Sounding the Depths II: the Rising Toll of Sonar, Shipping And

Total Page:16

File Type:pdf, Size:1020Kb

Sounding the Depths II: the Rising Toll of Sonar, Shipping And SOUNDING THE DEPTHS II: The Rising Toll of Sonar, Shipping and Industrial Ocean Noise on Marine Life Principal Author Michael Jasny Coauthors Joel Reynolds Cara Horowitz Andrew Wetzler Project Director Joel Reynolds Natural Resources Defense Council November 2005 ABOUT NRDC The Natural Resources Defense Council is a national nonprofit environmental organization with more than 1 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, and San Francisco. Visit us at www.nrdc.org. ACKNOWLEDGMENTS This report was prepared by NRDC’s Marine Mammal Protection Project, under the direction of Joel Reynolds, in our Los Angeles office. The authors wish to thank the Marisla Foundation, Hawley Family Foundation, and Sun Hill Foundation for their generous support, as well as NRDC’s members, without whom our work to save marine species and habitat would not be possible. We would also like to acknowledge the contributions made by our friends and colleagues Sara Townsend, Dorothée Alsentzer, Angela Haren, Laura Harrison, Daniel Hinerfeld, Chris Kendell, Matthew McKinzie, Gabrielle Savini, and Morgan Wyenn. This report is dedicated to Ben White, a fearless campaigner for marine mammals, who passed away this summer. Few have cared as passionately as Ben about the health of our oceans and the welfare of the creatures that live there. NRDC President: John Adams NRDC Executive Director: Frances Beinecke NRDC Director of Communications: Phil Gutis NRDC Reports Manager: Alexandra Kennaugh Production: Bonnie Greenfield Cover Design: Sue Rossi Cover Photo: V. Martin (SECAC) Copyright 2005 by the Natural Resources Defense Council. For additional copies of this report, send $7.50 plus $3.95 shipping and handling to NRDC Reports Department, 40 West 20th Street, New York, NY 10011. California residents must add 8.5% sales tax. Please make checks payable to NRDC in U.S. dollars. This report is printed on paper that is 100 percent post-consumer recycled fiber, processed chlorine free. CONTENTS Executive Summary iv Chapter 1: The Rise of Ocean Noise 1 Chapter 2: Dynamite and Fog—A Survey of Noise Sources 18 Chapter 3: The Tyranny of Small Decisions—Domestic Regulation of Ocean Noise 42 Chapter 4: Noise Without Borders—The Growing International Response 54 Endnotes 64 Tables and Figures Table 1.1 Comparison of Some Major Sources of Undersea Noise 3 Table 1.2 Potential Impacts of Sound in the Marine Environment 7 Table 1.3 Mass Strandings Coincident with Naval or Seismic Activities 8 Table 2.1 Mitigation Measures for Ocean Noise 19 Table 2.2 Active Sonar Systems in Use or Development by NATO Member States 22 Table 2.3 Seismic Exploration Around the World, January 2002–February 2005 31 Table 4.1 International Conventions, Agreements, and Treaties with Relevance to Ocean Noise 56 Figure 2.1 Navy Complexes off the U.S. Coast 27 Figure 2.2 Global Hotspots for Offshore Seismic Exploration (January 2002–February 2005) 29 Figure 2.3 Projections of Future Seismic Surveys in the Gulf of Mexico 32 Figure 2.4 U.S. Gulf of Mexico Seismic Survey Areas by Crew Count (January 2002–February 2005) 33 Figure 2.5 European Seismic Survey Areas by Crew Count (January 2002–February 2005) 34 Figure 2.6 International Shipping Lanes in North American Waters 37 iii EXECUTIVE SUMMARY t is a commonplace among divers and oceanographers Defining the Problem Ithat the ocean is no “silent world,” as Jacques ”Undersea noise pollution is like the death of a Cousteau had written, but an exceptionally noisy thousand cuts. Each sound in itself may not be a place. Most whales and many other marine species matter of critical concern, but taken all together, the depend on sound as they hunt for food, detect preda- noise from shipping, seismic surveys, and military tors, find mates, and maintain their awareness in the activity is creating a totally different environment darkness of the sea. Over the past century, however, the acoustic landscape of the ocean has been trans- than existed even fifty years ago. That high level of formed by human activity. Some biologists have com- noise is bound to have a hard, sweeping impact on pared the increasing levels of background noise in life in the sea. Regulating these sound sources can many places off our coasts to a continuous fog that is be difficult, but one has to start somewhere. Every shrinking the sensory range of marine animals. Others, breath we take is dependent on the ocean. And unless concerned about a growing number of whale mortali- we really understand how that vast system works ties linked to military sonar, have compared the effects and take better care of it, it isn’t just the ocean that’s of intense sound to those of dynamite. Together these in jeopardy. It’s our whole future that’s at stake.” analogies suggest the range of impacts that noise can have: from long-term behavioral change to hearing DR. SYLVIA EARLE, FORMER CHIEF SCIENTIST, NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION loss to death. Since 1999, when the first edition of this report was published, the scientific record and the public’s aware- about three to five decibels per decade in the band ness of the issue have grown with astonishing rapidity. occupied by commercial ships. In some areas near It has become increasingly clear that the rise of ocean the coast, the sound is persistently several orders of noise presents a significant, long-term threat to an magnitude higher than in less urbanized waters, environment that is utterly dependent on sound. Our raising concerns about chronic impacts on marine life. purpose in this report is to review the science, survey Among the leading contributors to the problem: the leading contributors to the problem, and suggest what might be done to reduce the impacts of noise on Military active sonar systems put out intense sound the sea—before the proliferation of noise sources to detect and track submarines and other targets. Mid- makes the problem unmanageable. frequency tactical sonar, which is currently installed on close to 200 American vessels and on the ships of THE RISE OF AN ENVIRONMENTAL PROBLEM other navies, is linked to a growing number of whale There is general agreement that hearing is probably strandings worldwide. Low-frequency sonar, which the primary sense of whales, dolphins, and other has proliferated rapidly over the last decade, can marine species, as vitally important to them as seeing travel hundreds of miles at intensities strong enough is to us. Yet the acoustic environment is increasingly to affect marine mammals. Navies are increasingly overshadowed by a gamut of military, commercial, using both types of systems (a list of which is and industrial sources: dredgers that clear the seabed contained in the report) in coastal waters. for ship traffic, pipelines, and structures; high explosives for removing oil platforms and testing the seaworthi- High-energy seismic surveys are used by industry ness of military ships; pile drivers for construction; to detect oil and gas deposits beneath the ocean floor. harassment devices for fisheries; tunnel borers; drilling Surveys typically involve firing airguns every few platforms; commercial sonar; modems; transmitters; seconds at intensities that, in some cases, can drown and innumerable jet skis and power boats. In deep out whale calls over tens of thousands of square miles. water, background noise seems to be growing by The industry conducts more than 100 seismic surveys iv Natural Resources Defense Council Sounding the Depths II each year off the coast of the United States, and that potential threat from noise, particularly in depleted could increase significantly with the passage of the populations: what has been called a “death of a Energy Policy Act of 2005, which mandates an inven- thousand cuts.” We know that sound can chase some tory of the entire U.S. outer continental shelf. Global animals from their habitat, force some to compromise hot spots (which are mapped in the report) include their feeding, cause some to fall silent, and send some the Gulf of Mexico, the North Sea, and the west coast into what seems like panic. Preliminary attempts at of Africa. modeling the “energetics” of marine mammals (the amount of energy an animal has to spend to compen- The low-frequency rumble of engines, propellers, sate for an intrusion) suggest that even small altera- and other commercial shipping noise can be heard tions in behavior could have significant consequences in virtually every corner of the ocean. Over the last for reproduction or survival if repeated over time. 75 years, the number of merchant ships has tripled, Other impacts include temporary and permanent and their cargo capacity (which relates roughly to the hearing loss, which can compromise an animal’s amount of sound they produce) has increased steadily. ability to function in the wild; chronic stress, which Some believe that the biggest ships will become faster has been associated in land mammals with suppression and larger still, possibly tripling in capacity, and that of the immune system, cardiovascular disease, and their numbers will double over the next 20 to 30 years. other health problems; and the masking of biologically Increasingly, short hauls between ports could take important sounds, which could be disastrous for cargo ships nearer to shore—directly through coastal species, like the endangered fin whale, that are habitat for many marine species. believed to communicate over long distances. Although marine mammals have received most That some types of sound are killing some of the attention, there are increasing signs that noise, species of marine mammals is no longer a matter like other forms of pollution, is capable of affecting of serious scientific debate.
Recommended publications
  • Marine Mammals Around Marine Renewable Energy Devices Using Active Sonar
    TRACKING MARINE MAMMALS AROUND MARINE RENEWABLE ENERGY DEVICES USING ACTIVE SONAR GORDON HASTIE URN: 12D/328: 31 JULY 2013 This document was produced as part of the UK Department of Energy and Climate Change's offshore energy Strategic Environmental Assessment programme © Crown Copyright, all rights reserved. 1 SMRU Limited New Technology Centre North Haugh ST ANDREWS Fife KY16 9SR www.smru.co.uk Switch: +44 (0)1334 479100 Fax: +44 (0)1334 477878 Lead Scientist: Gordon Hastie Scientific QA: Carol Sparling Date: Wednesday, 31 July 2013 Report code: SMRUL-DEC-2012-002.v2 This report is to be cited as: Hastie, G.D. (2012). Tracking marine mammals around marine renewable energy devices using active sonar. SMRU Ltd report URN:12D/328 to the Department of Energy and Climate Change. September 2012 (unpublished). Approved by: Jared Wilson Operations Manager1 1 Photo credit (front page): R Shucksmith (www.rshucksmith.co.uk) 2 TABLE OF CONTENTS Table of Contents ----------------------------------------------------------------------------------------------------------------------------------------- 3 Table of Figures ------------------------------------------------------------------------------------------------------------------------------------------- 5 1. Non technical summary --------------------------------------------------------------------------------------------------------------------- 9 2. Introduction ----------------------------------------------------------------------------------------------------------------------------------- 12
    [Show full text]
  • Front Matter
    TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF REMEDIATION OAK RIDGE OFFICE ENVIRONMENTAL MONITORING PLAN July 2018 June 2019 Tennessee Department of Environment and Conservation, Authorization No. 327023 June 29, 2018 Pursuant to the State of Tennessee’s policy of non-discrimination, the Tennessee Department of Environment and Conservation does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, or in the admission or access to, or treatment or employment in its programs, services or activities. Equal Employment Opportunity/Affirmative Action inquiries or complaints should be directed to the EEO/AA coordinator, Office of General Counsel, William R. Snodgrass Tennessee Tower 2nd Floor, 312 Rosa L. Parks Avenue, Nashville, TN 37243, 1-888-867-7455. ADA inquiries or complaints should be directed to the ADAAA coordinator, William Snodgrass Tennessee Tower 2nd Floor, 312 Rosa Parks Avenue, Nashville, TN 37243, 1-866-253-5827. Hearing impaired callers may use the Tennessee Relay Service 1-800-848-0298. To reach your local ENVIRONMENTAL ASSISTANCE CENTER Call 1-888-891-8332 or 1-888-891-TDEC This plan was published with 100% federal funds DE-EM0001620 DE-EM0001621 Tennessee Department of Environment and Conservation, Authorization No. 327023 June 29, 2018 Executive Summary The Tennessee Department of Environment and Conservation (TDEC), Division of Remediation (DoR), Oak Ridge Office (ORO), submits its FY 2019 Environmental Monitoring Plan (EMP) in accordance with the Environmental Surveillance and Oversight Agreement (ESOA) between the United States Department of Energy (DOE) and the State of Tennessee; and where applicable, the Federal Facilities Agreement (FFA) between the DOE, the Environmental Protection Agency (EPA), and the State of Tennessee.
    [Show full text]
  • TDEC 2014- TN5288--TDEC 2013-Environmental-Monitoring
    TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DOE OVERSIGHT OFFICE ENVIRONMENTAL MONITORING REPORT JANUARY through DECEMBER 2013 Pursuant to the State of Tennessee’s policy of non-discrimination, the Tennessee Department of Environment and Conservation does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, or in the admission or access to, or treatment or employment in its programs, services or activities. Equal employment Opportunity/Affirmative Action inquiries or complaints should be directed to the EEO/AA Coordinator, Office of General Counsel, 401 Church Street, 20th Floor, L & C Tower, Nashville, TN 37243, 1-888-867-7455. ADA inquiries or complaints should be directed to the ADA Coordinator, Human Resources Division, 401 Church Street, 12th Floor, L & C Tower, Nashville, TN 37243, 1-888- 253-5827. Hearing impaired callers may use the Tennessee Relay Service 1-800-848-0298. To reach your local ENVIRONMENTAL ASSISTANCE CENTER Call 1-888-891-8332 OR 1-888-891-TDEC This report was published With 100% Federal Funds DE-EM0001621 DE-EM0001620 Tennessee Department of Environment and Conservation, Authorization April 2014 2 TABLE OF CONTENTS TABLE OF CONTENTS …………………………………………………………………………….3 EXECUTIVE SUMMARY……………………………………………………………………………4 ACRONYMS …………………………………………………………………………………………15 INTRODUCTION……………………………………………………………………………………19 AIR QUALITY MONITORING Monitoring of Hazardous Air Pollutants on the Oak Ridge Reservation .……………………………..23 RadNet
    [Show full text]
  • The 10Th EAA International Symposium on Hydroacoustics Jastrzębia Góra, Poland, May 17 – 20, 2016
    ARCHIVES OF ACOUSTICS Copyright c 2016 by PAN – IPPT Vol. 41, No. 2, pp. 355–373 (2016) DOI: 10.1515/aoa-2016-0038 The 10th EAA International Symposium on Hydroacoustics Jastrzębia Góra, Poland, May 17 – 20, 2016 The 10th EAA International Symposium on Hy- Dr. Christopher Jenkins: Backscatter from In- droacoustics, which is also the 33rd Symposium on • tensely Biological Seabeds – Benthos Simulation Hydroacoustics in memory of Prof. Leif Børnø orga- Approaches; nized in Poland, will take place from May 17 to 20, Prof. Eugeniusz Kozaczka: Technical Support for 2016, in Jastrzębia Góra. It will be a forum for re- • National Border Protection on Vistula Lagoon and searchers, who are developing hydroacoustics and re- Vistula Spit; lated issues. The Symposium is organized by the Prof. Andrzej Nowicki et al.: Estimation of Ra- Gdańsk University of Technology and the Polish Naval • dial Artery Reactive Response using 20 MHz Ul- Academy. trasound; The Scientific Committee comprises of the world – Prof. Jerzy Wiciak: Advances in Structural Noise class experts in this field, coming from, among others, • Germany, UK, USA, Taiwan, Norway, Greece, Russia, Reduction in Fluid. Turkey and Poland. The chairman of Scientific Com- All accepted papers will be published in the periodical mittee is Prof. Eugeniusz Kozaczka, who is the Pres- “Hydroacoustics”. ident of Committee on Acoustics Polish Academy of Sciences and Chairman of Technical Committee Hy- droacoustics of European Acoustics Association. Abstracts The Symposium will include invited lectures, struc-
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • Cetacean Population Density Estimation from Single Fixed Sensors Using Passive Acoustics
    Cetacean population density estimation from single fixed sensors using passive acoustics Elizabeth T. Ku¨sela) and David K. Mellinger Cooperative Institute for Marine Resources Studies (CIMRS), Oregon State University, Hatfield Marine Science Center, Newport, Oregon 97365 Len Thomas Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, Scotland Tiago A. Marques Centro de Estatı´stica e Aplicac¸o˜es da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal David Moretti and Jessica Ward Naval Undersea Warfare Center Division, Newport, Rhode Island 02841 (Received 17 December 2010; revised 18 March 2011; accepted 30 March 2011) Passive acoustic methods are increasingly being used to estimate animal population density. Most density estimation methods are based on estimates of the probability of detecting calls as functions of distance. Typically these are obtained using receivers capable of localizing calls or from studies of tagged animals. However, both approaches are expensive to implement. The approach described here uses a MonteCarlo model to estimate the probability of detecting calls from single sensors. The passive sonar equation is used to predict signal-to-noise ratios (SNRs) of received clicks, which are then combined with a detector characterization that predicts probability of detection as a func- tion of SNR. Input distributions for source level, beam pattern, and whale depth are obtained from the literature. Acoustic propagation modeling is used to estimate transmission loss. Other inputs for density estimation are call rate, obtained from the literature, and false positive rate, obtained from manual analysis of a data sample. The method is applied to estimate density of Blainville’s beaked whales over a 6-day period around a single hydrophone located in the Tongue of the Ocean, Baha- mas.
    [Show full text]
  • Assessment of Natural and Anthropogenic Sound Sources and Acoustic Propagation in the North Sea
    UNCLASSIFIED Oude Waalsdorperweg 63 P.O. Box 96864 2509 JG The Hague The Netherlands TNO report www.tno.nl TNO-DV 2009 C085 T +31 70 374 00 00 F +31 70 328 09 61 [email protected] Assessment of natural and anthropogenic sound sources and acoustic propagation in the North Sea Date February 2009 Author(s) Dr. M.A. Ainslie, Dr. C.A.F. de Jong, Dr. H.S. Dol, Dr. G. Blacquière, Dr. C. Marasini Assignor The Netherlands Ministry of Transport, Public Works and Water Affairs; Directorate-General for Water Affairs Project number 032.16228 Classification report Unclassified Title Unclassified Abstract Unclassified Report text Unclassified Appendices Unclassified Number of pages 110 (incl. appendices) Number of appendices 1 All rights reserved. No part of this report may be reproduced and/or published in any form by print, photoprint, microfilm or any other means without the previous written permission from TNO. All information which is classified according to Dutch regulations shall be treated by the recipient in the same way as classified information of corresponding value in his own country. No part of this information will be disclosed to any third party. In case this report was drafted on instructions, the rights and obligations of contracting parties are subject to either the Standard Conditions for Research Instructions given to TNO, or the relevant agreement concluded between the contracting parties. Submitting the report for inspection to parties who have a direct interest is permitted. © 2009 TNO Summary Title : Assessment of natural and anthropogenic sound sources and acoustic propagation in the North Sea Author(s) : Dr.
    [Show full text]
  • Fixed Sonar Systems the History and Future of The
    THE SUBMARINE REVIEW FIXED SONAR SYSTEMS THE HISTORY AND FUTURE OF THE UNDEWATER SILENT SENTINEL by LT John Howard, United States Navy Naval Postgraduate School, Monterey, California Undersea Warfare Department Executive Summary One of the most challenging aspects of Anti-Submarine War- fare (ASW) has been the detection and tracking of submerged contacts. One of the most successful means of achieving this goal was the Sound Surveillance System (SOSUS) developed by the United States Navy in the early 1950's. It was designed using breakthrough discoveries of the propagation paths of sound through water and intended to monitor the growing submarine threat of the Soviet Union. SOSUS provided cueing of transiting Soviet submarines to allow for optimal positioning of U.S. ASW forces for tracking and prosecution of these underwater threats. SOSUS took on an even greater national security role with the advent of submarine launched ballistic missiles, ensuring that U.S. forces were aware of these strategic liabilities in case hostilities were ever to erupt between the two superpowers. With the end of the Cold War, SOSUS has undergone a number of changes in its utilization, but is finding itself no less relevant as an asset against the growing number of modern quiet submarines proliferating around the world. Introduction For millennia, humans seeking to better defend themselves have set up observation posts along the ingress routes to their key strongholds. This could consist of something as simple as a person hidden in a tree, to extensive networks of towers communicating 1 APRIL 2011 THE SUBMARINE REVIEW with signal fires.
    [Show full text]
  • Meeting Abstracts
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 Danish activities concerning noise in the environment (A) Ingerslev, Fritz Published in: Acoustical Society of America. Journal Link to article, DOI: 10.1121/1.2019901 Publication date: 1982 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Ingerslev, F. (1982). Danish activities concerning noise in the environment (A). Acoustical Society of America. Journal, 72(S1), S45-S46. https://doi.org/10.1121/1.2019901 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PROGRAM OF The 104thMeeting of theAcoustical Society of America SheratonTwin Towers ß Orlando,Florida ß 8-12 November1982 TUESDAY MORNING, 9 NOVEMBER 1982 BROWARD AND PALM BEACH ROOMS, 8:00TO 10:15A.M. SessionA.Underwater Acoustics I: The Impact of Satellite and Aerial Remote Sensing onthe Study of Ocean Acoustics Paul D. Scully-Power,Chairman Naval UnderwaterSystems Center, New London, Connecticut 06320 Chairman'sIntroduction4:00 Invited Papers 8:05 A1.
    [Show full text]
  • Acoustic Masking in Marine Ecosystems: Intuitions, Analysis, and Implication
    Vol. 395: 201–222, 2009 MARINE ECOLOGY PROGRESS SERIES Published December 3 doi: 10.3354/meps08402 Mar Ecol Prog Ser Contribution to the Theme Section ‘Acoustics in marine ecology’ OPENPEN ACCESSCCESS Acoustic masking in marine ecosystems: intuitions, analysis, and implication Christopher W. Clark1,*, William T. Ellison2, Brandon L. Southall3, 4, Leila Hatch5, Sofie M. Van Parijs6, Adam Frankel2, Dimitri Ponirakis1 1Bioacoustics Research Program, Cornell Laboratory of Ornithology, 159 Sapsucker Woods Road, Ithaca, New York 14850, USA 2Marine Acoustics, 809 Aquidneck Avenue, Middletown, Rhode Island 02842, USA 3Southall Environmental Associates, 911 Center Street, Suite B, Santa Cruz, California 95060, USA 4Long Marine Laboratory, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, California 95060, USA 5Gerry E. Studds Stellwagen Bank National Marine Sanctuary, NOAA, 175 Edward Foster Road, Scituate, Massachusetts 02066, USA 6 NOAA Fisheries, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, Massachusetts 02543, USA ABSTRACT: Acoustic masking from anthropogenic noise is increasingly being considered as a threat to marine mammals, particularly low-frequency specialists such as baleen whales. Low-frequency ocean noise has increased in recent decades, often in habitats with seasonally resident populations of marine mammals, raising concerns that noise chronically influences life histories of individuals and populations. In contrast to physical harm from intense anthropogenic sources, which can have acute impacts on individuals, masking from chronic noise sources has been difficult to quantify at individ- ual or population levels, and resulting effects have been even more difficult to assess. This paper pre- sents an analytical paradigm to quantify changes in an animal’s acoustic communication space as a result of spatial, spectral, and temporal changes in background noise, providing a functional defini- tion of communication masking for free-ranging animals and a metric to quantify the potential for communication masking.
    [Show full text]
  • Sonar: Empire, Media, and the Politics of Underwater Sound
    Sonar: Empire, Media, and the Politics of Underwater Sound John Shiga Ryerson University ABSTRACT This article traces the development of acoustic navigation media, or “sonar,” in the first half of the twentieth century, focusing on the relationships forged between underwater sound, electric media, and new techniques of listening. The central argument is that sonar shaped, and was shaped by, the expansion of warfare and capital underwater, and that this expansion came to be conceptualized by nautical organizations as dependent upon the con - trol of underwater sound. Through analysis of key episodes in the conquest of subsea space, the author explores scientific, military, and commercial efforts to sense underwater objects and demonstrates how these efforts helped reconceptualize oceanic water as a component of undersea acoustic media and led to the material reorganization of the ocean’s acoustic field. KEYWORDS Sonar; Military communication; Materiality; Subjectivity RÉSUMÉ Cet article retrace le développement de médias acoustiques de navigation ou « sonars » dans la première moitié du vingtième siècle en mettant l’accent sur les rapports créés entre les sons sous-marins, les médias électriques et les nouvelles techniques d’écoute. L’argument central de l’article est qu’il y a eu une influence réciproque entre le sonar et l’expansion sous-marine de la guerre et du capital, et que les organisations nautiques ont commencé à concevoir cette expansion comme nécessitant le contrôle des sons sous-marins. Au moyen d’une analyse d’épisodes clés dans la conquête de l’espace sous-marin, l’auteur explore les efforts scientifiques, militaires et commerciaux pour repérer les objets sous l’eau et démontre comment ces efforts ont aidé à réaliser une nouvelle conception de l’eau océanique comme composante des médias acoustiques sous-marins, menant à une réorganisation matérielle du champ acoustique de l’océan.
    [Show full text]
  • Underwater 3D Data Collection ______
    Worcester Polytechnic Institute Electrical and Computer Engineering Program Mechanical Engineering Program Underwater 3D Data Collection __________________________________________________________ A Major Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by: Noah Budris, ME Tyler LaCroce, ECE Daniel Pelaez, ECE __________________________________________________________________ Project Advisor: Professor William Michalson Date: March 6, 2020 Abstract: Each year, thousands of pounds of marine litter are lost at sea. This litter consists primarily of lost cargo containers, lost fishing gear, and general garbage. This marine litter not only causes harm to the aquatic ecosystem, but makes up billions of dollars of lost revenue. With methods of 3D data collection becoming cheaper and more prevalent, a solution to recover lost items is more possible than ever. This report outlines our contribution to solving this problem by providing a detailed analysis of a constructed prototype that utilizes sonar in conjunction with a visualization program, an amplification circuit, and a mobile floatation platform to map the bottom of a water body. Ideally, man-made discrepancies discovered by this device will alert the end user, allowing for them to continually manage the amount of marine litter that ends up lost, and prevent it from getting larger. 1 Acknowledgements: This research was supported by Worcester Polytechnic Institute. We would like to thank our advisor, Professor William Michalson of Worcester Polytechnic Institute for his continued support and guidance throughout our research and the MQP process as a whole. We would like to thank Nicholas Pulsone, John Pietrzyk, and Paul Ryu from the Massachusetts Institute of Technology for providing us with one of the sonar devices used for initial testing and understanding of sonar functionality.
    [Show full text]