Proceedings of the 2Nd Annual Workshop on Meteorological And

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the 2Nd Annual Workshop on Meteorological And 1979009242 TECHNICAL EDITOR: DON E. DURHAM FAA-RD-78-99 1gTgOOg242-O02 i 1979009242-003 r" Proceedings of The Second Annual Workshop on Meteorological and Environmental Inputs to Aviation Systems March 28-30, 1978 ORGANIZATION COMMITTEE AND SPONSORING AGENCIES Dennis W. Camp Aerospace Engineer Atmospheric Science Division NASA/Marshall Space Flight Center Huntsville, A]abama 35812 John W. Connoily Special Assistant for Aviation Affairs United States Dept. of Commerce National Oceanic & Atmospheric Administration Rockville, Maryland 20852 Walter Frost Director of Atmospheric Science Division The University of Tennessee Space Institute Tullahoma, Tennessee 37388 ; John E. Enders 5 Chief, Aviation Safety Technology Branch :_ NASA Headquarters ° Washington, D.C. 20591 _ Joseph F. Sowar Chief, Aviation Weather Branch, SEDS _ FAA 4 Second & V. Streets NW Transport Building Washington, D.C. 20591 ' Harry L. Burton Chief, ATS Weather Staff " FAA/AAT-40 800 Independence Ave. NW Washington, D.C. 20591 _ Technical Editor Don E. Durham The University of Tennessee Space Institute ' Tullahoma, Tennessee 37388 i i _I 1979009242-004 TABLE OF CONTENTS I. EXECUTIVE SI_MARY i II. INTRODUCTION &ND WELCOME 15 Opening Remarks John H. Enders 16 Description of Workshop Walter Frost and Dennis W. Camp 17 Welcome Remarks Charles A. Lundquist 26 Welcome Remarks Charles H. Weaver 27 III. BANQUET PRESENTATION 28 Aviation Meteorology--Today and the Future Brigadier General Berry W. Rowe Commander, Air Weather Service, USAF 29 IV. TOPIC AREA PRESENTATIONS 36 Severe Storms John W. Connolly 37 Atmospheric Disturbance Modeling Requirements for Flying Qualities Applications David J. Moorehou_e 55 Aircraft Icing Porter J. Perkins 85 Visibility in Aviation Charles A. Douglas i00 Lightning Hazards to Aircraft Philip B. Corn 127 V. SHORT PRESENTATIONS 138 Helicopter Icing Research Richard I. Adams 139 The Prediction of Lightning-Induced Voltages on Metallic and Composite Aircraft John A. Birken 153 1979009242-005 VI. COMMITTEE REPORTS 178 Su,mnary Report of the Severe Stocms Committee Jean T. Lee 179 : Summary Report of the Turbulence _ommittee Charles E. Elderkin 185 Surmnary Report of the Icin_ Committee Richard I. Adams 192 Summary Report of the Visibility Committee Robert L. Gardner 200 Sumary Report of the Lightning and Static Electricity Committee J.A. Plumer 203 Summary Report of the Aircraft Operations Committee Robert T. Warner 215 Surmnary Report of the Human Factors Committee George E. Cooper 219 Summary Report of the Aircraft Design Committee John T. Rogers 229 Summary Report of the Weather Services Committee Loren J. Spencer 234 Summary Report of the Data Acquisition and Utilization Committee • Mikhail A. Alaka 238 APPENDIX A List of Acronyms 244 B. Roster of Workshop Participants 248 1979009242-007 i 174 t4 EXECUTIVE SUMMARY -_ " Walter Frost, Dennis W. Camp, John W. Connolly John H. Enders, Joseph F. Sowar, and Harry L. Burton Organization Committee The Second Annual Workshop on Meteorological and EnviroT_ntal ¢ Inputs to Aviation Systems is sponsored by NASA, NOAA, and FAA and hosted by The University of Tennessee Space Institute. The purpose of this as with the previous workshop is to bring together various disciplines of the meteorological aviation community, i.e., meteorologists, pilots, airline personnel, general aviation operators, manufacturing industry personnel, researchers, forecasters, engineers, instrument specialists, and military users, in round-table discussion to establish and identify needs of the aviation community relative to weather phenomena. The proceedings of the first workshop document the inputs from this vast number of disciplines relative to our understanding and knowledge of the interaction of the atmosphere with aviation systems, to the better defini- tion and implementation of service to operators, and to the collection and interpretation of data for establishing operational criteria relating the total meteorological inputs from the atmospheric sciences to the needs of aviation. This year's effort utilized the recognized needs and _, deficiencies identified from the previous workshop as a basis for : discussion of possible solutions and means of prioritizing and implement- : ing these solutions. _ : The specific topic areas which were addressed in the committee discussion are: (i) severe storms, (2) turbulence, (3) icing, (4) visi- bility, and (5) lightning. These topic areas were addressed in regard to how they impact: (i) aircraft operations, (2) human factors, (3) aircraft design, (4) weather services, and (5) data acquisition and utilization. Fixed committees, having the first five titles, met with each of five floating committees, having the latter titles. The chair- man of the committee then documented, from the results of the discussion, the most pressing needs, in order of decreasing importance, within the context of his committee's specific topic area. The nature of the problem as to whether it is operational, R & D, lack of data, procedural, etc. is stated in the committee report. Through committee discussion the question as to how soon the problem can reasonably be solved and what impact on aviation is likely to occur if the problem is not addressed has been queried. In turn, each problem area has been assessed as to the cost benefit of its solution, and as to whether the knowledge is in h_nd or whether a new effort is required to effect the solution. Finally, the committee has recommended which organization(s) (government and/or industries) should be involved in the problem solution and what their : respective role should be. A summarization of the committees' findings relative to the five topic areas of severe storms, turbulence, icing, visibility and lightning is given below. • ! 1979009242-008 Severe Storms The Severe Storms Committee's topic area logically includes turbu- lence, icing, and lightning. However, in summarizing discussions relative to severe storms, emphasis is placed on wind and wind shear hazards. The committee findings gave equal priority to the problems of improved detection capabilities for wind shear, hail, turbulence and lightning and of improved communications of available information to the pilot. Uith regard to wind shear detection, the wind anemometer array system is considered to be an interim solution and continued development of ground based Doppler radar and Doppler lidar should be accelerated to provide wind data along the glide slope. Also, in the airborne realm, further methods to indicate wind differences between that at flight altitude and at touchdown should be pursued, including airborne Doppler. The committee noted that gust front and low level wind shear occur at relatively undeveloped airports, in addition to the main metropolitan airports, and that these situations are of concern to both private and commercial pilots. Improved communications are required to rapidly assimilate and communicate the information which is available on weather hazards to the pilot. Although the capability to observe some severe storm parameters is limited, the inability to communicate those that are observed has been repeatedly demonstrated. I_ addition to the Severe Storm Committee's discussion in this regard, a recurring theme throughout _he whole proceedings was the need tc provide real time or near real time hazardous weather information to the pilot. The Severe Storms Committee suggested that thought be given to innovative ways for data presentation to the pilot. Examples sug- gested are: I. A UHF TV channel allocated to one-way weather briefing in the ARTCC. 2. A data llnk from air route traffic control center to aircraft. 3. Development of slm_'_fied oral communication or expansion of the broadcast capabilities of FSS for reception down to the minimum en route altitude. 4. Means to ease the flow of weather information to the pilot during pre-fllght planning. Many of the floating committees also expressed the need to establish procedures for putting the great sums of information currently available to use in both pre-flibht planning and in the cockpit. The human factors committee summarized information on wind shear needed by the pilot in order to make the decision of whether to land or to go around as follows: 1979009242-009 I. Provide more information on preceding occurrences of weather. 2. Provide exact information relative to gust intensity. 3. Increasing the speed of the information loop by providing flight path angle, yround speed, or detecting information in head-up or tactual mode. 4. Insuring monitoring and takeover procedures. 5. Providing suitable training experience by use of simulation that _ncludes such items as proper thrust management and use of available information. Expanded education and training is also of considerable importance relative to severe storm aviation hazards. Special traveling courses to be established and presented to the aviation community at selected intervals to coincide with the advent of hazard weather seasons are recommended. Until a simplified method of acquiring weather information is developed, a checklist should be developed for acquiring various types of weather information or other flight information during various stages of flight. Courses should also be planned and developed which provide information on interpretation of severe weather information and reports. Educational programs should not only be directed to the pilot, but should also be presen*ed to air traffic controllers, national weather service forecasters, and flight service
Recommended publications
  • Aviation Meteorology
    International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) Volume VI, Issue VIIIS, August 2017 | ISSN 2278-2540 Aviation Meteorology Yashmitha Kumaran, N. Sumathi Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India Abstract: - The purpose of this paper is to highlight the general atmosphere plays a major role in protecting the Earth‟s life terms and definitions that falls under the ‘common set’ in the forms from the solar radiations, cosmic rays and meteoroids. intersection of the sets Meteorology and Aerospace Engineering. It is also responsible for maintaining the Earth‟s global It begins with the universal explanations for the meteorological temperature by insolation, reflection and circulation, and for phenomena under the ‘common set’ followed by the the scattering of sunlight, which enables us to perceive categorization of clouds and their influences on the aerial various colours. vehicles, the instrumentation used in Aeronautics to determine the required Meteorological quantities, factors affecting aviation, Oceans have a diurnal variation of just 2 to 3C and they effects of aviation on the clouds, and the corresponding protocols consist of two separate layers of water, warm and cold. The involved in deciphering the ‘common set’ elements. layer of separation is called thermocline. The upper (warm) It also talks about the relation between airport construction and layer is a heat reservoir and is 150 to 200 meters deep. This is Geology prior to concluding with the uses and successes of the cause for the genesis of several aquatic circulations like Meteorology in the field of Aerospace. the cyclones, the hurricanes and the typhoons. The Earth is at an average distance of 149,600,000 km from I.
    [Show full text]
  • Guide to Surface Weather Observations
    Antigua and Barbuda Meteorological Services Guide to Surface Weather Observations First Edition August 2018 First Edition, August 2018 Forward The contents of this guide prescribes the standard procedures of the Antigua and Barbuda Meteorological Services (ABMS) for observing, recording and reporting weather conditions. It has been prepared in accordance with internationally recommended procedures as established by the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO). The practices and procedures in this document apply to all ABMS observering personnel who provide weather observation services. Weather observer personnel are required to apply the provision of this guide as it pertains to their observational responsibilities. Observers are expected to exercise experienced judgment when encountering situations not covered by this guide. This is a living document and will be revised at intervals to take account of changes in regulations, feedback from the industry and recognised best practices. Inquiries on the content of this guide should be directed to the management of the ABMS through appropriate channels. Guide to Surface Weather Observations Page | 1 First Edition, August 2018 Record of Revisions Section Revision description Guide to Surface Weather Observations Page | 2 First Edition, August 2018 Record of Amendments This document will be kept under continual review to ensure its relevance to the Quality Management System Amendments No. Date Entered Entered by Approved August 2018, initial
    [Show full text]
  • Openweather: a Peer-To-Peer Weather Data Transmission Protocol
    Adrián Yanes OpenWeather: A Peer-to-Peer Weather Data Transmission Protocol Faculty of Electronics, Communications and Automation Department of Communications and Networking (Comnet) Thesis submitted for examination for the degree of Master of Science in Technology. Otaniemi, Espoo, 31.08.2011 ThesisarXiv:1111.0337v1 [cs.NI] 1 Nov 2011 supervisor and instructor: Prof. Jörg Ott Aalto University Abstract of the School of Electrical Engineering Master’s thesis Author: Adrián Yanes Title: OpenWeather: a peer-to-peer weather data transmission protocol Date: 31.08.2011 Language: English Number of pages: 115 + 23 Faculty of Electronics, Communications and Automation Department of Communication and Networking Professorship: Networking Technology Code: S-38 Supervisor: Prof. Jörg Ott The study of the weather is performed using instruments termed weather stations. These weather stations are distributed around the world, collecting the data from the different phenomena. Several weather organizations have been deploying thousands of these instruments, creating big networks to collect weather data. These instruments are collecting the weather data and delivering it for later processing in the collections points. Nevertheless, all the methodologies used to transmit the weather data are based in protocols non adapted for this purpose. Thus, the weather stations are limited by the data formats and protocols used in them, not taking advantage of the real-time data available on them. We research the weather instruments, their technology and their network capa- bilities, in order to provide a solution for the mentioned problem. OpenWeather is the protocol proposed to provide a more optimum and reliable way to transmit the weather data. We evaluate the environmental factors, such as location or bandwidth availability, in order to design a protocol adapted to the requirements established by the automatic weather stations.
    [Show full text]
  • METEOROLOGICAL NEEDS of a CLASS a 1 a AIRPORT1 .J-H
    336 MONTHLY WEATHER REVIEW AUGUST,1929 mailing, require a total of slightly over four and one-half vening gradients and all the information derived from hours time. these factors form the basis for accurnte conclusions in Due to tlie successful and extensive development of the forecasting. Without vessel-weather observations fore- vessel weather service comprehensive studies are made casters would be confronted with a very puzzling situa- of meteorolopical coiiditions over the Pacific Ocean. tion. The knowledge of ocerinic pressure clistrihution, the most The value of tlie forecasting md wariiings can not be vital factor in forecasting for the far Western Statcs, estimated. Every industry, enterprise, organization, becomes available to forecasters. The isobaric reprcdnc- or the individual, whose n-eifare is affected by weather tion on the synoptic charts of pressure systems as indi- conditions receives invaluable benefits from this service. cated by vessel reports pictures the nioveiiients ol cyclonic Ever increasing deniands for a more extensive weather and anticyclonic. areas. The cuntinuous enstwnrd march service are taxing tl:e Weather Fureau to capacity. of “HIGHS ” and “LO% s ” niny he closely followed. ‘I’hr Feirly r:tpid strides liave been macle in recent years in constant changing conciitions; the rapidity of iim\-rnient ; the extension of the services of the Weather Bureau and the relative positions of c.yclonic rLnd tintic?-clonic arcbns : vessel weather reporting has p!ayed nn important part the intensity of a depression; the steepness of iiiter- in the advance. METEOROLOGICAL NEEDS OF A CLASS A 1 A AIRPORT1 .j-h-/. 5 : 72c 3 9 By D.
    [Show full text]
  • Visual Range: Concepts, Instrumental Determination, and Aviation
    NATL INST OF STANDARDS & TECH R.I.C. AlllDD TTDEEl A1 1100990221 Douglas, C. A/Visual range : concepts, I QC100 .U556 V159;1977 C.I NBS-PUB-C 1977 NBS MONOGRAPH 159 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Visual Range: Concepts, Instrumental Determination, and Aviation Applications . NBS TECHNICAL PUBLICATIONS PERIODICALS NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical reports National Bureau JOURNAL OF RESEARCH Reference Data (JPCRD) published quarterly for NBS Standards research and development in physics, of by the American Chemical Society (ACS) and the Amer- chemistry. It is published in mathematics, and two ican Institute of Physics (AIP). Subscriptions, reprints, sections, available separately: and supplements available from ACS, 1155 Sixteenth • Physics and Chemistry (Section A) St. N.W., Wash. D. C. 20056. Papers of interest primarily to scier* orking in Building Science Series^— Disseminates technical infor- these fields. This section covers a br .ige of physi- ^ mation developed at the Bureau on building materials, wit*- ^r on cal and chemical research, emphasis components, systems, and whole structures. The series y* standards of physical measy ^ , fundamental con- presents research results, test methods, and perform- of ^<v*'.;>sued six times a year. stants, and properties m^ ance criteria related to the structural and environmental !) Annual subscription: ^^c, $17.00; Foreign, $21.25. functions and the durability and safety characteristics • Mathematical Sci' ^^jrJ^v Section B) of building elements and systems. Studies and com'- .is designed mainly for the math- Technical Notes—Studies or reports which are complete ematician and .Q<v*etical physicist.
    [Show full text]
  • Weather Monitoring Instruments & Systems
    Weather Monitoring Instruments & Systems 2013 Catalog www.novalynx.com Table of Contents Applications 3 200-85000 Ultrasonic Anemometer ...................................... 54 System Design ......................................................................... 4 200-7000 WindSonic Ultrasonic Anemometer ..................... 55 Site Considerations .................................................................. 5 200-1390 WindObserver II Ultrasonic Anemometer ............ 56 Typical System Drawings ........................................................ 6 200-101908 Current Loop Wind Sensors.............................. 57 Typical System Drawings ........................................................ 7 200-102083 Wind Mark III Wind Sensors ............................ 58 Typical System Drawings ........................................................ 8 200-2020 Micro Response Wind Sensors ............................. 59 Weather Stations 9 200-2030 Micro Response Wind Sensors ............................. 60 110-WS-16 Modular Weather Station ................................... 10 200-WS-21-A Dual Set Point Wind Alarm ........................... 61 110-WS-16 Modular Weather Station ................................... 11 200-WS-23 Current Loop Wind Sensor ................................ 62 110-WS-18 Portable Weather Station.................................... 12 200-455 Totalizing Anemometer with 10-Min Timer ........... 63 110-WS-18 Portable Weather Station.................................... 13 200-WS-25 Wind Logger with Real-Time
    [Show full text]
  • Openweather: a Peer-To-Peer Weather Data Transmission Protocol
    Adrián Yanes OpenWeather: A Peer-to-Peer Weather Data Transmission Protocol Faculty of Electronics, Communications and Automation Department of Communications and Networking (Comnet) Thesis submitted for examination for the degree of Master of Science in Technology. Otaniemi, Espoo, 31.08.2011 Thesis supervisor and instructor: Prof. Jörg Ott Aalto University Abstract of the School of Electrical Engineering Master’s thesis Author: Adrián Yanes Title: OpenWeather: a peer-to-peer weather data transmission protocol Date: 31.08.2011 Language: English Number of pages: 115 + 23 Faculty of Electronics, Communications and Automation Department of Communication and Networking Professorship: Networking Technology Code: S-38 Supervisor: Prof. Jörg Ott The study of the weather is performed using instruments termed weather stations. These weather stations are distributed around the world, collecting the data from the different phenomena. Several weather organizations have been deploying thousands of these instruments, creating big networks to collect weather data. These instruments are collecting the weather data and delivering it for later processing in the collections points. Nevertheless, all the methodologies used to transmit the weather data are based in protocols non adapted for this purpose. Thus, the weather stations are limited by the data formats and protocols used in them, not taking advantage of the real-time data available on them. We research the weather instruments, their technology and their network capa- bilities, in order to provide a solution for the mentioned problem. OpenWeather is the protocol proposed to provide a more optimum and reliable way to transmit the weather data. We evaluate the environmental factors, such as location or bandwidth availability, in order to design a protocol adapted to the requirements established by the automatic weather stations.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Barry, R. G. und R. J. Chorley: Atmosphere, Weather Mikrometeorologie and Climate, University Paperback Methuen and Co., Geiger, R. : Das Klima der bodennahen Luftschicht, London,1968 Vieweg, Braunschweig, 1961 Byers, H. R.: General Meteorology, McGraw·Hill, Munn, R. E.: Descriptive Micrometeorology, Academic New York, 1959 Press, New York, 1968 Day, J. A.: The Science of Weather, Addison·Weasley, Sutton, O. G.: Micrometeorology, McGraw-Hill, Reading, Mass., 1966 New York, 1953 Fortak, H.: Meteorologie, Deutsche Buch·Gemeinschaft, Berlin, 1971 Malone, T. F.: Compendium of Meteorology, Am. Met. Soc., Boston, 1951 Besondere Problemkreise Petterssen, S.: Introduction to Meteorology, McGraw·Hill, Boer, W.: Technische Meteorologie, Teubner, Leipzig, New York, 1958 1964 Allgemeine Klimatologie Chalmers, J. A.: Atmospheric Electricity, Pergamon Press, Oxford, 1967 Alisov, B. P., O. A. Drozdov und E. S. Rubinstein: Lehr­ Craig, R. A.: The Upper Atmosphere, Academic Press, buch der Klimatologie, Deutscher Verlag der Wissen­ New York, 1965 schaften, Berlin, 1956 Dietze, G.: Einfuhrung in die Optik der Atmosphare, Critchfield, H. J.: General Climatology, Prentice-Hall, Akademische Verlagsgesellschaft Geest und Portig, Englewood Cliffs, 1966 Leipzig, 1957 Kendrew, W. G.: Climatology, Oxford Univ. Press, London, Eichenberger, W.: Flugwetterknnde, Schweizer Druck­ 1957 nnd Verlagshaus A.G., ZUrich, 1969 Sellers, W. D.: Physical Climatology, Univ. of Chicago van Eimern, J. : Wetter- nnd Klimaknnde fUr Landwirt­ Press, Chicago, 1965 schaft, Garten- und Weinbau, Ulmer, Stuttgart, 1971 Stringer, E. T.: Foundations of Climatology, Freeman, Foitzik, L. nnd H. Hintzpeter: Sonnenstrahiung und San Francisco, 1972 Lufttrubung, Akademische Verlagsgesellschaft, T.: Techniques of Climatology, Freeman, Stringer, E. Leipzig, 1958 San Francisco, 1972 Israel, H.: Luftelektrizitat und Radioaktivitat, Springer, Theoretische Meteorologie nnd Wettervorhersage Berlin, 1957 Fleagle, R.
    [Show full text]
  • 大气科学类词汇小词典made by Superjyq@Lilybbs 如有疏漏,敬请指正[A]
    大气科学类词汇小词典 Made by superjyq@lilybbs 如有疏漏,敬请指正 [A] a priori probability 先验机率 a priori reason 先验理由 A scope (indicator) A 示波器 Abbe number 阿贝数 ABC bucket ABC 吊桶 aberration 像差;光行差 aberwind 阿卑风 ablation 消冰;消冰量 ablation area 消冰区 abnormal 异常 abnormal lapse rate 异常直减率 abnormal propagation 异常传播 abnormal refraction 异常折射 abnormal weather 异常天气 abnormality 异常度;距平度 above normal 超常 Abraham's tree 亚伯拉罕树状卷云 abrego 阿勃列戈风 abroholos 亚伯落贺颮 Abrolhos squalls 亚伯落贺颮 abscissa 横坐标 absolute 绝对 absolute acceleration 绝对加速度 absolute altimeter 绝对高度计 absolute altitude 绝对高度 absolute angular momentum 绝对角动量 absolute annual range of temperature 温度绝对年较差 absolute black body 绝对黑体 absolute ceiling 绝对云幕高 absolute coordinate system 绝对坐标系 absolute drought 绝对乾旱 absolute error 绝对误差 absolute extremes 绝对极端值 absolute frequency 绝对频率 absolute gradient current 绝对梯度流 absolute humidity 绝对溼度 absolute index of refraction 绝对折射率 absolute instability 绝对不稳度 absolute instrument 绝对仪器 absolute isohypse 绝对等高线 absolute linear momentum 绝对线性动量 absolute momentum 绝对动量 absolute monthly maximum temperature 绝对月最高温 absolute monthly minimum temperature 绝对月最低温 absolute motion 绝对运动 absolute parallax 绝对视差 absolute parcel stability 绝对气块稳度 absolute potential vorticity 绝对位涡 absolute pyrheliometer 绝对日射强度计 absolute reference frame 绝对坐标系 absolute refractive index 绝对折射率 absolute scale 绝对标度 absolute scale of temperature 温度绝对标度 absolute stability 绝对稳度 absolute standard barometer 绝对标準气压计 absolute temperature 绝对温度 absolute temperature scale 绝对温标 absolute topography 绝对地形 absolute unit 绝对单位 absolute vacuum 绝对真空 absolute value
    [Show full text]
  • Glossary of Meteorological Terms
    Reference Glossary of Meteorological Terms A Aerial: Of or pertaining to the air, atmosphere, or aviation. Also, same as antenna. Absolute humidity: In a system of moist air, the ratio of the Aerograph: In general, any self-recording instrument carried mass of water vapor to the total volume of the system. Usually aloft by any means to obtain meteorological data. expressed as grams per cubic meter (g/m3). Aerometeorograph: A self-recording instrument used on Absolute instrument: An instrument whose calibration can be aircraft for the simultaneous recording of atmospheric determined by means of simple physical measurements on the pressure, temperature, and humidity. instrument. Compare to secondary instrument. AFOS: Automation of Field Operations and Services. A Absolute temperature: Temperature based on an absolute scale. communication system developed in the 1970s by the National Absolute temperature scale: A temperature scale based on Weather Service which utilized minicomputers, video displays, absolute zero. See Kelvin temperature scale. and high-speed communications to replace teletype and facsimile Absolute zero: A hypothetical temperature characterized by a machines. It was replaced by AWIPS in the 1990s. complete absence of heat and defined as 0°K, -273.15°C, or Air current: Very generally, any moving stream of air. It has -459.67°F. no particular technical connotation. Absorption: The process in which incident radiation is retained Air density: The mass density of a parcel of air expressed in by a substance. A further process always results from absorption. units of mass per volume. Absorption hygrometer: A type of hygrometer which Airlight formula: See Koschmieder’s law.
    [Show full text]
  • TO LOG I'qure
    GOUVERNEMENT DU QUEBE MlNlSTERE DES RICHESSES NATURELLES DIRECTION GENERALE DES EAUX SERVICE DE LA METËOROLOGIE TO LOG I'QUrE préparé par G.-Oscar Villeneuve, Ph.D. en collaboration avec Michel Ferland, M.A. J.-Guy Frechette, M.F. Raymond Gagnon, M.&. Pierre Gosselin, M. Sc. Raymond Perrier, M. A. Tous droits r6servés par le Al1 rights reserved by the MINISTÉRE DES RICHESSES NATURELLES M.P. -43 SECONDE PARTIE (PART II) ENGLISH-FRENCH DICTIONARY OF CLIMATOLûGICAL TERMS (Dictionnaire anglais-français de termes climatologiques) N.B.: On rencontre dans cette seconde partie, des termes qui ont 6t6 oubli& dans la premiare, mais qui appa- raPtront dans une ,Qdition finale éventuelle de tout le glossaire. ABERW IND Aberw ind ABLATION Ahbt ion ABLATION AREA Aire d'ablation ABNORMAL Anormal ABNORMAL VAWE Valeur aberrante ABRAHAM'S TREE Arbre d'Abraham ABRAS ION Abrasion ABROHOLOS SQUALLS Grains des Abroholos ABSOLUTE ANNUAL RANGE OF Amplitude annuelle absolue de la TEMPERATURE température ABSOLUTE DROUGHT Sécheresse absolue ABSOLUTE HUMIDITY Humidité absolue ABSOLUTE INSTABILITY Instabilité absolue ABSOLUTE MOISTURE OF THE SOIL Humidité absolue du sol ABSOLUTE MONTHLY MAXIMUM Température maximale absolue TEMPERATURE mensuelle ABSOLUTE MONTHLY MINIMUM Température minimale absolue TEMPERATURE mensuelle ABSOLUTE STABILITY Stabilité absolue ABSOLUTE STANDARD BAROMETER ~aromètreétalon absolu ABSOLUTE SUNSHINE DURATION Héliophanie absolue ABSOLUTE TEMPERATURE SCALE Echelle de température absolue ABSOLUTE VORTIC ITY Tourbillon absolu ABSORPTION Absoi.pt
    [Show full text]
  • Data Set (CARDS)
    A Comprehensive Aerological Reference Data Set (CARDS) Robert E. Eskridge, Arthur C. Polansky, Oleg A. Alduchov', Stephen R. Doty, Helen V. Frederick, Irina V. Tchernykh', and Zhai Panmao' National Climatic Data Center National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration Asheville, NC 28801 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not nccessarily state or reflect those of the United States Government or any agency thereof. 1. Permanent address: Russian Research Institute of Hydrometeorological Information, 6, Korolyov St., Obninsk, Kaluga Reg., 249020, Russia. 2. Permanent address: National Meteorological Center, 46 Baishiqiao Rd, Beijing, P. R. China ABSTRACT The possibility of anthropogenic climate change has reached the attention of Government officials and researchers. However, one cannot study climate change without climate data, The CARDS project will produce high-quality upper-air data for the research community and for policy-makers. We intend to produce a dataset which is: easy to use, as complete as possible, as free of random errors as possible.
    [Show full text]