Saharan Dust, Convective Lofting, Aerosol Enhancement Zones, And
PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Saharan dust, convective lofting, aerosol enhancement zones, 10.1002/2017JD026933 and potential impacts on ice nucleation in the tropical Key Points: upper troposphere • Relative to background upper tropospheric air, an aerosol C. H. Twohy1 , B. E. Anderson2, R. A. Ferrare2 , K. E. Sauter3 ,T.S.L’Ecuyer3 , enhancement zone (AEZ) exists at the 4 fi 5 2 2 bottom edge of tropical storm anvils S. C. van den Heever , A. J. Heyms eld , S. Ismail , and G. S. Diskin • Storms affected by the SAL have more 1 2 large particles, likely mineral dust, in NorthWest Research Associates, Redmond, Washington, USA, NASA Langley Research Center, Hampton, Virginia, USA, the AEZ and these contribute to the 3Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, Wisconsin, USA, 4Department of background concentration Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA, 5Microscale and Mesoscale Meteorology • Convective lofting of dust by Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA convective systems is predicted to enhance ice nucleating particle concentrations in the upper fi fl troposphere Abstract Dry aerosol size distributions and scattering coef cients were measured on 10 ights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from Supporting Information: • Supporting Information S1 clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the Correspondence to: lower troposphere to the upper troposphere.
[Show full text]