Istanbul Technical University Graduate School of Science Engineering and Technology Development of a Model Unmanned Aerial

Total Page:16

File Type:pdf, Size:1020Kb

Istanbul Technical University Graduate School of Science Engineering and Technology Development of a Model Unmanned Aerial ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY DEVELOPMENT OF A MODEL UNMANNED AERIAL VEHICLE WITH SIMULINK : MODELLING AND CONTROL M.Sc. THESIS Akçay ÇALIŞIR Department of Mechatronics Engineering Mechatronics Engineering Programme MAY 2015 ISTANBUL TECHNICAL UNIVERSITY GRADUATE SCHOOL OF SCIENCE ENGINEERING AND TECHNOLOGY DEVELOPMENT OF A MODEL UNMANNED AERIAL VEHICLE WITH SIMULINK : MODELLING AND CONTROL M.Sc. THESIS Akçay ÇALIŞIR (518101045) Department of Mechatronics Engineering Mechatronics Engineering Programme Gülay ÖKE GÜNEL Thesis Advisor : Assist.Prof. Dr. 20 MAY 2015 İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SİMULİNK İLE MODEL İNSANSIZ HAVA ARACI GELİŞTİRİLMESİ : MODELLEMESİ VE KONTROLÜ YÜKSEK LİSANS TEZİ Akçay ÇALIŞIR (518101045) Mekatronik Mühendisliği Bölümü Mekatronik Mühendisliği Programı Tez Danışmanı: Yrd.Doç. Dr. Gülay ÖKE GÜNEL 20 MAYIS 2015 Student ID 518101045, a M.Sc. student of ITU Institute of Science and Technology, Akçay ÇALIŞIR, successfully defended the thesis entitled ‘‘DEVELOPMENT OF A MODEL UNMANNED AERIAL VEHICLE WITH SIMULINK : MODELLING AND CONTROL’’, which he prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below. Thesis Advisor : Assist. Prof. Dr. Gülay ÖKE GÜNEL ..……………... Istanbul Technical University Jury Members : Assoc. Prof. Dr. Pınar BOYRAZ ………………... Istanbul Technical University Assist. Prof. Dr. Figen ÖZEN ………………... Haliç University Date of Submission : 24 April 2015 Date of Defense : 20 May 2015 v vi To my beloved family, vii viii FOREWORD I would like to express my special thanks to my thesis advisor Assist. Prof. Dr. Gülay ÖKE GÜNEL for her valuable guidance and sharing her knowledge through every step of thesis which describing unmanned aerial vehicle. Finally, for their valuable support in every step of my life, I am grateful to my mother, my father, my sister and the rest of my family. May 2015 Akçay ÇALIŞIR ix x TABLE OF CONTENTS Page PREFACE .................................................................................................................. ix TABLE OF CONTENTS .......................................................................................... xi ABBREVIATIONS .................................................................................................. xv LIST OF TABLES ................................................................................................. xvii LIST OF FIGURES ................................................................................................ xix LIST OF SYMBOLS ............................................................................................ xxiii ABSTRACT .......................................................................................................... xxvii ÖZET ...................................................................................................................... xxix 1. INRODUCTION AND OVERVIEW ................................................................... 1 1.1 Introduction of Unmanned Aerial Vehicle ......................................................... 1 1.2 History and Future of UAV ................................................................................ 3 1.3 Outline of Thesis ................................................................................................ 9 2. DEVELOPMENT OF NONLINEAR SIMULINK MODEL ........................... 11 2.1 Introduction ...................................................................................................... 11 2.2 Dynamic Equation of Aircraft .......................................................................... 12 2.2.1 Assumptions .............................................................................................. 12 2.3 Definition of Axis System for Aircraft ............................................................. 13 2.3.1 Inertial axes ................................................................................................ 13 2.3.2 Body axes................................................................................................... 13 2.4 Aircraft Equation of Motion ............................................................................. 18 2.5 Kinematic Equations for Translation ................................................................ 20 2.6 Kinematic Equations for Attitude ..................................................................... 22 2.7 Forces and Moments ......................................................................................... 24 2.7.1 Aerodynamic.............................................................................................. 24 2.8 Actuators Model ............................................................................................... 25 2.9 Atmosphere and Wind-Turbulence Model ....................................................... 26 2.9.1 Atmosphere model ..................................................................................... 26 2.9.2 Wind-Turbulence model ............................................................................ 26 2.9.2.1 Background wind model ................................................................... 27 2.9.2.2 Turbulence model ............................................................................. 27 2.9.2.3 Wind shear model ............................................................................. 28 2.10 Summary ......................................................................................................... 31 3. DEVELOPMENT OF A LINEAR AIRCRAFT MODEL-LINEARIZATION .................................................................................................................................... 33 3.1 Introduction ...................................................................................................... 33 3.2 Trim .................................................................................................................. 34 3.2.1 Trim Results............................................................................................... 35 3.3 Small Disturbance Theory ................................................................................ 35 3.4 Linearization the Equations of Motion Using Small Disturbance Technique .. 36 3.5 Linear Aerodynamic Model ............................................................................. 37 3.5.1 Linearizing of aerodynamic forces and moments ..................................... 37 3.5.2 Longitudinal stability and control derivatives ........................................... 39 3.5.3 Lateral stability and control derivatives .................................................... 41 3.5.4 Airfoil aerodynamic coefficients ............................................................... 42 3.6 Linear Gravitational Model .............................................................................. 44 3.7 Engine Model ................................................................................................... 44 3.8 Linear Aircraft Model ....................................................................................... 45 xi 3.8.1 Longitudinal dynamic equations ................................................................ 46 3.8.2 Lateral dynamic equations ........................................................................ 47 3.9 Summary ........................................................................................................... 47 4. AIRCRAFT NATURAL MOTIONS .................................................................. 49 4.1 Longitudinal Aircraft Model............................................................................. 50 4.1.1 Phugoid mode ............................................................................................ 52 4.1.2 Short period mode ...................................................................................... 54 4.1.3 Dynamic response to wind ......................................................................... 56 4.1.4 Dynamic response to actuators .................................................................. 56 4.2 Lateral Aircraft Model ...................................................................................... 57 4.2.1 Roll mode ................................................................................................... 59 4.2.2 Spiral mode ................................................................................................ 60 4.2.3 Dutch roll mode ......................................................................................... 61 4.3 Response due to Variation in Cruise for Nonlinear and Linear ........................ 63 4.3.1 Response for nonlinear and linear system in longitudinal motion ............ 63 4.3.2 Response for nonlinear and linear system in lateral motion ...................... 67 5. FLIGHT CONTROL SYSTEM .......................................................................... 77 5.1 Introduction....................................................................................................... 77 5.2 Pitch Rate Damper ............................................................................................ 77 5.2.1 PI controller design .................................................................................... 82 5.2.2 PID controller design ................................................................................. 83 5.3 Altitude Controller ...........................................................................................
Recommended publications
  • Index Des Auteurs Auteur >> Numéro/Page
    Index des Auteurs http://www.aero-index.com/ Editions Larivière - Fanatique de l'Aviation Auteur >> Numéro/Page - Article Akary Frédéric ... Alex Trados -suite- 471/36 - Au sommet des cimes 130/63 - Le Fieseler 103 Reichenberg 143/70 - Messer 163 Anton (conversion) Alain Trados 131/63 - Le Me 163 (modifié en biplace) Allen Richard / Vincent Carl / Beauchamp Gérard 307/16 - Le Grumman / CCF G-23 Alegi Gregory 263/7 - Le Musée Caproni ouvrira au printemps Aloni Shlomo 267/6 - Un Macchi C.202 sort d'atelier 294/8 - Les Super Frelon israéliens au musée 278/6 - Le musée Caproni a réouvert ses portes 298/22 - Les deux guerres des Dassault Ouragan 360/7 - Un Bf 109 G-4 restauré en Italie 311/12 - Des Mystère contre des MiG 360/8 - Le Musée de la Force aérienne italienne rouvre... 312/61 - Des Mystère contre des MiG 363/11 - L'Arabie Saoudite offre un écrin à ses avions... 332/12 - Les Vautour en Israël 384/5 - L'Italie aura bientôt son Fiat CR.42 333/40 - Les Vautour en Israël 385/9 - Le SPAD VII du musée de la force aérienne... 334/50 - Les Vautour en Israël 391/7 - Le musée de la force aérienne italienne expose... 336/12 - De Sambad à Sa'ar 438/36 - Avant après 346/12 - L'épopée du Mirage III en Israël 446/7 - Rare trio de Ca.100 à Trente 347/50 - L'épopée du Mirage III en Israël 446/11 - Un premier Ro.37 afghan de retour en Italie 348/40 - L'épopée du Mirage III en Israël 452/10 - Le musée de la Force aérienne italienne expose..
    [Show full text]
  • Celebrating the Centennial of Naval Aviation in 1/72 Scale
    Celebrating the Centennial of Naval Aviation in 1/72 Scale 2010 USN/USMC/USCG 1/72 Aircraft Kit Survey J. Michael McMurtrey IPMS-USA 1746 Carrollton, TX [email protected] As 2011 marks the centennial of U.S. naval aviation, aircraft modelers might be interested in this list of US naval aircraft — including those of the Marines and Coast Guard, as well as captured enemy aircraft tested by the US Navy — which are available as 1/72 scale kits. Why 1/72? There are far more kits of naval aircraft available in this scale than any other. Plus, it’s my favorite, in spite of advancing age and weakening eyes. This is an updated version of an article I prepared for the 75th Anniversary of US naval aviation and which was published in a 1986 issue of the old IPMS-USA Update. It’s amazing to compare the two and realize what developments have occurred, both in naval aeronautical technology and the scale modeling hobby, but especially the latter. My 1986 list included 168 specific aircraft types available in kit form from thirty- three manufacturers — some injected, some vacuum-formed — and only three conversion kits and no resin kits. Many of these names (Classic Plane, Contrails, Eagle’s Talon, Esci, Ertl, Formaplane, Frog, Griffin, Hawk, Matchbox, Monogram, Rareplane, Veeday, Victor 66) are no longer with us or have been absorbed by others. This update lists 345 aircraft types (including the original 168) from 192 different companies (including the original 33), many of which, especially the producers of resin kits, were not in existence in 1986, and some of which were unknown to me at the time.
    [Show full text]
  • Aircraft Designations and Popular Names
    Chapter 1 Aircraft Designations and Popular Names Background on the Evolution of Aircraft Designations Aircraft model designation history is very complex. To fully understand the designations, it is important to know the factors that played a role in developing the different missions that aircraft have been called upon to perform. Technological changes affecting aircraft capabilities have resulted in corresponding changes in the operational capabilities and techniques employed by the aircraft. Prior to WWI, the Navy tried various schemes for designating aircraft. In the early period of naval aviation a system was developed to designate an aircraft’s mission. Different aircraft class designations evolved for the various types of missions performed by naval aircraft. This became known as the Aircraft Class Designation System. Numerous changes have been made to this system since the inception of naval aviation in 1911. While reading this section, various references will be made to the Aircraft Class Designation System, Designation of Aircraft, Model Designation of Naval Aircraft, Aircraft Designation System, and Model Designation of Military Aircraft. All of these references refer to the same system involved in designating aircraft classes. This system is then used to develop the specific designations assigned to each type of aircraft operated by the Navy. The F3F-4, TBF-1, AD-3, PBY-5A, A-4, A-6E, and F/A-18C are all examples of specific types of naval aircraft designations, which were developed from the Aircraft Class Designation System. Aircraft Class Designation System Early Period of Naval Aviation up to 1920 The uncertainties during the early period of naval aviation were reflected by the problems encountered in settling on a functional system for designating naval aircraft.
    [Show full text]
  • B&W Real.Xlsx
    NO REGN TYPE OWNER YEAR ‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐ X00001 Albatros L‐68C X00002 Albatros L‐68D X00003 Albatros L‐69 X00004 Albatros L‐72C Hamburg Fremdenblatt X00005 Albatros L‐72C striped c/s X00006 D‐961 Albatros L‐73 Lufthansa X00007 Aviatik B.II German AF X00008 B.558/15 Aviatik B.II German AF X00009 Aviatik PG.20/2 X00010 C.1952 Aviatik C.I German AF X00011 Aviatik C.III German AF X00012 6306 Aviatik C.IX German AF X00013 Aviatik D.II nose view X00014 Aviatik D.III German AF X00015 Aviatik D.III nose view X00016 Aviatik D.VII German AF X00017 Aviatik D.VII nose view X00018 Arado J.1 X00019 D‐1707 Arado L.1 Ostseebad Warnemunde X00020 Arado L.II X00021 D‐1874 Arado L.II X00022 D‐817 Arado S.I DVL X00023 Arado S.IA nose view X00024 Arado S.I modified X00025 D‐1204 Arado SC.I X00026 D‐1192 Arado SC.I X00027 Arado SC.Ii X00028 Arado SC.II nose view X00029 D‐1984 Arado SC.II X00030 Arado SD.1 floatplane @ (poor) X00031 Arado SD.II X00032 Arado SD.III X00033 D‐1905 Arado SSD.I X00034 D‐1905 Arado SSD.I nose view X00035 Arado SSD.I on floats X00036 Arado V.I X00037 D‐1412 Arado W.2 X00038 D‐2994 Arado Ar.66 X00039 D‐IGAX Arado AR.66 Air to Air X00040 D‐IZOF Arado Ar.66C X00041 Arado Ar.68E Luftwaffe X00042 D‐ITEP Arado Ar.68E X00043 Arado Ar.68E nose view X00044 D‐IKIN Arado Ar.68F X00045 D‐2822 Arado Ar.69A X00046 D‐2827 Arado Ar.69B X00047 D‐EPYT Arado Ar.69B X00048 D‐IRAS Arado Ar.76 X00049 D‐ Arado Ar.77 @ X00050 D‐ Arado Ar.77 X00051 D‐EDCG Arado Ar.79 Air to Air X00052 D‐EHCR
    [Show full text]
  • Estudio Sobre El Impacto Y La Transición Tecnológica De Los Drones
    Universidad Gerardo Barrios UNIVERSIDAD GERARDO BARRIOS FACULTAD DE CIENCIA Y TECNOLOGÍA TEMA DE INVESTIGACIÓN: ESTUDIO SOBRE EL IMPACTO Y LA TRANSICIÓN TECNOLÓGICA DE LOS DRONES INVESTIGADORES: KRISCIA VANESSA ZAPATA VARGAS MARVIN OSMARO PARADA BENÍTEZ PEDRO ANTONIO VILLALTA MARINERO USULUTÁN, 30 DE JUNIO DE 2017 Estudio sobre el impacto y la transición tecnológica de los Drones 1 ESTUDIO SOBRE EL IMPACTO Y LA TRANSICIÓN TECNOLÓGICA DE LOS DRONES RESUMEN O ABSTRACT Es sabido que la tecnología de drones no es un tema nuevo, al menos no para países como Estados Unidos, Alemania, España, y sumándose a ellos El Salvador; en este último ya puede observase su integración en diferentes áreas ejemplo de ello periodismo y educación, sin embargo, su uso representa grandes desafíos jurídicos, desde la regulación sobre el espacio aéreo hasta las posibles violaciones a la intimidad y accidentes que puedan generarse por el mal manejo de los mismos. Por tal razón se realizó un estudio sobre el impacto y la transición tecnológica de los drones en El Salvador; entre sus propósitos determinar si existe actualmente una regulación o la legislación vigente regula el impacto de esta transición en la aplicación de los drones para uso civil en los sectores de educación, investigación y empresa. Se tomaron muestras de diferentes sectores del área comercial empresas enfocadas al periodismo, turismo y cobertura de eventos, así como del área educativa estudiantes y docentes de tecnología y docentes de ciencias jurídicas, de diferentes universidades del país, también se involucró a Autoridad de Aviación Civil (AAC), para lo cual se realizaron, visitas técnicas, llenado de encuestas y entrevistas para la recopilación de información.
    [Show full text]
  • Pilóta Nélküli Repülés Profiknak És Amatőröknek
    Pilóta nélküli repülés profiknak és amatőröknek Szerkesztette Dr. Palik Mátyás Második, javított kiadás Pilóta nélküli repülés profiknak és amatőröknek Második javított kiadás © A Szerzők, 2013 © Nemzeti Közszolgálati Egyetem, 2013 Szerkesztő: Dr. Palik Mátyás Lektorok: Prof. Dr. Kovács László Prof. Dr. Óvári Gyula Olvasószerkesztő: Nagy Imréné Műszaki szerkesztő és ábrarajzoló: Dr. Szilvássy László A borítót készítette: Jámbor Krisztián A kiadvány szerzői: Dr. Békési Bertold, Dr. Bottyán Zsolt, Dr. Dunai Pál, Halászné dr. Tóth Alexandra, Prof. Dr. Makkay Imre, Dr. Palik Mátyás, Dr. Restás Ágoston, Dr. Wührl Tibor ISBN 978-615-5057-64-9 Kiadó: Nemzeti Közszolgálati Egyetem TÁMOP-4.2.1.B-11/2/KMR-2011-0001 Kritikus infrastruktúra védelmi kutatások „A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg”. A könyv „A pilóta nélküli légijárművek alkalmazásának légiközlekedés-biztonsági aspektusai” című kiemelt kutatási terület támogatásával készült el. TARTALOM TARTALOM ELŐSZÓ ...................................................................................................................................... 7 MOTTÓ ....................................................................................................................................... 9 BEVEZETÉS ............................................................................................................................. 11 UAV, DRONE, RPV, RPA, UAS, RPAS, UCAV, UCAS – ÉS AMI MÖGÖTTÜK VAN .. 11 EBBŐL ÉLNI – VAGY EZÉRT ...........................................................................................
    [Show full text]
  • Evolution of the Cruise Missile
    The Evolution of the Cruise Missile by KENNETH P. WERRELL Air University (AU) Air University Press Maxwell Air Force Base, Alabama September 1985 Library of Congress Cataloging in Publication Data Werrell, Kenneth P. The Evolution of the Cruise Missile . "September 1985 ." Includes bibliographies and index. 1 . Cruise Missiles-History . I. Air University (US) . II . Title. UG1312 .C7W47 1985 358'.174'0973 85-8131 First Printing 1985 Second Printing 1998 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the editors and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited. For sale by the Superintendent of Documents US Government Printing Office Washington DC 20402 90 t&iz c*nezieani a7lio ka(TE jzzvzJ, au jzviny, at wdl izzvE witfi tfiE ezuisz m.illiz. THIS PAGE INTENTIONALLY LEFT BLANK CONTENTS Chapter Page DISCLAIMER . .. .. .. .. .. .. .. .. ii FOREWORD. .. .. .. .. .. .. .. .. .. ix THE AUTHOR . .. .. .. .. .. .. .. .. .. .. xi ACKNOWLEDGMENTS . .. .. .. .. ... .. xiii I INTRODUCTION . .. .. .. .. .. .. .. 1 Notes . .. .. .. .. .. .. .. .. .. 6 II THE EARLY YEARS . .. .. .. .. .. .. .. .. .. 7 Foreign Efforts . .. .. .. .. .. .. .. .. .. .. 8 The Navy-Sperry Flying Bomb . .. .. .. .. .. .. 8 The Army-Kettering Bug .. .. .. .. .. .. .. .. .. 12 Foreign Developments . .. .. .. .. 17 The Army-Sperry Experiments . .. .. .. .. .. .. .. 21 US
    [Show full text]
  • Unmanned Aerial Vehicle: Tecnologie E Prospettive Future
    Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Informatica Unmanned Aerial Vehicle: tecnologie e prospettive future Relatore: Presentata da: Luciano Bononi Marcello Allegretti Correlatore: Giampiero Giacomello Sessione II Anno Accademico 2015 - 2016 Quale è la vera vittoria? – Quella su se stessi Prima regola dell’Aikido Abstract Partendo dalla definizione di UAV e UAS, arrivando a quella di drone, nella tesi saranno definiti i termini precedenti, ossia un sistema aereo senza pilota a bordo, la nascita del termine drone e le tendenze attuali. Dopo una precisa classificazione nelle quattro categorie principali (droni per hobbisti, commerciali e militari di me- dia grandezza, militari specifici di grandi dimensioni e stealth da combattimento) saranno descritti gli ambiti di utilizzo: da un lato quello militare e della sicurez- za, dall’altro quello civile e scientifico. I capitoli centrali della tesi saranno il cuore dell’opera: l’architettura dell’UAV sarà descritta analizzando la totalità delle sue componenti, sia hardware che software. Verranno, quindi, analizzati i problemi re- lativi alla sicurezza, focalizzandosi sull’hacking di un UAV, illustrandone le varie tecniche e contromisure (tra cui anche come nascondersi da un drone). Il lavoro della tesi prosegue nei capitoli successivi con un’attenta trattazione della normativa vigente e dell’etica dei droni (nonché del diritto ad uccidere con tali sistemi). Il capitolo relativo alla tecnologia stealth sarà importante per capire le modalità di occultamento, le tendenze attuali e i possibili sviluppi futuri degli UAV militari da combattimento. Il capitolo finale sugli sviluppi futuri esporrà le migliorie tecno- logiche e gli obiettivi degli UAV negli anni a venire, insieme ad eventuali utilizzi sia militari che civili.
    [Show full text]
  • First Operational US Navy Drone… …Successful in Combat in 1944!
    TDR-1 First Operational US Navy Drone… …Successful in Combat in 1944! ~ Foreword ~ In recent months, the US Navy has successfully conducted at-sea launchings and recoveries of an unmanned combat aerial vehicle from NIMITZ-class carriers. Touted as the first completely unmanned aircraft…or drone…capable of being operated from an aircraft carrier, certification of the X-47B for carrier service will take until 2019. That’s assuming funding continues to be provided and naval aviators accept the reality of such a device augmenting or perhaps even totally replacing them in time. As impressive as this sophisticated machine is, it will not be the first drone to be suitable for ‘combat ready’ deployment onboard a carrier. That honor properly goes to the Navy’s TDR-1. Although capable of being launched from American aircraft carriers seventy years ago, operation of a number of the fledgling, remotely controlled TDR-1 aircraft was restricted to Pacific island bases during World War II. Nevertheless, they did fly a number of successful combat missions. Just goes to show…that ain’t much new in this-here world… Bill Lee September 2013 ~ Derivation of ‘Drone’ and Early American Development ~ Experiments involving unmanned flight date back to World War I. But the development of remote control systems was not technologically advanced enough to permit development of a practical Unmanned Aerial Vehicle (UAV). In the mid-1930’s, the Royal Navy created remote-controlled aircraft, using obsolete biplanes for use as targets for shipboard anti-aircraft weapons. One of these radio-controlled aircraft, nick- named the ‘Queen Bee’, is shown to the right, being catapulted from a British cruiser.
    [Show full text]