Lecture 16. Mathematics of Medieval India

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 16. Mathematics of Medieval India Lecture 16. Mathematics of Medieval India The second period of Hindu mathematics Indian mathematics is also known as Hindu mathematics. After the early Hindu mathematics, the second period of Hindu math- ematics may be roughly dated from about A.D. 200 to 1200. Hindus made contributions to mathematics in arithmetic, geometry and algebra. They were influenced by the civilization at Alexandria, and other civilizations. The most important mathematicians of the period are Aryabhata¯ (475-550), Brah- magupta (598-668), Mah¯av¯ira (9th cent.), and Bh¯askara (1114-1185). Most of their work and that of Hindu mathematics generally was motivated by astronomy and astrology. Indian mathematicians made early contributions to the study of the concept of zero as a number, negative numbers, arithmetic, algebra, and trigonometry. Figure 16.1 The Tai Mahal in India. Counting Indian counted integers by using base 10 before the 6th century, and they used 9 numbers and a dot · to denote zero. The invention of zero is one of the greatest 99 contributions of Indian arithmetic. This counting system was accepted and improved by Arabs in the 8th century, and is called the Hindu-Arabic numeral system and was evolved into the modern counting system that we are using today. Negative numbers The Hindus introduced negative numbers to represent debts, and positive numbers represented assets. The first known use is by Brahmagupta about 628. Brahmagupta was born in 598, and lived until at least 665. His book the Br^ahma- sphuta - siddh^anta describes him as the teacher from Bhillam^ala,which is a town now known as Bhinmal in the Indian state of Gujurat. Very little is known about his life except that he was prominent in astronomy as well as mathematics. Brahmagupta introduced operations of 0 and negative numbers. But for solutions of a quadratic equation, Brahmagupta did not accept negative square roots. The Hindus did not unreservedly accept negative numbers, but negative numbers did gain acceptance slowly. Figure 16.2 Gol Gumbaz at Bijapur Irrational numbers Without rigorous proofs, Brahmagupta did some calculations of irrational numbers. For example, p p q p p p 3 + 12 = (3 + 12) + 2 3 · 12 = 27 = 3 3 and more generally p p q p a + b = (a + b) + 2 ab: The Hindus were less sophisticated than Greeks in that they failed to see the logical difficulties involved in the concept of irrational numbers. But their interests in calculation 100 caused them to perform calculations on irrational numbers anyway, which was completely independent of geometry and was helpful in development of mathematics. Algebra and equations Like Diophantus, Indians used abbreviations. Moreover they used more abbreviations than Diophantus did. For example, they used \ka", from the word karana, to denote \square root." When there are more than one unknowns, after the first unknown, they used color words \black, blue, yellow," etc. to denote the remaining unknowns. Indian algebra was an algebra of symbols, which greatly simplified calculation. Brahmagupta is known for introducing a general solution formula for the quadratic equa- tion, i.e., for the equation ax2 + bx − c = 0, the solution is p 4ac + b2 − b x = :1 2a This solution was not expressed in symbols but only applied to specific numbers, and the general method was implicit in many specific solved cases. Brahmagupta gave a formula in words: To the absolute number multiplied by four times the (coefficient of the) square, add the square of the (coefficient of the) middle term; the square root of the same, less the (coefficient of the) the middle term, being divided by twice the (coefficient of the) square is the value. 2 The square root of a negative number was not allowed. Bh¯askara (1114 - 1185) said that there is no square root of a negative number because a negative number is not a square. Geometry Many important geometric ideas were expressed in the Sulbas¯utras´ . Since such literary pieces were not designed to teach mathematics, there are no derivations, just assertions. Later commentators did give demonstrations. For example, in the Baudh¯ayana Sulbas¯utra´ , which probably dated to around 600 B.C., Pythagoras Theorem was asserted: The areas of the squares produced separately by the length and the breadth of a rectangle together equal the area of the square produced by the diagonal. This is observed in rectangles having sides 3 and 4, 12 and 5, 15 and 8, 7 and 24, 12 and 35, 15 and 36. 1In fact, as early as 2000 B.C., the Babylonians could, in today's notation, solve pairs of equations q 2 p p 2 x+y = p and xy = q, i.e., x +q = px. It was found that x; y = 2 ± 2 − q when both x; y were positive (The Babylonians did not admit negative numbers). 2c.f. John Stillwell, Mathematics and its history, Second edition, Springer, 2002, p.87. 101 A proof of this theorem was given in the Yuktibh¯as¯a, written by Jyesthadeva (1530-1610) in the mid-sixteenth century. The idea is to draw the square on each of the two sides and on the hypotenuse (see above picture). If one cuts along each of the lines, then rotates the triangles outside the large square, and two pieces together will fill up the square on the hypotenuse. As in the Chinese proof, not like as in Euclid's Elements, there are no axioms and rigorous proof. One just observes the diagram, rotates the pieces, and understands that the theorem is true. Such a procedure can be only regarded as an empirical proof. Figure 16.3 Brahmagupta and his formula One achievement by Brahmagupta (598-669) is a remarkable formula for the area of a cyclic quadrilateral. It states that if a quadrilateral has sides a; b; c and d, semi-perimeter s and all vertices on a circle, then its area is p(s − a)(s − b)(s − c)(s − d): 102 But there was no geometric proof offered by Brahmagupta. A proof for this formula first appeared also in the Yuktibh¯as¯a. The proof is based on the formulas for the lengths of the diagonals AC and BD of the quadrilateral: r r (ac + bd)(ad + bc) (ac + bd)(ab + cd) AC = ; and BD = : ab + cd ad + bc About the year 1200 scientific activity in India declined and progress in mathematics ceased. After the British conquered India in the eighteenth century, a few Indian scholars went to England to study and on their return did initiate some research. However, this modern activity is part of European mathematics. 103.
Recommended publications
  • Brahmagupta, Mathematician Par Excellence
    GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results.
    [Show full text]
  • Indian Mathematics
    Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician.
    [Show full text]
  • Secondary Indian Culture and Heritage
    Culture: An Introduction MODULE - I Understanding Culture Notes 1 CULTURE: AN INTRODUCTION he English word ‘Culture’ is derived from the Latin term ‘cult or cultus’ meaning tilling, or cultivating or refining and worship. In sum it means cultivating and refining Ta thing to such an extent that its end product evokes our admiration and respect. This is practically the same as ‘Sanskriti’ of the Sanskrit language. The term ‘Sanskriti’ has been derived from the root ‘Kri (to do) of Sanskrit language. Three words came from this root ‘Kri; prakriti’ (basic matter or condition), ‘Sanskriti’ (refined matter or condition) and ‘vikriti’ (modified or decayed matter or condition) when ‘prakriti’ or a raw material is refined it becomes ‘Sanskriti’ and when broken or damaged it becomes ‘vikriti’. OBJECTIVES After studying this lesson you will be able to: understand the concept and meaning of culture; establish the relationship between culture and civilization; Establish the link between culture and heritage; discuss the role and impact of culture in human life. 1.1 CONCEPT OF CULTURE Culture is a way of life. The food you eat, the clothes you wear, the language you speak in and the God you worship all are aspects of culture. In very simple terms, we can say that culture is the embodiment of the way in which we think and do things. It is also the things Indian Culture and Heritage Secondary Course 1 MODULE - I Culture: An Introduction Understanding Culture that we have inherited as members of society. All the achievements of human beings as members of social groups can be called culture.
    [Show full text]
  • Rationale of the Chakravala Process of Jayadeva and Bhaskara Ii
    HISTORIA MATHEMATICA 2 (1975) , 167-184 RATIONALE OF THE CHAKRAVALA PROCESS OF JAYADEVA AND BHASKARA II BY CLAS-OLOF SELENIUS UNIVERSITY OF UPPSALA SUMMARIES The old Indian chakravala method for solving the Bhaskara-Pell equation or varga-prakrti x 2- Dy 2 = 1 is investigated and explained in detail. Previous mis- conceptions are corrected, for example that chakravgla, the short cut method bhavana included, corresponds to the quick-method of Fermat. The chakravala process corresponds to a half-regular best approximating algorithm of minimal length which has several deep minimization properties. The periodically appearing quantities (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, etc.) are correctly understood only with the new theory. Den fornindiska metoden cakravala att l~sa Bhaskara- Pell-ekvationen eller varga-prakrti x 2 - Dy 2 = 1 detaljunders~ks och f~rklaras h~r. Tidigare missuppfatt- 0 ningar r~ttas, sasom att cakravala, genv~gsmetoden bhavana inbegripen, motsvarade Fermats snabbmetod. Cakravalaprocessen motsvarar en halvregelbunden b~st- approximerande algoritm av minimal l~ngd med flera djupt liggande minimeringsegenskaper. De periodvis upptr~dande storheterna (jyestha-m~la, kanistha-mula, ksepaka, kuttakara, os~) blir forstaellga0. 0 . f~rst genom den nya teorin. Die alte indische Methode cakrav~la zur Lbsung der Bhaskara-Pell-Gleichung oder varga-prakrti x 2 - Dy 2 = 1 wird hier im einzelnen untersucht und erkl~rt. Fr~here Missverst~ndnisse werden aufgekl~rt, z.B. dass cakrav~la, einschliesslich der Richtwegmethode bhavana, der Fermat- schen Schnellmethode entspreche. Der cakravala-Prozess entspricht einem halbregelm~ssigen bestapproximierenden Algorithmus von minimaler L~nge und mit mehreren tief- liegenden Minimierungseigenschaften. Die periodisch auftretenden Quantit~ten (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, usw.) werden erst durch die neue Theorie verst~ndlich.
    [Show full text]
  • The Brahmagupta Triangles Raymond A
    The Brahmagupta Triangles Raymond A. Beauregard and E. R. Suryanarayan Ray Beauregard ([email protected]) received his Ph.D. at the University of New Hampshire in 1968, then joined the University of Rhode Island, where he is a professor of mathematics. He has published many articles in ring theory and two textbooks. Linear Algebra (written with John Fraleigh) is currently in its third edition. Besides babysitting for his grandchild Elyse, he enjoys sailing the New England coast on his sloop, Aleph One, and playing the piano. E. R. Suryanarayan ([email protected]) taught at universities in India before receiving his Ph.D. (1961) at the University of Michigan, under Nathaniel Coburn. He has been at the University of Rhode Island since 1960, where is a professor of mathematics. An author of more than 20 research articles in applied mathematics, crystallography, and the history of mathematics, he lists as his main hobbies music, languages, and aerobic walking. The study of geometric objects has been a catalyst in the development of number theory. For example, the figurate numbers (triangular, square, pentagonal, . ) were a source of many early results in this field [41.Measuring the length of a diagonal of a rectangle led to the problem of approxin~atingfi for a natural number N. The study of triangles has been of particular significance. Heron of Alexandria (c. A.D. 75)-gave the well-known formula for the area A of a triangle in terms of its sides: A = Js(s - a)(s- b)(s- c),where s = (a + b + c)/2 is the semiperimeter of the triangle having sides a,b, c [41.He illustrated this with a triangle whose sides are 13,14,15 and whose area is 84.
    [Show full text]
  • Astronomy in India
    TRADITIONSKnowledg & PRACTICES OF INDIA e Textbook for Class XI Module 1 Astronomy in India CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110 092 India TRADITIONSKnowledg & PRACTICESe OF INDIA Textbook for Class XI Module 1 Astronomy in India CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110 092 India No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, without the prior permission of the Central Board of Secondary Education (CBSE). Preface India has a rich tradition of intellectual inquiry and a textual heritage that goes back to several hundreds of years. India was magnificently advanced in knowledge traditions and practices during the ancient and medieval times. The intellectual achievements of Indian thought are found across several fields of study in ancient Indian texts ranging from the Vedas and the Upanishads to a whole range of scriptural, philosophical, scientific, technical and artistic sources. As knowledge of India's traditions and practices has become restricted to a few erudite scholars who have worked in isolation, CBSE seeks to introduce a course in which an effort is made to make it common knowledge once again. Moreover, during its academic interactions and debates at key meetings with scholars and experts, it was decided that CBSE may introduce a course titled ‘Knowledge Traditions and Practices of India’ as a new Elective for classes XI - XII from the year 2012-13. It has been felt that there are many advantages of introducing such a course in our education system.
    [Show full text]
  • Review of Research Impact Factor : 5.7631(Uif) Ugc Approved Journal No
    Review Of ReseaRch impact factOR : 5.7631(Uif) UGc appROved JOURnal nO. 48514 issn: 2249-894X vOlUme - 8 | issUe - 2 | nOvembeR - 2018 __________________________________________________________________________________________________________________________ ANCIENT INDIAN CONTRIBUTIONS TOWARDS MATHEMATICS Madhuri N. Gadsing Department of Mathematics, Jawahar Arts, Science and Commerce College, Anadur (M.S.), India. ABSTRACT Mathematics having been a progressive science has played a significant role in the development of Indian culture for millennium. In ancient India, the most famous Indian mathematicians, Panini (400 CE), Aryabhata I (500 CE), Brahmagupta (700 CE), Bhaskara I (900 CE), Mahaviracharya (900 CE), Aryabhata II (1000 CE), Bhaskara II (1200 CE), chanced to discover and develop various concepts like, square and square roots, cube and cube roots, zero with place value, combination of fractions, astronomical problems and computations, differential and integral calculus etc., while meditating upon various aspects of arithmetic, geometry, astronomy, modern algebra, etc. In this paper, we review the contribution of Indian mathematicians from ancient times. KEYWORDS: Mathematics , development of Indian , astronomical problems and computations. INTRODUCTION: Mathematics having been a progressive science has played a significant role in the development of Indian culture for millennium. Mathematical ideas that originated in the Indian subcontinent have had a profound impact on the world. The aim of this article is to give a brief review of a few of the outstanding innovations introduced by Indian mathematicians from ancient times. In ancient India, the most famous Indian mathematicians belong to what is known as the classical era [1-8]. This includes Panini (400 CE), Aryabhata I (500 CE) [9], Brahmagupta (700 CE), Bhaskara I (900 CE) [5, 6], Mahavira (900 CE), Aryabhata II (1000 CE), Bhaskaracharya or Bhaskara II (1200 CE) [10-13].
    [Show full text]
  • Equation Solving in Indian Mathematics
    U.U.D.M. Project Report 2018:27 Equation Solving in Indian Mathematics Rania Al Homsi Examensarbete i matematik, 15 hp Handledare: Veronica Crispin Quinonez Examinator: Martin Herschend Juni 2018 Department of Mathematics Uppsala University Equation Solving in Indian Mathematics Rania Al Homsi “We owe a lot to the ancient Indians teaching us how to count. Without which most modern scientific discoveries would have been impossible” Albert Einstein Sammanfattning Matematik i antika och medeltida Indien har påverkat utvecklingen av modern matematik signifi- kant. Vissa människor vet de matematiska prestationer som har sitt urspring i Indien och har haft djupgående inverkan på matematiska världen, medan andra gör det inte. Ekvationer var ett av de områden som indiska lärda var mycket intresserade av. Vad är de viktigaste indiska bidrag i mate- matik? Hur kunde de indiska matematikerna lösa matematiska problem samt ekvationer? Indiska matematiker uppfann geniala metoder för att hitta lösningar för ekvationer av första graden med en eller flera okända. De studerade också ekvationer av andra graden och hittade heltalslösningar för dem. Denna uppsats presenterar en litteraturstudie om indisk matematik. Den ger en kort översyn om ma- tematikens historia i Indien under många hundra år och handlar om de olika indiska metoderna för att lösa olika typer av ekvationer. Uppsatsen kommer att delas in i fyra avsnitt: 1) Kvadratisk och kubisk extraktion av Aryabhata 2) Kuttaka av Aryabhata för att lösa den linjära ekvationen på formen 푐 = 푎푥 + 푏푦 3) Bhavana-metoden av Brahmagupta för att lösa kvadratisk ekvation på formen 퐷푥2 + 1 = 푦2 4) Chakravala-metoden som är en annan metod av Bhaskara och Jayadeva för att lösa kvadratisk ekvation 퐷푥2 + 1 = 푦2.
    [Show full text]
  • Brahmagupta's 18 Laws of Mathematics
    EDUCATION “Brahmagupta’s 18 laws of mathematics are completely missing from India’s present mathematics curriculum.” ndia is known to be the birthplace of modern mathematics. Yet, many Indian Ischool-going children lack proper understanding of mathematical concepts. Australian mathematics historian Jonathan J. Crabtree was apprehensive of mathematics as a student like many of his classmates. He felt there was a need to better explain the laws and rules of mathematics. Over the years, Crabtree has retraced the origin of mathematics and linked it to ancient Indian wisdom. He found that India’s definition of zero never made it to Europe. The disconnect between western mathematical explanations from the original teachings of ancient Indian mathematicians like Brahmagupta, Mahāvira (c. 850) or Bhāscara (c. 1150) was identified by Crabtree as a major contributing factor. BE’s Isha Chakraborty spoke to him. Jonathan J. Crabtree . Why and when did you feel that there were some Brahmagupta was an astronomer. Today, children are told that Qmistakes in basic mathematical concepts? negative numbers are defined as being less than zero, yet that is mathematically and historically incorrect. The Chinese were A. Fifty years ago, in 1968, my Class 2 teacher gave me the using negative and positive numbers for around 1400 years wrong explanation of multiplication. People have said aaa × bbb before they adopted India’s zero. So the Chinese could never equals aaa added to itself bbb times for centuries. Yet this leads to 1 have considered negatives numbers less than zero. Instead, × 1 = 2. When asked ‘what is two added to itself three times’, they just viewed negatives as equal and opposite to positives, I said 8.
    [Show full text]
  • Påˆini and Euclid: Reflections on Indian Geometry* (Published In: Journal of Indian Philosophy 29 (1-2; Ingalls Commemoration Volume), 2001, 43-80)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serveur académique lausannois Påˆini and Euclid 1 JOHANNES BRONKHORST Påˆini and Euclid: reflections on Indian geometry* (published in: Journal of Indian Philosophy 29 (1-2; Ingalls Commemoration Volume), 2001, 43-80) Professor Ingalls — in an article called "The comparison of Indian and Western philosophy" — made the following interesting observation (1954: 4): "In philosophizing the Greeks made as much use as possible of mathematics. The Indians, curiously, failed to do this, curiously because they were good mathematicians. Instead, they made as much use as possible of grammatical theory and argument." This observation should not — as goes without saying in our day and age — be read as a description of the Indian “genius” as opposed to that of the Greeks (at least not in some absolute sense), but as a reminder of the important roles that mathematics and linguistics have played as methodical guidelines in the development of philosophy in Greece and in India respectively. Ingalls appears to have been the first to draw attention to this important distinction. He was not the last. Ingalls's observation has been further elaborated by J. F. (= Frits) Staal in a few articles (1960; 1963; 1965).1 Staal focuses the discussion on two historical persons in particular, Euclid and Påˆini, both of whom — as he maintains — have exerted an important, even formative, influence on developments in their respective cultures. Staal also broadens the horizon by drawing other areas than only philosophy into the picture. To cite his own words (1965: 114 = 1988: 158): "Historically speaking, Påˆini's method has occupied a place comparable to that held by Euclid's method in Western thought.
    [Show full text]
  • Bringing the Buddha Closer: the Role of Venerating the Buddha in The
    BRINGING THE BUDDHA CLOSER: THE ROLE OF VENERATING THE BUDDHA IN THE MODERNIZATION OF BUDDHISM IN SRI LANKA by Soorakkulame Pemaratana BA, University of Peradeniya, 2001 MA, National University of Singapore, 2005 Submitted to the Graduate Faculty of The Dietrich School of Arts & Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH THE DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Soorakkulame Pemaratana It was defended on March 24, 2017 and approved by Linda Penkower, PhD, Associate Professor, Religious Studies Joseph Alter, PhD, Professor, Anthropology Donald Sutton, PhD, Professor Emeritus, Religious Studies Dissertation Advisor: Clark Chilson, PhD, Associate Professor, Religious Studies ii Copyright © by Soorakkulame Pemaratana 2017 iii BRINGING THE BUDDHA CLOSER: THE ROLE OF VENERATING THE BUDDHA IN THE MODERNIZATION OF BUDDHISM IN SRI LANKA Soorakkulame Pemaratana, PhD. University of Pittsburgh, 2017 The modernization of Buddhism in Sri Lanka since the late nineteenth century has been interpreted as imitating a Western model, particularly one similar to Protestant Christianity. This interpretation presents an incomplete narrative of Buddhist modernization because it ignores indigenous adaptive changes that served to modernize Buddhism. In particular, it marginalizes rituals and devotional practices as residuals of traditional Buddhism and fails to recognize the role of ritual practices in the modernization process. This dissertation attempts to enrich our understanding of modern and contemporary Buddhism in Sri Lanka by showing how the indigenous devotional ritual of venerating the Buddha known as Buddha-vandanā has been utilized by Buddhist groups in innovative ways to modernize their religion.
    [Show full text]
  • Ancient Indian Mathematics – a Conspectus*
    GENERAL ARTICLE Ancient Indian Mathematics – A Conspectus* S G Dani India has had a long tradition of more than 3000 years of pursuit of Mathematical ideas, starting from the Vedic age. The Sulvasutras (which in- cluded Pythagoras theorem before Pythagoras), the Jain works, the base 10 representation (along with the use of 0), names given to powers of 10 S G Dani is a Distinguished up to 1053, the works of medieval mathematicians Professor at the Tata motivated by astronomical studies, and ¯nally Institute of Fundamental Research, Mumbai. He the contributions of the Kerala school that came obtained his bachelor’s, strikingly close to modern mathematics, repre- master’s and PhD degrees sent the various levels of intellectual attainment. from the University of Mumbai. His areas of There is now increasing awareness around the world that interest are dynamics and as one of the ancient cultures, India has contributed sub- ergodic theory of flows on stantially to the global scienti¯c development in many homogeneous spaces, spheres, and mathematics has been one of the recognized probability measures on Lie groups areas in this respect. The country has witnessed steady and history of mathematics. mathematical developments over most part of the last He has received 3,000 years, throwing up many interesting mathemati- several awards including cal ideas well ahead of their appearance elsewhere in the the Ramanujan Medal and the world, though at times they lagged behind, especially in TWAS Prize. the recent centuries. Here are some episodes from the fascinating story that forms a rich fabric of the sustained * This is a slightly modified ver- intellectual endeavour.
    [Show full text]