Life History Plasticity of the Blacktail Shiner (Cyprinella

Total Page:16

File Type:pdf, Size:1020Kb

Life History Plasticity of the Blacktail Shiner (Cyprinella LIFE HISTORY PLASTICITY OF THE BLACKTAIL SHINER (CYPRINELLA VENUSTA) ACROSS DISTURBANCE GRADIENTS IN ALABAMA STREAMS Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. ______________________________ Lemuel Robles Casten Certificate of approval: __________________________ __________________________ George W. Folkerts Carol E. Johnston, Chair Professor Associate Professor Biological Sciences Fisheries and Allied Aquacultures __________________________ __________________________ Russell A. Wright Stephen L. McFarland Associate Professor Acting Dean Fisheries and Allied Aquacultures Graduate School LIFE HISTORY PLASTICITY OF THE BLACKTAIL SHINER (CYPRINELLA VENUSTA) ACROSS DISTURBANCE GRADIENTS IN ALABAMA STREAMS Lemuel Robles Casten A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama August 7, 2006 LIFE HISTORY PLASTICITY OF THE BLACKTAIL SHINER (CYPRINELLA VENUSTA) ACROSS DISTURBANCE GRADIENTS IN ALABAMA STREAMS Lemuel Robles Casten Permission is granted to Auburn University to make copies of this thesis at its direction, upon request of individuals or institutions and at their expense. The author reserves all publication rights. __________________________ Signature of Author __________________________ Date of Graduation iii VITA Lemuel Robles Casten, was born in Iloilo City, Philippines on February 21, 1975. He attended the University of the Philippines in the Visayas and graduated with a Bachelor of Science degree in Fisheries in 1997. After graduation, he worked as fisheries officer for the International Marinelife Alliance and was research assistant for FishBase and LarvalBase Projects of the WorldFish Center from 1999-2004. While working full-time, he attended the University of the Philippines - Diliman and earned a graduate Diploma in Environmental Science in 2002. On July 2004, he moved to Auburn, Alabama and began graduate school at the Department of Fisheries and Allied Aquacultures of Auburn University on August 2004. iv THESIS ABSTRACT LIFE HISTORY PLASTICITY OF THE BLACKTAIL SHINER (CYPRINELLA VENUSTA) ACROSS DISTURBANCE GRADIENTS IN ALABAMA STREAMS Lemuel Robles Casten Master of Science, August 7, 2006 (Diploma, University of the Philippines - Diliman, 2002) (B.S., University of the Philippines in the Visayas, 1997) 78 Typed Pages Directed by Carol E. Johnston Four populations of the blacktail shiner, Cyprinella venusta were studied to determine life history parameter variation across disturbance gradients in Alabama streams. Consistent with life history theory, fishes from the degraded site were significantly smaller than fishes from sites with minimal disturbance. Fishes from the degraded site had the smallest size at maturity and the smallest propagule size. Clutch sizes adjusted for standard length (SL) varied among populations. Egg diameters were not related to SL among populations. There was no significant difference in mature egg diameters; however ripening egg v diameters differed among populations. There was no difference in gonad mass in females for all spawning months; however, there were differences in gonad mass in males in July. Gonadosomatic index (GSI) peaked in July for both males and females. Reproductive males were still present in September for three populations but all females from all populations had become latent by September, indicating that spawning season has ended. The results of this study suggest that Cyprinella venusta has the ability to alter life history parameters in harsh environments and may be a factor contributing to its persistence in habitats where other species are declining. vi ACKNOWLEDGEMENTS I would like to thank my committee members, Dr. Russell Wright and Dr. George Folkerts for their helpful suggestions and timely assistance with this thesis, and my major advisor, Dr. Carol Johnston for giving me a chance to attend graduate school and work under her tutelage. Without her patience, mentoring and valuable guidance, completion of this thesis would not have been possible. I would also thank Ben Beck, Phillip Cleveland, Andrew Henderson, Dan Holt, Adam Kennon, Nick Ozburn, Mingkang (Joe) Jiang, Wendy Seesock and Oyie Umali for helping in various aspects of this project. This thesis was supported in part by the Alabama State Wildlife Grants Program (SWG). vii Style manual or journal used: Copeia Computer software used: Microsoft Office Word 2003, Microsoft Office Excel 2003, ESRI ArcMap version 9.1, SAS 9.1, SPSS 11.0 viii TABLE OF CONTENTS Page LIST OF TABLES …………………………………………………………………………..xi LIST OF FIGURES ………………………………………………………………………..xiii INTRODUCTION…………………………………………………………………………….1 METHODS………………………………………………………………………………….8 Study species………………………………………………………………………..8 Study sites……………………………………………………………………………9 Field and laboratory data collection……………………………………………...12 Statistical analyses………………………………………………………………...14 RESULTS…………………………………………………………………………………16 Sex ratio………………………………………………………………………….....16 Standard length…………………………………………………………………….16 Size at maturity…………………………………………………………………….17 Demographics……………………………………………………………………...18 Clutch size………………………………………………………………………….19 Gonad mass………………………………………………………………………..20 Egg diameter……………………………………………………………………….21 Egg mass…………………………………………………………………………...23 Gonadosomatic index……………………………………………………………..24 ix Page DISCUSSION……………………………………………………………………………..26 CONCLUSION…………………………………………………………………………….33 LITERATURE CITED………………………………………………………………………35 x LIST OF TABLES Page TABLE 1. MEAN STANDARD LENGTH (SL IN mm) OF Cyprinella venusta DURING THE SPAWNING SEASON FROM FOUR POPULATIONS IN THE CHATTAHOOCHEE RIVER DRAINAGE. Numbers in parentheses are standard deviations. Means with same letters are not significantly different. UC 39 = Uchee Creek 39, UC 169 = Uchee Creek 169, MM = Moffits Mill, WC = Wacoochee Creek……...45 TABLE 2. STATISTICS FOR CLUTCH SIZE-STANDARD LENGTH RELATIONSHIPS FOR FOUR POPULATIONS OF Cyprinella venusta. All values were log10 transformed prior to analysis………………………………………………………………………...46 TABLE 3. MONTHLY SL-ADJUSTED MEAN CLUTCH SIZES FOR EACH POPULATION OF Cyprinella venusta. Numbers in parentheses are standard deviations. Means with same letters are not significantly different……………………………………..47 TABLE 4. MONTHLY MEAN GONAD MASS OF FEMALES (g) FOR EACH POPULATION OF Cyprinella venusta. Standard deviation in parentheses…………………………...48 TABLE 5. MONTHLY MEAN GONAD MASS OF MALES (g) FOR EACH POPULATION OF Cyprinella venusta. Standard deviation in parentheses…………………………...49 TABLE 6. MEAN MATURE EGG DIAMETER (mm) OF Cyprinella venusta FROM FOUR POPULATIONS IN THE CHATTAHOOCHEE RIVER DRAINAGE. Standard deviation in parentheses…………………………………………………………………………….50 TABLE 7. MEAN RIPENING EGG DIAMETER (mm) OF Cyprinella venusta FROM FOUR POPULATIONS IN THE CHATTAHOOCHEE RIVER DRAINAGE. Numbers in parentheses are standard deviations. Means with same letters are not significantly different…………………………………………………………………..51 TABLE 8. MEAN MATURE EGG MASS (g) DURING SPAWNING MONTHS FOR Cyprinella venusta. Means with same letters are not significantly different. Standard deviation in parentheses………………………………………………….52 TABLE 9. MEANS FOR RIPENING EGG MASS (g) DURING SPAWNING MONTHS FOR Cyprinella venusta. Standard deviation in parentheses……………………..53 xi Page TABLE 10. GONADOSOMATIC INDEX (GSI) OF Cyprinella venusta FEMALES DURING SPAWNING MONTHS. Standard deviation in parentheses………………….54 TABLE 11. MONTHLY GSI MEANS FOR THE FOUR POPULATIONS OF Cyprinella venusta MALES. Means with same letters are not significantly different. Standard deviation in parentheses…………………………………………………..55 xii LIST OF FIGURES Page Fig. 1. Sampling localities of Cyprinella venusta populations within the Chattahoochee River drainage in Alabama, USA………………………………….56 Fig. 2. Size at maturity of Cyprinella venusta females. Females with early maturing (EM) ovarian stages were considered sexually mature. A total of 2311 females were examined to determine size at maturity. Solid line represents mean temperature for each site………………………………………...57 Fig. 3. Size at maturity of Cyprinella venusta males (n=128). Solid line represents mean temperature for each site………………………………………...58 Fig. 4. Length-frequency histograms for Cyprinella venusta taken from four populations along the Chattahoochee River drainage from May to November 2005……………………………………………………………………………………..59 Fig. 5. Monthly changes in SL-adjusted mean clutch size of Cyprinella venusta from four sites in the Chattahoochee River drainage. Clutch sizes peaked in May to June and starts to drop as eggs were being spawned (F = 4.31, n = 408, P = 0.0053)………………………………………………………60 Fig. 6. Monthly variation in mean gonad mass of Cyprinella venusta females from the Chattahoochee River drainage. Gonad mass peaked in June for all populations (F = 2.1, n = 408, P = 0.1002)………………………………………61 Fig. 7. Monthly variation in mean gonad mass of Cyprinella venusta males from the Chattahoochee River drainage. Significant differences of gonad mass only in July. Gonad mass from Uchee Creek 39 males was significantly smaller than the gonad mass of Uchee Creek 169 males. n = 128………………………………………………………………………………….62 Fig. 8. Monthly variation in gonadosomatic indices (GSI) of female Cyprinella venusta from four sites in the Chattahoochee River drainage. There were no significant differences
Recommended publications
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Fish Survey for Calhoun, Gordon County, Georgia
    Blacktail Redhorse (Moxostoma poecilurum) from Oothkalooga Creek Fish Survey for Calhoun, Gordon County, Georgia Prepared by: DECATUR, GA 30030 www.foxenvironmental.net January 2018 Abstract Biological assessments, in conjunction with habitat surveys, provide a time-integrated evaluation of water quality conditions. Biological and habitat assessments for fish were conducted on 3 stream segments in and around Calhoun, Gordon County, Georgia on October 3 and 5, 2017. Fish, physical habitat, and water chemistry data were evaluated according to Georgia Department of Natural Resources (GADNR), Wildlife Resources Division (WRD) – Fisheries Section protocol entitled “Standard Operating Procedures for Conducting Biomonitoring on Fish Communities in Wadeable Streams in Georgia”. All of the water quality parameters at all sites were within the typical ranges for streams although conductivity was somewhat high across the sites. Fish habitat scores ranged from 80 (Tributary to Oothkalooga Creek) to 132.7 (Oothkalooga Creek). Native fish species richness ranged from 6 species (Tributary to Oothkalooga Creek) to 17 (Oothkalooga and Lynn Creeks). Index of biotic integrity (IBI) scores ranged from 16 (Tributary to Oothkalooga Creek; “Very Poor”) to 34 (Lynn Creek; “Fair”). Overall, the results demonstrate that Oothkalooga and Lynn Creeks are in fair condition whereas the Tributary to Oothkalooga Creek is highly impaired. Although the data are only a snapshot of stream conditions during the sampling events, they provide a biological characterization from which to evaluate the effect of future changes in water quality and watershed management in Calhoun. We recommend continued monitoring of stream sites throughout the area to ensure that the future ecological health of Calhoun’s water resources is maintained.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist WATER INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 0908 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2009 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 1 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 8 IBI sample collection ............................................. 8 Habitat measures............................................... 10 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 15 IBI metrics and scoring criteria..................................... 19 Designation of guilds....................................... 20 Results and discussion................................................ 22 Sampling sites and collection results . 22 Selection and scoring of Southern Plains IBI metrics . 41 1. Number of native species ................................
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • COPEIA February 1
    2000, No. 1COPEIA February 1 Copeia, 2000(1), pp. 1±10 Phylogenetic Relationships in the North American Cyprinid Genus Cyprinella (Actinopterygii: Cyprinidae) Based on Sequences of the Mitochondrial ND2 and ND4L Genes RICHARD E. BROUGHTON AND JOHN R. GOLD Shiners of the cyprinid genus Cyprinella are abundant and broadly distributed in eastern and central North America. Thirty species are currently placed in the genus: these include six species restricted to Mexico and three barbeled forms formerly placed in different cyprinid genera (primarily Hybopsis). We conducted a molecular phylogenetic analysis of all species of Cyprinella found in the United States, using complete nucleotide sequences of the mitochondrial, protein-coding genes ND2 and ND4L. Maximum-parsimony analysis recovered a single most-parsimonious tree for Cyprinella. Among historically recognized, nonbarbeled Cyprinella, the mitochondrial (mt) DNA tree indicated that basal lineages in Cyprinella are comprised largely of species with linear breeding tubercles and that are endemic to Atlantic and/or Gulf slope drainages, whereas derived lineages are comprised of species broadly distrib- uted in the Mississippi basin and the American Southwest. The Alabama Shiner, C. callistia, was basal in the mtDNA tree, although a monophyletic Cyprinella that in- cluded C. callistia was not supported in more than 50% of bootstrap replicates. There was strong bootstrap support (89%) for a clade that included all species of nonbarbeled Cyprinella (except C. callistia) and two barbeled species, C. labrosa and C. zanema. The third barbeled species, C. monacha, fell outside of Cyprinella sister to a species of Hybopsis. Within Cyprinella were a series of well-supported species groups, although in some cases bootstrap support for relationships among groups was below 50%.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • Ontogeny and Allometry of Body Shape in the Blacktail Shiner, Cyprinella Venusta
    Copeia, 2000(1), pp. 270±275 Ontogeny and Allometry of Body Shape in the Blacktail Shiner, Cyprinella venusta CRAIG S. HOOD AND DAVID C. HEINS Ontogenetic changes in body shape and its associated allometry were studied in the Blacktail Shiner, Cyprinella venusta, using geometric morphometric methods. We used a single, large sample (n 5 397; 182 males, 215 females), collected in Catahoula Creek, Jourdan River drainage, Hancock County, Mississippi. Ten body landmarks were digitized from each specimen, which yielded partial warp scores that were used as shape variables to describe body shape change during ontogeny, assess sexual dimorphism, and investigate the relationship between reproductive status and on- togenetic body shape change. We also assessed the effect of sexual dimorphism on size and body shape. The null hypothesis of isometry during ontogeny was strongly rejected by multivariate regression of shape on size for both sexes (males, P , 0.0001, F 5 21.970; females, P , 0.0001, F 5 16.238). We found large, highly signi®cant sexually dimorphic differences in the body shapes of males and females (MANOVA for overall shape, P , 0.0001, F 5 7.535, Wilks' lambda, 0.758), which remained signi®cant using MANCOVA with size as a covariate (log SL, P , 0.0001, F 5 34.872, Wilks' lambda, 0.438; log CS, P , 0.0001, F 5 34.829, Wilks' lambda, 0.439). Moreover, the ontogeny of body shape differs between males and females. There were highly signi®cant shape differences among reproductive classes within males and females. These ®ndings suggest that change in reproductive status may occur in concert with body shape change.
    [Show full text]
  • Notropis Volucellus and Notropis Wickliffi in the Mississippi River Drainage: a Literature Review
    Long Term Resource Monitoring Program Special Report 96-S001 Taxonomic and Distributional Status of Notropis volucellus and Notropis wickliffi in the Mississippi River Drainage: A Literature Review This PDF file may appear different from the printed report because of slight variations incurred by electronic transmission. The substance of the report remains unchanged. July 1996 Taxonomic and Distributional Status of Notropis volucellus and Notropis wickliffi in the Mississippi River Drainage: A Literature Review by Robert A. Hrabik Missouri Department of Conservation Open River Field Station Jackson, Missouri 63755 Prepared for National Biological Service Environmental Management Technical Center 575 Lester Avenue Onalaska, Wisconsin 54650 Project Leader: Steve Gutreuter July 1996 LTRMP Special Reports provide Long Term Resrouce Program partners with scientific and technical support. The opinions and conclusions in LTRMP Special Reports are those of the author(s) and do not necessarily reflect those of the Environmental Management Technical Center. All reports in this series receive anonymous peer review. National Biological Service Environmental Management Technical Center CENTER DIRECTOR Robert L. Delaney ECOLOGICAL MONITORING AND RESEARCH DIRECTOR Steve Gutreuter INFORMATION AND TECHNOLOGY SERVICES DIRECTOR Norman W. Hildrum INFORMATION TRANSFER AND MEDIA SERVICES MANAGER Terry D'Erchia REPORT EDITOR Deborah K. Harris Cover graphic by Mi Ae Lipe-Butterbrodt Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Biological Service, U.S. Department of the Interior. The National Biological Service . gathering, analyzing, and sharing the biological information necessary to support the wise stewardship of the Nation's natural resources. Printed on recycled paper Contents Page Preface ................................................
    [Show full text]
  • Pennington Creek Fish
    FAMILY: CENTRARCHIDAE (sunfishes) FAMILY: CYPRINIDAE (minnows) Bluegill Orangespotted Sunfish Smallmouth Bass Bigeye Shiner Lepomis macrochirus Lepomis humilis Micropterus dolomieu Notropis boops Characteristics: deep-bodied, small mouth, Characteristics: small with orange spots Characteristics: large mouth, vertical dark Characteristics: large eye relative to black spot posterior dorsal rays on side, long white-edged opercular flap bars are sometimes present on olive- body size, large mouth with a small bronze colored sides of the fish, juveniles head, dark lateral stripe extends from have an orange and black band on the cau- the lips through the eye to the end of dal fin the caudal peduncle Green Sunfish Redear Sunfish Largemouth Bass Blacktail Shiner Lepomis cyanellus Lepomis microlophus Micropterus salmoides Cyprinella venusta Characteristics: elongated body, large Characteristics: large, short opercular flap Characteristics: large mouth, upper jaw Characteristics: prominent black spot at mouth, black spot posterior dorsal & anal with a bright red crescent marking extends past the eye, dark midlateral the base of the caudal fin, large stripe from snout to base of the caudal fin diamond shaped scales outlined in black, breeding males develop yellow fins Longear Sunfish White & Black Crappie Spotted Bass Bluntnose Minnow Lepomis megalotis Pomoxis annularis, Pomoxis nigromacula- Micropterus punctulatus Pimephales notatus Characteristics: small, deep-bodied, long tus Characteristics: resembles the largemouth Characteristics: blunt, rounded
    [Show full text]
  • Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
    FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.
    [Show full text]
  • Geological Survey of Alabama Calibration of The
    GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist ECOSYSTEMS INVESTIGATIONS PROGRAM CALIBRATION OF THE INDEX OF BIOTIC INTEGRITY FOR THE SOUTHERN PLAINS ICHTHYOREGION IN ALABAMA OPEN-FILE REPORT 1210 by Patrick E. O'Neil and Thomas E. Shepard Prepared in cooperation with the Alabama Department of Environmental Management and the Alabama Department of Conservation and Natural Resources Tuscaloosa, Alabama 2012 TABLE OF CONTENTS Abstract ............................................................ 1 Introduction.......................................................... 2 Acknowledgments .................................................... 6 Objectives........................................................... 7 Study area .......................................................... 7 Southern Plains ichthyoregion ...................................... 7 Methods ............................................................ 9 IBI sample collection ............................................. 9 Habitat measures............................................... 11 Habitat metrics ........................................... 12 The human disturbance gradient ................................... 16 IBI metrics and scoring criteria..................................... 20 Designation of guilds....................................... 21 Results and discussion................................................ 23 Sampling sites and collection results . 23 Selection and scoring of Southern Plains IBI metrics . 48 Metrics selected for the
    [Show full text]
  • SS-7039 (June 2016) RDA 1693 1 Department of State
    Department of State For Department of State Use Only Division of Publications 312 Rosa L. Parks Avenue, 8th Floor Snodgrass/TN Tower Sequence Number: Nashville, TN 37243 Rule ID(s): Phone: 615-741-2650 File Date: Email: [email protected] Effective Date: Rulemaking Hearing Rule(s) Filing Form Rulemaking Hearing Rules are rules filed after and as a result of a rulemaking hearing (Tenn. Code Ann. § 4-5- 205). Pursuant to Tenn. Code Ann. § 4-5-229, any new fee or fee increase promulgated by state agency rule shall take effect on July 1, following the expiration of the ninety (90) day period as provided in § 4-5-207. This section shall not apply to rules that implement new fees or fee increases that are promulgated as emergency rules pursuant to § 4-5-208(a) and to subsequent rules that make permanent such emergency rules, as amended during the rulemaking process. In addition, this section shall not apply to state agencies that did not, during the preceding two (2) fiscal years, collect fees in an amount sufficient to pay the cost of operating the board, commission or entity in accordance with § 4-29-121(b). Agency/Board/Commission: Tennessee Wildlife Resources Agency Division: Biodiversity Contact Person: Lisa Crawford Address: PO Box 40747, Nashville, TN Zip: 37204 Phone: 615-781-6606 Email: [email protected] Revision Type (check all that apply): Amendment X New Repeal Rule(s) (ALL chapters and rules contained in filing must be listed here. If needed, copy and paste additional tables to accommodate multiple chapters.
    [Show full text]