Glossar Meteorologie Englisch-Deutsch, Deutsch-Englisch

Total Page:16

File Type:pdf, Size:1020Kb

Glossar Meteorologie Englisch-Deutsch, Deutsch-Englisch Bundessprachenamt 50328 Hürth, 04.03.2004 – SMD 2 – Postfach 11 63 Glossar Meteorologie Englisch-Deutsch, Deutsch-Englisch 1. Ausgabe 2004 - 2 - Vorbemerkung Das Glossar enthält in beiden Sprachrichtungen je 4 650 Einträge aus der Terminologiedatenbank LEXIS, Sachgebiet E57. Es ist ausschließlich für den dienstlichen Gebrauch bestimmt und darf weder kommerziell ver- wertet noch ohne Zustimmung des Herausgebers in andere Datenbanken oder Netzwerke integriert werden. Es bedeuten: (*) sollte nicht verwendet werden (f) feminin (hist.) historisch (i.S.v. ...) im Sinne von (m) maskulin (n) neutrum (UK) britische Benennung (US) US-amerikanische Benennung Englisch-Deutsch abate, to abnehmen (Wind) ablate, to abschmelzen ablation Ablation ablation Abschmelzung absolute annual range of absolute jährliche Schwankung des pressure Luftdrucks absolute annual range of absolute jährliche Schwankung der temperature Temperatur absolute humidity absolute Feuchte absolute humidity absolute Feuchtigkeit absolute humidity absolute Luftfeuchte absolute instability absolute Labilität absolute moisture (of the soil) absolute Bodenfeuchtigkeit absolute monthly maximum absolutes monatliches Maximum pressure des Luftdrucks absolute monthly maximum absolutes monatliches Maximum temperature der Temperatur absolute monthly minimum absolutes monatliches Minimum des pressure Luftdrucks - 3 - absolute monthly minimum absolutes monatliches Minimum der temperature Temperatur absolute standard barometer absolutes Normalbarometer absolute standard barometer Haupt-Normalbarometer absolute vorticity absolute Vorticity absolute vorticity absolute Wirbelstärke absorptivity of the atmosphere Absorptionsfähigkeit der Atmosphäre accessory cloud Begleitwolke acclimation Akklimatisation acclimation Akklimatisierung acclimatization Akklimatisation acclimatization Akklimatisierung accredited observer zugelassener Wetterbeobachter accumulation of moisture Feuchtigkeitsniederschlag accumulative rain gage Totalisator (speicherndes Regenmessgerät) acidity of rain Säuregrad des Niederschlags acoustic grenade Knallkörper (Höhenforschung) acoustic thermometer akustisches Thermometer actinogram Aktinogramm (Aufzeichnung der Sonneneinstrahlung) actinograph Aktinograph (zur Aufzeichnung der Sonneneinstrahlung) actinometer Aktinometer (zur Messung der Sonneneinstrahlung) active convection lebhafte Konvektion active front aktive Wetterfront active layer frostgefährdete Bodenschicht actual air temperature tatsächliche Lufttemperatur actual evapotranspiration aktuelle Evapotranspiration actual evapotranspiration tatsächliche Evapotranspiration actual pressure tatsächlicher Druck adiabat Adiabate (f) adiabatic change adiabatische Zustandsänderung adiabatic chart Adiabatendiagramm adiabatic compression adiabatische Kompression adiabatic condensation adiabatischer Kondensationsdruck pressure - 4 - adiabatic condensation adiabatisch temperature Kondensationstemperatur adiabatic cooling adiabatische Abkühlung adiabatic curve Adiabate (f) adiabatic diagram Adiabatendiagramm adiabatic equilibrium adiabatisches Gleichgewicht adiabatic expansion adiabatische Ausdehnung adiabatic heating adiabatische Erwärmung adiabatic invariant adiabatische Invarianz adiabatic lapse rate adiabatisches Temperaturgefälle adiabatic pressure drop adiabatischer Druckabfall adiabatic process adiabatischer Prozess adiabatic rate adiabatisches Temperaturgefälle adiabatic region adiabatischer Bereich adiabatic warming adiabatische Erwärmung adjustable cistern barometer einstellbares Gefäßbarometer advect, to einfließen (Luft) advect, to einströmen (Luft) advection Advektion advection fog Advektionsnebel advective conditions Advektionsbedingungen advective pressure tendency advektive Luftdrucktendenz advective thunderstorm Advektionsgewitter adverse ungünstig (z.B. Wind) adverse weather ungünstige Wetterbedingungen adverse weather ungünstiges Wetter adverse weather widrige Witterungsbedingungen aeration Durchlüftung aerial plankton Luftplankton aerodrome forecast Flugplatzwettervorhersage aerodynamic trail aerodynamischer Kondensstreifen aerogram Aerogramm aerograph Meteorograph aerography Aerographie aerologation Aerologation aerologation meteorologische Navigation aerological aerologisch aerologist Aerologe - 5 - aerology Aerologie aerology Höhenwetterkunde aerology Physik der freien Atmosphäre aerometeorograph Aerometeorograph aerometeorograph Höhensonde aeronautical climatology Flugklimatologie aeronautical forecaster Flugwetterberater aeronautical meteorological Flugwetterwarte office aeronautical meteorological Flugwetterdienst service aeronautical meteorological Flugwetterstation station aeronautical meteorology Flugmeteorologie aeronomy Aeronomie aeronomy Physik der Stratosphäre (zwischen 10 und 70 km Höhe) aeropause Aeropause aeroscope Aeroskop aeroscopy Aeroskopie aerosol activity Aktivität der aerosolhaltigen Luft aerosphere Lufthülle aestival Sommer... afterglow Abendrot afterglow time Nachleuchtzeit agonic line Null-Isogone agricultural meteorological agrarmeteorologische Station station air aloft Höhenluft air aloft obere Luftschichten air bump Bö air chemistry Luftchemie air current Luftströmung air density Luftdichte air density curve Luftdichtekurve air density curve Luftdichteverlauf air density error Luftdichtefehler air density gradient Luftdichtegradient air density nomogram Luftdichtenomogramm - 6 - air density ratio Luftdichtequotient air density ratio Luftdichteverhältnis air density unit Luftdichtegerät air dilution Luftverdünnung air drainage Kaltluftfluss air gust Luftbö air humidity Luftfeuchte air humidity Luftfeuchtigkeit air layer Luftschicht air light atmosphärisches Streulicht air light Luftlicht (*) air mass atmosphärische Masse air mass Luftmasse air mass classification Luftmassenklassifikation air mass climatology Klimatologie der Luftmassen air mass climatology Luftmassenklimatologie air mass identification Luftmassenbestimmung air masses Luftmassen air meter (*) Windwegmessgerät air moisture Luftfeuchte air moisture Luftfeuchtigkeit air motion Luftbewegung air parcel Luftpaket air parcel Luftzelle air particle Luftpartikel air pocket Vertikalbö air poise Luftwaage air pollution instrumentation Messgeräte zur Messung der Luftverunreinigung air pressure Luftdruck air sounding aerologische Messung air stability Luftstabilität air structure Windverhältnisse air temperature Lufttemperatur air trap Luftfalle (Barometer) air turbulence Luftturbulenz air velocity meter Luftgeschwindigkeitsmessgerät air weather officer Meteorologe - 7 - Air Weather Service (AWS) Wetterdienst der Luftwaffe (USAF) aircraft ceiling durch Luftfahrzeug festgestellte Hauptwolkenuntergrenze aircraft ceiling durch Luftfahrzeug festgestellte Wolkenhöhe aircraft icing Luftfahrzeugvereisung aircraft meteorological Luftfahrzeugwetterbeobachtung observation aircraft meteorological station Luftfahrzeugwetterstation aircraft observation Luftfahrzeugwetterbeobachtung air-earth current Luft-Erde-Strom airflow Luftströmung airglow Luftleuchten airglow Nachthimmelsleuchten air-mass analysis Luftmassenanalyse air-mass fog Luftmassennebel air-mass source region Luftmassenentstehungsgebiet air-mass thunderstorm Luftmassengewitter air-sea interaction Wechselwirkung Meer-Luft airstream Wetterstrom airstream direction detector Luftstromanzeiger (ADD) airstream direction detector Windrichtungsanzeiger (ADD) air-water interaction Wechselwirkung Luft-Wasser air-water interface Wasser/Luft-Grenzfläche Aitken nucleus Aitkenkern albedo Albedo (f) albedo of the earth Erdalbedo Aleutian low Aleutentief allobar allobar allobaric allobarisch allobaric wind allobarischer Wind all-turbulent condition Zustand allgemeiner Turbulenz all-weather (AW) witterungsunabhängig alpenglow Alpenglühen alpine climate Hochgebirgsklima alpine glow Alpenglühen - 8 - alternate aerodrome forecast Ausweichflugplatzwettervorhersage alternate forecast Ausweichflughafenvorhersage alternate forecast Ausweichflugplatzvorhersage alternating climate Wechselklima alti-electrograph Höhenfeldstärkeschreiber altigraph Höhenschreiber altimeter Altimeter altimeter Höhenmesser altimeter Höhenmessgerät altimeter correction Altimeterkorrektur altimeter correction Höhenmessgerätkorrektur altimeter setting Altimetereinstellung altimeter setting Höhenmessgeräteinstellung altimeter-setting indicator Anzeiger für Altimetereinstellung altimeter-setting indicator Anzeiger für Höhenmessgeräteinstellung altitude barrier Aeropause altitude barrier Leistungshöhengrenze altitude region Höhenbereich altocumulus Altocumulus altocumulus cloud Altocumuluswolke altostratus Altostratus altostratus cloud Altostratuswolke ambient air pressure Umgebungsluftdruck ambient air temperature Umgebungslufttemperatur ambient atmosphere Umgebungsatmosphäre ambient atmospheric pressure atmosphärischer Druck ambient humidity Umgebungsfeuchte ambient operating temperature Umgebungstemperatur ambient pressure umgebender Atmosphärendruck ambient pressure Umgebungsdruck ambient temperature Umgebungstemperatur ambient visibility Sicht in der näheren Umgebung amble diagram Amble-Diagramm amended forecast berichtigte Wettervorhersage amended weather forecast berichtigte Wettervorhersage amendment Änderungsmeldung (Wetter- meldung) - 9 - American Meteorological Amerikanische Meteorologische Society (AMS) Gesellschaft AMETS Army meteorological system AMO Allied Meteorological Office AMOS acoustic meteorological oceanographic survey amount of precipitation Niederschlagshöhe amount of precipitation Niederschlagsmenge
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • Types of Cloud with Example
    Types Of Cloud With Example Is Gerrard always freeze-dried and glarier when rake some tentacle very agreeably and alright? Is Rock always chemicallyspavined and while elementary toyless Yehudi when lopingreshape some that legislature mucuses. very evilly and inquisitively? Bronson still solidifying This community why data stored on a pepper cloud platform is generally thought of as reserve from most hazards. In cloud types with example of service model and private cloud computing might be adverse for sharing a massive global network to maximize profitability by. There are typically grouped as with redundancies can house on topics such blog, types of cloud types with example of an example of customization with regular upgrades and types of new. This filth where Cloud Computing has face to protect rescue! Please enable more resources with cloud types example of hybrid cloud types of multiple cloud function as you choose? What types of cloud example images are cloud types with example of fog will benefit of the example, with us include popular seo blog focuses on. Pushing email off into the cloud makes it supremely convenient for billboard people, constantly on land move. This type my Cloud Computing is designed to address the needs of a specific change, like a business call an industry. Every toss of cloud has huge picture, but some of them right not clear or appropriate for payment term. Spreading cumulonimbus clouds may also deliver to the formation of nimbostratus. Within the traditional hosting space, services are either dedicated or shared. These three clouds can be described as featureless blanket cloud layers.
    [Show full text]
  • 1 Supplementary Material the Blue Water Footprint of Electricity from Hydropower B Corresponding Author
    Supplementary material The blue water footprint of electricity from hydropower Mesfin M. Mekonnena,b and Arjen Y. Hoekstraa aDepartment of Water Engineering and Management, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands b corresponding author: [email protected] Method The water footprint of electricity (WF, m3/GJ) generated from hydropower is calculated by dividing the amount of water evaporated from the reservoir annually (WE, m3/yr) by the amount of energy generated (EG, GJ/yr): WE WF (1) EG The total volume of evaporated water (WE, m3/yr) from the hydropower reservoir over the year is: 365 WE 10 E A t1 (2) where E is the daily evaporation (mm/day) and A the area of the reservoir (ha). There are a number of methods for the measurement or estimation of evaporation. These methods can be grouped into several categories including (Singh and Xu, 1997): (i) empirical, (ii) water budget, (iii) energy budget, (iv) mass transfer and (v) a combination of the previous methods. Empirical methods relate pan evaporation, actual lake evaporation or lysimeter measurements to meteorological factors using regression analyses. The weakness of these empirical methods is that they have a limited range of applicability. The water budget methods are simple and can potentially provide a more reliable estimate of evaporation, as long as each water budget component is accurately measured. However, owing to difficulties in measuring some of the variables such as the seepage rate in a water system the water budget methods rarely produce reliable results in practice (Lenters et al., 2005, Singh and Xu, 1997).
    [Show full text]
  • Extreme Climatic Characteristics Near the Coastline of the Southeast Region of Brazil in the Last 40 Years
    Extreme Climatic Characteristics Near the Coastline of the Southeast Region of Brazil in the Last 40 Years Marilia Mitidieri Fernandes de Oliveira ( [email protected] ) Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro Jorge Luiz Fernandes de Oliveira Fluminense Federal University Pedro José Farias Fernandes Fluminense Federal University, Physical Geography Laboratory (LAGEF), Eric Gilleland National, Center for Atmospheric Research (NCAR) Nelson Francisco Favilla Ebecken Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro Research Article Keywords: ERA5 Reanalysis data, Non-parametric statistical tests, severe weather systems, subtropical cyclones Posted Date: June 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-159473/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Extreme climatic characteristics near the coastline of the Southeast region of Brazil in the last 40 years Marilia Mitidieri Fernandes de Oliveira1, Jorge Luiz Fernandes de Oliveira2, Pedro José Farias Fernandes3, Eric Gilleland4, Nelson Francisco Favilla Ebecken1 1Federal University of Rio de Janeiro, Civil Engineering Postgraduate Program-COPPE/UFRJ, Center of Technology, Rio de Janeiro 21945-970, Brazil 2Fluminense Federal University, Geography Postgraduate Program, Department of Geography, Geoscience Institute, Niterói 24210-340, Brazil 3Fluminense Federal University, Physical Geography Laboratory (LAGEF), Department of Geography, Niterói 24210-340,
    [Show full text]
  • NOTES and CORRESPONDENCE Synoptic-Scale Controls of Summer
    15 FEBRUARY 2006 NOTES AND CORRESPONDENCE 613 NOTES AND CORRESPONDENCE Synoptic-Scale Controls of Summer Precipitation in the Southeastern United States JEREMY E. DIEM Department of Anthropology and Geography, Georgia State University, Atlanta, Georgia (Manuscript received 15 October 2004, in final form 11 August 2005) ABSTRACT Past climatological research has not quantitatively defined the synoptic-scale circulation deviations re- sponsible for anomalous summer-season precipitation totals in the southeastern United States. Therefore, the objectives of this research were to determine the synoptic-scale controls of wet and dry multiday periods during the summer within a portion of the southeastern United States as well as to assess the linkages between synoptic-scale circulation and multidecadal variations in precipitation characteristics for the study domain. Daily precipitation data from 30 stations for June, July, and August from 1953 to 2002 were converted into 13-day totals. Using standardized principal components analysis (PCA), the study domain was divided into three precipitation regions (i.e., South, Northwest, and Northeast). Wet and dry periods for each region were composed of the top 56 and bottom 56 thirteen-day periods. Composite circulation maps for 500 and 850 mb revealed the following: wet periods were generally associated with an upper-level trough over the interior southeastern United States coincident with strong lower-tropospheric flow into the South- east from the Gulf of Mexico, and dry periods were characterized by ridges or anticyclones over the midwestern and southeastern United States coupled with weak lower-tropospheric flow. Many of the wet periods had surface fronts. Over the 50-yr period, increased precipitation was significantly correlated with increased occurrences of midtropospheric troughs over the study domain.
    [Show full text]
  • Aviation Meteorology
    International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS) Volume VI, Issue VIIIS, August 2017 | ISSN 2278-2540 Aviation Meteorology Yashmitha Kumaran, N. Sumathi Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India Abstract: - The purpose of this paper is to highlight the general atmosphere plays a major role in protecting the Earth‟s life terms and definitions that falls under the ‘common set’ in the forms from the solar radiations, cosmic rays and meteoroids. intersection of the sets Meteorology and Aerospace Engineering. It is also responsible for maintaining the Earth‟s global It begins with the universal explanations for the meteorological temperature by insolation, reflection and circulation, and for phenomena under the ‘common set’ followed by the the scattering of sunlight, which enables us to perceive categorization of clouds and their influences on the aerial various colours. vehicles, the instrumentation used in Aeronautics to determine the required Meteorological quantities, factors affecting aviation, Oceans have a diurnal variation of just 2 to 3C and they effects of aviation on the clouds, and the corresponding protocols consist of two separate layers of water, warm and cold. The involved in deciphering the ‘common set’ elements. layer of separation is called thermocline. The upper (warm) It also talks about the relation between airport construction and layer is a heat reservoir and is 150 to 200 meters deep. This is Geology prior to concluding with the uses and successes of the cause for the genesis of several aquatic circulations like Meteorology in the field of Aerospace. the cyclones, the hurricanes and the typhoons. The Earth is at an average distance of 149,600,000 km from I.
    [Show full text]
  • Meteorological Equipment Data Sheets
    TM 750-5-3 TECHNICAL MANUAL METEOROLOGICAL EQUIPMENT DATA SHEETS HEADQUARTERS, DEPARTMENT OF THE ARMY 30 APRIL 1973 *TM 750–5–3 TECHNICAL MANUAL HEADQUARTERS DEPARTMENT OF THE ARMY No. 750–5–3 WASHINGTON, D.C., 30 April 1973 METEOROLOGICAL EQUIPMENT DATA SHEETS Paragraph Page SECTION I. INTRODUCTION Scope _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 3 Purpose _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 3 Organization of content _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 3 3 US Army type classifications _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 3 Currency of information _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 4 Omitted data_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 4 II.
    [Show full text]
  • 1 Climatology of South American Seasonal Changes
    Vol. 27 N° 1 y 2 (2002) 1-30 PROGRESS IN PAN AMERICAN CLIVAR RESEARCH: UNDERSTANDING THE SOUTH AMERICAN MONSOON Julia Nogués-Paegle 1 (1), Carlos R. Mechoso (2), Rong Fu (3), E. Hugo Berbery (4), Winston C. Chao (5), Tsing-Chang Chen (6), Kerry Cook (7), Alvaro F. Diaz (8), David Enfield (9), Rosana Ferreira (4), Alice M. Grimm (10), Vernon Kousky (11), Brant Liebmann (12), José Marengo (13), Kingste Mo (11), J. David Neelin (2), Jan Paegle (1), Andrew W. Robertson (14), Anji Seth (14), Carolina S. Vera (15), and Jiayu Zhou (16) (1) Department of Meteorology, University of Utah, USA, (2) Department of Atmospheric Sciences, University of California, Los Angeles, USA, (3) Georgia Institute of Technology; Earth & Atmospheric Sciences, USA (4) Department of Meteorology, University of Maryland, USA, (5) Laboratory for Atmospheres, NASA/Goddard Space Flight Center, USA, (6) Department of Geological and Atmospheric Sciences, Iowa State University, USA, (7) Department of Earth and Atmospheric Sciences, Cornell University, USA, (8) Instituto de Mecánica de Fluidos e Ingeniería Ambiental, Universidad de la República, Uruguay, (9) NOAA Atlantic Oceanographic Laboratory, USA, (10) Department of Physics, Federal University of Paraná, Brazil, (11) Climate Prediction Center/NCEP/NWS/NOAA, USA, (12) NOAA-CIRES Climate Diagnostics Center, USA, (13) Centro de Previsao do Tempo e Estudos de Clima, CPTEC, Brazil, (14) International Research Institute for Climate Prediction, Lamont Doherty Earth Observatory of Columbia University, USA, (15) CIMA/Departmento de Ciencias de la Atmósfera, University of Buenos Aires, Argentina, (16) Goddard Earth Sciences Technology Center, University of Maryland, USA. (Manuscript received 13 May 2002, in final form 20 January 2003) ABSTRACT A review of recent findings on the South American Monsoon System (SAMS) is presented.
    [Show full text]
  • Asce Standardized Reference Evapotranspiration Equation
    THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION Task Committee on Standardization of Reference Evapotranspiration Environmental and Water Resources Institute of the American Society of Civil Engineers January, 2005 Final Report ASCE Standardized Reference Evapotranspiration Equation Page i THE ASCE STANDARDIZED REFERENCE EVAPOTRANSPIRATION EQUATION PREPARED BY Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute TASK COMMITTEE MEMBERS Ivan A. Walter (chair), Richard G. Allen (vice-chair), Ronald Elliott, Daniel Itenfisu, Paul Brown, Marvin E. Jensen, Brent Mecham, Terry A. Howell, Richard Snyder, Simon Eching, Thomas Spofford, Mary Hattendorf, Derrell Martin, Richard H. Cuenca, and James L. Wright PRINCIPAL EDITORS Richard G. Allen, Ivan A. Walter, Ronald Elliott, Terry Howell, Daniel Itenfisu, Marvin Jensen ENDORSEMENTS Irrigation Association, 2004 ASCE-EWRI Task Committee Report, January, 2005 ASCE Standardized Reference Evapotranspiration Equation Page ii ABSTRACT This report describes the standardization of calculation of reference evapotranspiration (ET) as recommended by the Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Water Resources Institute of the American Society of Civil Engineers. The purpose of the standardized reference ET equation and calculation procedures is to bring commonality to the calculation of reference ET and to provide a standardized basis for determining or transferring crop coefficients for agricultural and landscape use. The basis of the standardized reference ET equation is the ASCE Penman-Monteith (ASCE-PM) method of ASCE Manual 70. For the standardization, the ASCE-PM method is applied for two types of reference surfaces representing clipped grass (a short, smooth crop) and alfalfa (a taller, rougher agricultural crop), and the equation is simplified to a reduced form of the ASCE–PM.
    [Show full text]
  • Introduction to Psychrometry 1A1–1A 1A1–1B Introduction To
    Chapter 1 Page Page Chapter 1 – Introduction to Psychrometry 1a1–1a 1a1–1b Introduction to Notes Notes Psychrometry Learning Outcomes Learning Outcomes: When you have studied this chapter you should be able to: 1 Explain what is meant by the term ‘Psychrometry’. 2. Relate ‘Dalton’s law of Partial Pressures’ to the term ‘Atmospheric Pressure’. Introduction 3. Explain what is meant by the term ‘Saturated Vapour Pressure’. to 4. Use a ‘Psychrometric Chart to find: a. A saturated vapour pressure for a given temperature. — Psychrometry Find, for a given air sample, the following: b. The moisture content c. The percentage saturation d. The relative humidity. 5. Explain what is meant by the ‘wet-bulb’ temperature and its use in the ‘psychrometric equation’. 6. Show how the Psychrometric Chart is used to determine: a. Dew-point temperature b. Specific Enthalpy Suggested Study Time: (a) For study of chapter material; Chapter 1 (i) Initial on-screen study 1 hour (ii) Printing of notes and subsequent in-depth study 2 hours (b) For completion of the quick revision study guide ½ hour Total estimated study time 3½ hours Page2a1–2a Page2a1–2b Chapter 1 – Introduction to Psychrometry Notes Notes Chapter Contents Item page Learning Outcomes 1-1b Introduction to Psychrometry 1-3a The Atmosphere 1-3a Water Vapour 1-4a Saturated Vapour Pressure 1-5a Psychrometric Chart (Theory) 1-5b Moisture content 1-6a Relative humidity 1-6b Percentage saturation 1-7a Relationship between g, m and rh 1-7b — Comparision of percentage saturation & rh 1-8a Wet-bulb temperature 1-8b 1. The Sling Wet-bulb 1-8b 2.
    [Show full text]
  • COLD WEATHER OPERATIONS COLD WEATHER COLD OPERATIONS WEATHER Getting to Grips With
    getting to grips with COLD WEATHER OPERATIONS COLD WEATHER COLD OPERATIONS WEATHER getting to grips with AIRBUS INDUSTRIE 01 / 00 Flight Operations Support - Customer Services Directorate Getting to grips with COLD WEATHER OPERATIONS A Flight Operations View AIRBUS INDUSTRIE FOREWORD The purpose of this document is to provide Airbus operators with an understanding of Airbus aircraft operations in cold weather conditions, and address such aspects as aircraft contamination, performance on contaminated runways, fuel freezing limitations and altimeter corrections. This brochure summarizes information contained in several Airbus Industrie documents and provides related recommendations. At the end of each chapter, a summary of main information to be remembered is highlighted and grouped together in the overview chapter. Should any deviation appear between the information provided in this brochure and that published in the applicable AFM, MMEL, FCOM, AMM, the latter shall prevail at all times All readers are encouraged to submit their questions and suggestions, regarding this document, to the following address: AIRBUS INDUSTRIE Flight Operations Support Customer Services Directorate 1, Rond Point Maurice Bellonte, BP 33 31707 BLAGNAC Cedex - FRANCE TELEX: AIRBU 530526F SITA: TLSBI7X Telefax: 33 5 61 93 29 68 or 33 5 61 93 44 65 AI/ST-F 945.9843/99 3 4 TABLE OF CONTENTS Foreword Overview Useful information in Airbus Industrie documentation Glossary / Definitions Abbreviations A. AIRCRAFT CONTAMINATION IN FLIGHT A1 Icing principles A1.1 Atmospheric
    [Show full text]