang, and M. A. Siegler Introduction. A topographic high point on the nearside rim of de Gerlache crater (Fig. 1) has an average solar illumination of 84% [1]. The point, site 011 of [1] and NASA’s Plan for Sustainable Lunar Exploration and Development is an attractive site to establish a solar power station if a distribution system can be developed. If that site is selected to be a long-term power station, then it may be important to avoid fouling or cluttering the location with a descent vehicle and deployed instruments until after a preliminary set of measurements has been made within the area. Thus, it may be interesting to consider other locations in the vicinity of site 011 for an Artemis III landing. Landing site and EVA options. To illustrate the types of options available, we provide a few details for an alternative area near the rim of de Gerlache crater (Fig. 1). The area occurs on an Earth-facing slope at an intersection created by the rim of de Gerlache crater and the rims of secondary craters that are mapped as the products of the Orientale basin-forming impact that occurred on the western limb of the Moon [2]. The area has a relatively smooth surface, but also contains a few small craters that may harbor small permanently shadowed regions (PSRs). -
TRANSIENT LUNAR PHENOMENA: REGULARITY and REALITY Arlin P
The Astrophysical Journal, 697:1–15, 2009 May 20 doi:10.1088/0004-637X/697/1/1 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY Arlin P. S. Crotts Department of Astronomy, Columbia University, Columbia Astrophysics Laboratory, 550 West 120th Street, New York, NY 10027, USA Received 2007 June 27; accepted 2009 February 20; published 2009 April 30 ABSTRACT Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a “feature” as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Mars Water In-Situ Resource Utilization (ISRU) Planning (M-WIP) Study
Mars Water In-Situ Resource Utilization (ISRU) Planning (M-WIP) Study April 22, 2016 Angel Abbud-Madrid, David Beaty, Dale Boucher, Ben Bussey, Richard Davis, Leslie Gertsch, Lindsay Hays, Julie Kleinhenz, Michael Meyer, Michael Moats, Robert Mueller, Aaron Paz, Nantel Suzuki, Paul van Susante, Charles Whetsel, Elizabeth Zbinden (affiliations in Appendix) This “first-order” analysis of questions about supply-side planning related to potential water resource deposits on Mars was jointly requested by NASA-SMD and NASA-HEOMD in Jan. 2016. Recommended Bibliographic Citation: Abbud-Madrid, A., D.W. Beaty, D. Boucher, B. Bussey, R. Davis, L. Gertsch, L.E. Hays, J. Kleinhenz, M.A. Meyer, M. Moats, R.P. Mueller, A. Paz, N. Suzuki, P. van Susante, C. Whetsel, E.A. Zbinden, 2016, Report of the Mars Water In-Situ Resource Utilization (ISRU) Planning (M-WIP) Study; 90 p, posted April, 2016 at http://mepag.nasa.gov/reports/Mars_Water_ISRU_Study.pptx Copyright 2016 California Institute of Technology. U.S. Government sponsorship acknowledged. All rights reserved. Executive Summary (1 of 2) This scoping analysis is intended to provide guidance regarding a number of complex and inter- related issues involving the potential use of Martian water resources, and for which follow-up action by a number of different entities would be beneficial. • Objectives: 1). Formulate descriptions of hypothetical reserves on Mars, 2). Estimate the rough order-of-magnitude of the engineered system needed to produce each of the reference cases, 3). Prepare a first draft analysis of the sensitivity of the production system to the known or potential geological variation, 4). Prepare an initial description of the preliminary implications for exploration. -
Conceptual Human-System Interface Design for a Lunar Access Vehicle
Conceptual Human-System Interface Design for a Lunar Access Vehicle Mary Cummings Enlie Wang Cristin Smith Jessica Marquez Mark Duppen Stephane Essama Massachusetts Institute of Technology* Prepared For Draper Labs Award #: SC001-018 PI: Dava Newman HAL2005-04 September, 2005 http://halab.mit.edu e-mail: [email protected] *MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139 TABLE OF CONTENTS 1 INTRODUCTION..................................................................................................... 1 1.1 THE GENERAL FRAMEWORK................................................................................ 1 1.2 ORGANIZATION.................................................................................................... 2 2 H-SI BACKGROUND AND MOTIVATION ........................................................ 3 2.1 APOLLO VS. LAV H-SI........................................................................................ 3 2.2 APOLLO VS. LUNAR ACCESS REQUIREMENTS ...................................................... 4 3 THE LAV CONCEPTUAL PROTOTYPE............................................................ 5 3.1 HS-I DESIGN ASSUMPTIONS ................................................................................ 5 3.2 THE CONCEPTUAL PROTOTYPE ............................................................................ 6 3.3 LANDING ZONE (LZ) DISPLAY............................................................................. 8 3.3.1 LZ Display Introduction................................................................................. -
Planning a Mission to the Lunar South Pole
Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed. -
Fn000030.Pdf
1) Viaggi ed esplorazioni- 205 2) Collana Paravia Viaggi- 226 3)Collana Alpes Viaggi- 240 4) Ebraismo- 390 5) Colonialismo Fascista- 513 6) L'Illustrazione Italiana- 522 7) Storia- 546 8) Fascismo- 609 9) Spionaggio- 626 10) Letteratura italiana- 635 11) Letteratura straniera- 648 12) Il Corriere dei Piccoli-658 13) Libri per Ragazzi-693 14) Sport- 701 15) Arte-727 Le immagini di tutti i libri proposti in questo catalogo ( e molti altri) sono disponibili nella sezione RICERCA del sito www.ferraguti.it , continuamente aggiornato, che vi invitiamo a visitare. Preghiamo i gentili clienti di comunicarci l'indirizzo email, al fine di poter inviare, qualora lo gradissero, comunicazioni e cataloghi intermedi rispetto alle "classiche" pubblicazioni trimestrali. Siamo sempre interessati all'acquisto di intere biblioteche e partite o blocchi di libri, riviste e stampe d'epoca, saremo grati a chi ci fornirà opportune segnalazioni. FERRAGUTI SERVICE s.a.s. di Ferraguti Ivo & C. Borgo Bernabei 4 - 43125 Parma Tel. e Fax 0521-286980- [email protected] [email protected] P. IVA 01779470341- C.C.I.A.A. PR Reg. Ditte n. 177878 Iscrizione Tribunale di Parma n. 22291 Conto Corrente Postale n. 11724432 Catalogo numero 90- I semestre 2013- Gennaio,Febbraio, Marzo 2013 Editore: Ferraguti Service s.a.s. (Responsabile Ivo Ferraguti) Tipografie Riunite Donati - Borgo Santa Chiara 6- 43125 Parma 2 Albertini Gianni, ALLA RICERCA DEI NAUFRAGHI DELL'"ITALIA". mille kilometri sulla banchisa., Libreria d'Italia, Milano, 1929, 8o, brossura e sovracoperta., bs.,seconda ediz., pp. 165. La spedizione Nobile. Con numerose e bellissime foto. € 31,00 3 Albieri Adele, CRISTOFORO COLOMBO alla scoperta dell'America., Paravia G.B.