Reliability Assessments of Railway Signaling Systems: a Comparison and Evaluation of Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ERTMS/ETCS Railway Signalling
Appendix A ERTMS/ETCS Railway Signalling Salvatore Sabina, Fabio Poli and Nazelie Kassabian A.1 Interoperable Constituents The basic interoperability constituents in the Control-Command and Signalling Sub- systems are, respectively, defined in TableA.1 for the Control-Command and Sig- nalling On-board Subsystem [1] and TableA.2 for the Control-Command and Sig- nalling Trackside Subsystem [1]. The functions of basic interoperability constituents may be combined to form a group. This group is then defined by those functions and by its remaining exter- nal interfaces. If a group is formed in this way, it shall be considered as an inter- operability constituent. TableA.3 lists the groups of interoperability constituents of the Control-Command and Signalling On-board Subsystem [1]. TableA.4 lists the groups of interoperability constituents of the Control-Command and Signalling Trackside Subsystem [1]. S. Sabina (B) Ansaldo STS S.p.A, Via Paolo Mantovani 3-5, 16151 Genova, Italy e-mail: [email protected] F. Poli Ansaldo STS S.p.A, Via Ferrante Imparato 184, 80147 Napoli, Italy e-mail: [email protected] N. Kassabian Ansaldo STS S.p.A, Via Volvera 50, 10045 Piossasco Torino, Italy e-mail: [email protected] © Springer International Publishing AG, part of Springer Nature 2018 233 L. Lo Presti and S. Sabina (eds.), GNSS for Rail Transportation,PoliTO Springer Series, https://doi.org/10.1007/978-3-319-79084-8 234 Appendix A: ERTMS/ETCS Railway Signalling Table A.1 Basic interoperability constituents in the Control-Command -
CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents
ATTACHMENT C PART 2 – ATC SYSTEM MARYLAND TRANSIT ADMINISTRATION CONTRACT T-8000-1415 AUTOMATIC TRAIN CONTROL TECHNICAL SPECIFICATION THIS PAGE INTENTIONALLY LEFT BLANK Contents 1 GENERAL REQUIREMENTS 2 COMMUNICATIONS BASED TRAIN CONTROL REQUIREMENTS 3 MAIN LINE AND STORAGE YARD SOLID STATE INTERLOCKING REQUIREMENTS 4 AUTOMATIC TRAIN SUPERVISION REQUIREMENTS 5 DATA COMMUNICATIONS SYSTEM REQUIREMENTS 6 AUXILIARY WAYSIDE EQUIPMENT REQUIREMENTS 7 ENVIRONMENTAL AND EMC 8 SYSTEM SAFETY REQUIREMENTS 9 RELIABILITY, AVAILABILITY, AND MAINTAINABILITY REQUIREMENTS 10 INSTALLATION CUTOVER AND CONSTRUCTION REQUIREMENTS 11 ATC TESTING 12 QUALITY ASSURANCE AND CONTROL 13 TECHNICAL SUPPORT 14 TRAINING Attachment C, Part 2, ATC System T-8000-1415 i September 2015 THIS PAGE INTENTIONALLY LEFT BLANK Attachment C, Part 2, ATC System T-8000-1415 ii September 2015 SECTION 1 GENERAL REQUIREMENTS Contents 1.1 GENERAL..................................................................................................................................1-1 1.2 PROJECT OBJECTIVES ...............................................................................................................1-2 1.2.1 PROVEN DESIGN......................................................................................................1-3 1.2.2 COMMISSIONING ON A REVENUE SYSTEM...............................................................1-3 1.2.3 DESIGN LIFE.............................................................................................................1-3 1.3 SCOPE OF WORK......................................................................................................................1-3 -
CBTC Test Simulation Bench
Computers in Railways XII 485 CBTC test simulation bench J. M. Mera, I. Gómez-Rey & E. Rodrigo CITEF (Railway Technology Research Centre), Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain Abstract Due to its safety characteristics, signalling equipment requires a great amount of testing and validation during the different stages of its life cycle, and particularly during the installation and commissioning of a new line or upgrade of an existing line, the latter being even more complicated due to the short engineering periods available overnight. This project aims to develop a tool to reduce the above-mentioned efforts by simulating the CBTC trackside, fulfilling the interfaces between subsystems and elements of these subsystems, and using some real elements. In this way, a testing environment for signalling equipment and data has been developed for the CBTC system. The aims of the project that were set out at the beginning of the development and completed with the present simulator are as follows: Real CBTC equipment trials and integration: CBTC on-board equipment, CBTC Radio Centre, etc. Other signalling elements trials and integration: interlockings and SCCs. CBTC track data validation. In order to achieve these objectives, various simulation applications have been developed, of which the most important are the following: Infrastructure, Automatic trains, Train systems, Planning and Control Desk, etc. This system has been developed, and is currently adding new modules and functionalities, for companies of the Invensys Group: Westinghouse Rail WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) doi:10.2495/CR100451 486 Computers in Railways XII Systems in the UK and Dimetronic Signals in Spain, which are using it for the new CBTC lines under their responsibility. -
Report on Railway Accident with Freight Car Set That Rolled Uncontrolledly from Alnabru to Sydhavna on 24 March 2010
Issued March 2011 REPORT JB 2011/03 REPORT ON RAILWAY ACCIDENT WITH FREIGHT CAR SET THAT ROLLED UNCONTROLLEDLY FROM ALNABRU TO SYDHAVNA ON 24 MARCH 2010 Accident Investigation Board Norway • P.O. Box 213, N-2001 Lillestrøm, Norway • Phone: + 47 63 89 63 00 • Fax: + 47 63 89 63 01 www.aibn.no • [email protected] This report has been translated into English and published by the AIBN to facilitate access by international readers. As accurate as the translation might be, the original Norwegian text takes precedence as the report of reference. The Accident Investigation Board has compiled this report for the sole purpose of improving railway safety. The object of any investigation is to identify faults or discrepancies which may endanger railway safety, whether or not these are causal factors in the accident, and to make safety recommendations. It is not the Board’s task to apportion blame or liability. Use of this report for any other purpose than for railway safety should be avoided. Photos: AIBN and Ruter As Accident Investigation Board Norway Page 2 TABLE OF CONTENTS NOTIFICATION OF THE ACCIDENT ............................................................................................. 4 SUMMARY ......................................................................................................................................... 4 1. INFORMATION ABOUT THE ACCIDENT ..................................................................... 6 1.1 Chain of events ................................................................................................................... -
Geographic Signaling System (Geo)
FIELD REFERENCE MANUAL GEOGRAPHIC SIGNALING SYSTEM (GEO) JULY 2008 (REVISED SEPTEMBER 2018) DOCUMENT NO. SIG-00-05-09 VERSION D Siemens Mobility 700 East Waterfront Drive Munhall, Pennsylvania 15120 1-800-793-SAFE Copyright © 2008-2018 Siemens Mobility, Inc. All rights reserved PRINTED IN THE U.S.A. PROPRIETARY INFORMATION The material contained herein constitutes proprietary and confidential information, and is the intellectual property of Siemens Mobility, Inc., Rail Automation (Siemens) protected under United States patent, copyright and/or other laws and international treaty provisions. This information and the software it describes are for authorized use only, and may not be: (i) modified, translated, reverse engineered, decompiled, disassembled or used to create derivative works; (ii) copied or reproduced for any reason other than specific application needs; or (iii) rented, leased, lent, sublicensed, distributed, remarketed, or in any way transferred; without the prior written authorization of Siemens. This proprietary notice and any other associated labels may not be removed. TRANSLATIONS The manuals and product information of Siemens Mobility, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. Siemens Mobility, Inc. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity that relies on translated information does so at his or her own risk. -
11 /2015 November 1 € 22 1 C 11 180
11 /2015 November 1 € 22 1 C 11 180 www.eurailpress.de/sd Rail Signalling and Telecommunication • INSTANDHALTUNG • SICHERHEIT • ETCS Deutliche Effizienzsteigerung GFR 2000: Eine Lösung zur The implementation of durch den Einsatz von Gefahrenraumfreimeldung an ETCS Level 1 in the mobilen Anwendungen Bahnübergängen Slovenian sector of Corridor D • Satellite-based train control systems Cost efficiency analysis of the satellite based train control system 31nSat in Germany Benedikt Seheier / Anja Bussmann / Florian Brinkmann / Uwe Wendland DB Netz AG is aiming at cost effective several international project partners the highest comparability with the oth alternatives to conventional train con are involved, including DB Netz AG and er systems that have no sophisticated trol systems on low density lines. For the German Aerospace Center (DLR). fall-back technology), this purpose, the cost efficiency of the The project's work plan comprises sev • ERTMS-Regional, (a cost-reduced 31nSat system - a satellite-based plat eral work packages regarding nation variant of ETCS Level 3 for region form for train protection - is analysed al scenarios of a number of countries. al lines without conventional lineside by comparing the net present value of Besides the economic assessment, the signals and without track-side train equipment cost for 31nSat with the al German scenario includes a compari detection) and ternative systems ERTMS-Regional, son of the system's functionalities with • Germany's common conventional sig ETCS Level 2 without lineside signals the operational procedures and require nalling system (the so-called Ks-Sys and conventional signalling. From the ments of the German rail system. From tem). -
Integration of a Mechanical Interlocking Lever Frame Into a Signalling
MRes in Railway Systems Engineering and Integration College of Engineering, School of Civil Engineering University of Birmingham Integration of a Mechanical Interlocking Lever Frame into a Signalling Demonstrator By: Mersedeh Maksabi Supervisor: Prof. Felix Schmid DATE SUBMITTED: 2013-10-30 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Preliminaries Executive Summary Railway signalling has experienced numerous changes and developments, most of which were associated with its long evolutionary history. These changes have occurred gradually from the earliest days of the railway industry when fairly safe distances between the trains were controlled by signalmen with their rudimentary tools to multiple aspects colour light signalling systems and complicated operating systems as well as computerised traffic information systems. Nowadays signalling technology is largely affected by the presence of high performance electromechanical relays which provide the required logic on one hand and securely control the train movement on the other. However, this kind of control system is bulky and requires large space to accommodate. Therefore, such a technology will be expensive as it requires intensive efforts for manufacturing, installation and maintenance. -
Trainguard MT Optimal Performance with the World’S Leading Automatic Train Control System for Mass Transit Trainguard MT
siemens.com/mobility/mobility Trainguard MT Optimal performance with the world’s leading automatic train control system for mass transit Trainguard MT Intelligent and future-oriented mass transit solutions for smiling cities Cities are becoming increasingly larger The overall performance of mass transit As a modern modular ATC system, and more complex. This also imposes systems depends largely on the perform- Trainguard MT offers all these features, increased requirements on mass transit ance of the automatic train control (ATC) providing the basis for attractive, safe systems. Their operators have to cope system employed. With increasing auto- and efficient mass transit systems which with rapidly growing traffic flows and mation, the responsibility for operations satisfy the needs of both passengers and passengers' rising expectations. Their management gradually shifts from drivers railway operators throughout the world. success is measured against factors and operators to the system. such as safety, punctuality, conve- nience and energy efficiency. An ATC system comprises functions for the monitoring, execution and control Benefits Siemens' intelligent and future- of the entire operational process. It can oriented mass transit solutions feature different levels of automation • Short headways by implementing support operators in successfully such as driver-controlled train operation, real moving-block operation meeting these challenges. semi-automated train operation, driver- • Cost-effectiveness less and unattended train operation. • Scalability We regard our customers as partners • Upgradability up to driverless systems who we support through our work in The ATC system continuously indicates • Maximum reliability, availability and sustainably developing their urban the current movement authority on safety environment and making their public the cab display and super vises the per- • Economical maintenance mass transit both efficient and effec- missible train speed. -
Positive Train Control (PTC)
Positive Train Control (PTC) Positive Train Control Safety is Amtrak’s top priority. Amtrak is a leader in the installation of Positive Train Control (PTC), a safety technology designed to match train speed to track conditions for improved safety. Positive Train Control provides an added layer of safety. Installation and maintenance of PTC is the responsibility of the railroad that controls the track. Amtrak Infrastructure In December 2015, Amtrak activated PTC on track between New York and Washington, D.C., completing installation on most Amtrak-owned infrastructure on the Northeast Corridor (NEC) spine. PTC has been installed between Boston and New Haven since 2000. The only exceptions are seven miles, all of which are located in or adjacent to terminal areas where trains move slower and automatic train control systems are in service. Of note, Amtrak is not responsible for installing PTC on the following segments of the NEC which it doesn’t control, between New York and Boston: Harold Interlocking east of New York Penn Station is the responsibility of the LIRR, and Metro-North Railroad is responsible for the 56 mile New Rochelle-New Haven segment owned by the states of New York and Connecticut. In early 2016, Amtrak activated PTC on the 104-mile Harrisburg Line. Amtrak has also installed and is operating PTC along the 97 miles of track it owns in Michigan and Indiana, where PTC was introduced in 2002. Amtrak is working on installation of PTC on other lines, including the 60 mile Springfield line (where a major double-tracking project funded by the state of Connecticut is underway), the 105 mile Hudson line between Poughkeepsie and the Schenectady area (leased by Amtrak), and the 135 mile Dearborn-Kalamazoo segment of the Michigan line owned by Michigan, as well as the Chicago Union Station terminal areas. -
SUBSET-023 Glossary of Terms and Abbreviations Page 1/27 3.1.0
ERA * UNISIG * EEIG ERTMS USERS GROUP ERTMS/ETCS Glossary of Terms and Abbreviations REF : SUBSET-023 ISSUE : 3.1.0 DATE : 12/05/2014 SUBSET-023 Glossary of Terms and Abbreviations Page 1/27 3.1.0 ERA * UNISIG * EEIG ERTMS USERS GROUP 1. MODIFICATION HISTORY Issue Number Section number Modification / Description Author Date 0.0.1 All First issue. Sven Adomeit Hans Kast Jean-Christophe Laffineur 0.0.2 All Reuse of EEIG glossary Sven Adomeit Hans Kast Jean-Christophe Laffineur 0.0.3 All Review of SRS; Sven Adomeit New SRS Chapter 0.0.4. All Updating references Sven Adomeit Add: RAP:RMP:MAR: Mode Profile 0.0.5. All Updating for Class 1 SRS WLH Feb 2000 Version 2 0.1.0. All Updating following UNISIG review WLH and comments from Adt ,Alst. March 2000 0.2.0. All Further comments from Alstom WLH March 2000 2.0.0 Final issue to ECSAG U.D. (ed) 30 March 2000 2.9.1 All Revised edition for baseline 3 B. Stamm 08 February S. Adomeit 2012 A. Hougardy 2.9.2 All As per UNISIG review comments A. Hougardy 01 March 2012 Add new entries ACK, KER and LUC Refine definition of Train Interface SUBSET-023 Glossary of Terms and Abbreviations Page 2/27 3.1.0 ERA * UNISIG * EEIG ERTMS USERS GROUP Unit 3.0.0 Baseline 3 release version A. Hougardy 02 March 2012 3.0.1 CR 1124 O. Gemine 04 April 2014 3.0.2 Baseline 3 1st maintenance pre- O. Gemine release version 23 April 2014 3.0.3 CR 1223 O. -
TRANSMISSION MODULE (STM) – EBICAB GENERAL TECHNICAL REQUIREMENTS Version 100 200 E 004 V
Approved Approved SPECIFIC TRANSMISSION MODULE (STM) – EBICAB GENERAL TECHNICAL REQUIREMENTS Version 100 200 E 004 v. 6.1 GRS STM General Technical Requirements Specification TR GRS v6.1 2017-05-12 Sign:______ Sign:______ Document Modification History Version Modification Valid from Prepared Approved Updated requirements for Baseline 3 accor- M Olsson, 6.1 12 Maj 2017 ding to [STM-Delta-FRS-B3-List-v0.12]. Trafikverket Updated requirements for Baseline 3 accor- 6 ding to [STM-Delta-FRS-B3-List-v0.06]. 10 Oct.2014 B Bryntse, ÅF Updated requirements for Baseline 2 accor- 5.2 ding to [STM-Delta-FRS-List-v1.26] 8 Oct 2014 B Bryntse, ÅF Updated or new national requirements: B Bryntse, 5.1 G64, G57A, G57B. Index chapter added. 28.10.2009 Improved format of text and headers. Teknogram 5.0 Update of national requirements 26.6.2009 S Wallin 4.2 “STM Delta-GRS-List ver A” is introduced K.Hallberg 4.1 Final corrections 15.2.2007 U.Svensson F. Åhlander 4.0 I/F C deleted, recorder info changed U.Svensson Changes according to STM National, 3.0 new I/F F U.Svensson 2.1 Clarification G 58, G34 and G35 15.4.2003 J Öhrström S-H Nilsson 2.0 Added info regarding radio I/F chapter 2.3 20.6.2002 F Åhlander S-H Nilsson 1.4 For approval by RHK, JBV, BV 6.6.2002 F Åhlander S-H Nilsson EBICAB STM General technical Requirements Specification – 100 200 E 004 Version 6.1 100 200 E 004 Version 6.1 Page 3 (35) EBICAB STM General Technical Requirements Specification List of contents 1 INTRODUCTION...................................................................5 1.1 Applicable standards ....................................................................................5 1.2 List of definitions ...........................................................................................7 1.3 System definition ...........................................................................................8 2 INTERFACES .................................................................... -
System for Investigation of Railway Interfaces (SIRI)
6 System for Investigation of Railway Interfaces (SIRI) Sanjeev Kumar Appicharla 1Institution of Engineering and Technology 2The International Council on Systems Engineering, UK 1. Introduction This chapter presents an abstract system framework called ‘’System for Investigation of Railway Interfaces’’ (SIRI), to study potential or past railway accident(s). The aim of the study is to learn about the multiple causal factors (elements or conditions) which represented together can be called a cause leading to the undesired state called potential or accident situation. Safety studies like SIRI can be used in conjunction with the quantitative risk estimation method (PRA) to help highlight or uncover decisions leading to assumption of unreasonable risk or human error in engineering and management factors needs to be studied. Author accepts the viewpoint of George E.Apostolakis on the utility of quantitative risk analysis (QRA) or probability risk analysis ( PRA) techniques in general (E.Apostolakis 2004). The questions of human error and organisational learning are clarified later in the chapter in the context of acceptance of QRA method. The SIRI Framework uses synthetic mode of thinking as opposed to analytical mode of thinking. Analytical mode of thinking is like decomposing water which does no longer contains anything liquid and has taste. The SIRI Framework synthesises multiple study methods into a cohesive process represented as a system. The study methods used in stages to arrive at the decision of a potential accident situation in an unambiguous manner are Hazard identification method (HAZOP), Event Causal Factor Analysis (ECFA), Energy Barrier Trace Analysis (EBTA), accident investigation technique (MORT), and cognitive human factors framework (SRK) and systems thinking integrated into a cohesive system framework.