Bartonella Species Isolated from Rodents, Greece

Total Page:16

File Type:pdf, Size:1020Kb

Bartonella Species Isolated from Rodents, Greece LETTERS Bartonella Species Germany). Polymerase chain reaction (AY435104–AY435113, isolated from (PCR) was performed by using two A. flavicollis) and representing four Isolated from oligonucleotides specific for the cit- novel genotypes, was 98% similar to Rodents, Greece rate synthase (gltA) gene of B. hense- B. taylorii (AF191502, isolated from lae Houston 1, primers BhCS 781.p A. sylvaticus) gltA gene. The second To the Editor: Domestic cats and and BhCS 1137.n. Negative and posi- group, consisting of seven isolates that human body lice have been identified tive controls (double-distilled H2O shared the same genotype (AY435114- as the vectors of Bartonella henselae and DNA from cultures of B. hense- AY435120 isolated from A. flavicol- and B. quintana, respectively, the pri- lae) were used in each PCR run. lis), was 99% similar to B. birtlesii mary sources of Bartonella-associat- Products of the correct size were puri- (AF204272 isolated from Apodemus ed human diseases (1). Bartonella fied (QIAquick PCR Purification kit, spp.). The third group consisted of two species are zoonotic agents that have Qiagen GmbH) and sequenced with isolates that shared the same genotype been isolated from a wide range of the same primers, BhCS 781.p and (AY435121 isolated from D. nitedula, mammals in the United States (2) and BhCS1137.n., in both directions, with and AY435122 isolated from A. flavi- Europe (3) and have been associated the Cy5/Cy5.5 Dye Primer Cycle collis); this group was 97% similar to with human diseases (4–5). Sequencing kit on a Long-Read B. grahamii strain V2 (Z70016 isolat- This study investigated the poten- Tower sequencer (Visible Genetics ed from Neomys fodiens). tial for infection from Bartonella Inc., Toronto, Canada). Three hundred This is the first study to identify species in rodents in northern Greece. thirty-eight base-pair sequences of the Bartonella in small mammals in The small mammals tested were col- gltA gene were obtained and com- Greece. We found that 31.3% of the lected with live traps (6). Two sites pared with sequences of other known examined mammals were infected were surveyed; the first was Bartonella species in GenBank by with Bartonella spp. The prevalence Nevrokopi, a small town in the using the nucleotide BLAST program of culture-positive infections differed Rhodope Mountains near the Greek- (National Center for Biotechnology between the two sites (20/57 versus Bulgarian border, and the second site Information; Available from: 1/13), although both are mountain included Pramanta, a small village in www.ncbi.nlm.nih.gov/BLAST/). areas with similar environmental and the Pindos Mountains, and Matsuki, a Isolates identified as Bartonella climatic conditions. A high prevalence small village in northwestern Greece. species were obtained from 21 of the of Bartonella infection in small mam- At Nevrokopi, 57 small mammals 70 blood cultures. All were isolated mals also has been described in other were captured during 887 trap nights from A. flavicollis, and one was isolat- countries such as the United States (7) for a success rate of 6.4%. At ed from Dryomys nitedula. In addi- and Sweden (3), where 42.2% and Pramanta and Matsuki, 13 small tion, all were isolated from the first 16.5% of the collected rodents were mammals were captured during 400 site (Nevrokopi village), and one was infected with Bartonella spp., respec- trap nights for a success rate of 3.3%. isolated from the second site tively. As indicated in these studies, The 70 captured mammals comprised (Pramanta village). numerous Bartonella species are seven species of rodents. Apodemus Within these 21 Bartonella iso- found in rodents. A. flavicollis was the flavicollis was the most commonly lates, eight genotypes were found. most commonly captured species in captured species (87%). Blood sam- Among these isolates, one (AY435102 Sweden (110/236), as well as in ples from each of the trapped mam- isolated from A. flavicollis trapped in Greece (61/70). Identical Bartonella mals were frozen in liquid nitrogen in Pramanta), was identical to ma106up strains were isolated from A. flavicol- the field and subsequently stored at strain, isolated from Microtus agresti lis and Microtus agresti in both coun- –70ºC before bacteria isolation. (AF391789); another (AY435103 iso- tries. Unlike Sweden, where the most Bacteria isolation was performed as lated from A. flavicollis trapped in frequent genotype was B. grahamii, in previously described (7). One hun- Nevrokopi), was identical to af82up this study no isolate was identical to dred microliters of whole mammalian strain (AF391788), also isolated from any Bartonella species known to blood was cultured on heart infusion A. flavicollis (3). Both strains cause human diseases. However, B. agar containing 5% rabbit blood ma106up (AF391789) and af82up elizabethae was first isolated from a (Becton Dickinson, Franklin Lakes, (AF391788) were isolated in central patient with endocarditis, and nothing NJ) and incubated in 5% CO at 35°C 2 Sweden (3) The rest of Bartonella iso- was known concerning the organism’s for a minimum of 4 weeks. DNA of lates were from mammals trapped in natural history until it was isolated the putative Bartonella cultures was Nevrokopi village and were divided from a rodent captured in Peru (4). extracted by using QIAamp Tissue into three phylogenetic groups. The The occurrence and distribution of Kit (Qiagen GmbH, Hilden, first group, containing 10 isolates Bartonella in European hosts are Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 10, No. 5, May 2004 963 LETTERS largely unknown. Given the existence of Bartonella in rodents from the southeast- ly (9). Thus, the possibility of epidem- of Bartonella spp. in every mammal ern United States. Am J Trop Med ic typhus could not be excluded defin- Hyg1997;57:578–88. group examined to date, the diversity 8. Tea A, Alexiou-Daniel S, Arvanitidou M, itively in these cases. of the genus is probably much greater Diza E, Antoniadis A. Occurrence of On May 4, 2003, a 56-year-old than has been observed among the Bartonella henselae and Bartonella quin- man living in Tokushima, Japan, strains examined to date. In Greece, tana in a healthy Greek population. Am J sought medical care; he had a temper- serologic evidence of human infection Trop Med Hyg 2003;68:554–6. ature of 39.1°C and exanthema on the with B. henselae and B. quintana (8), trunk and the upper limbs. No surface Address for correspondence: Stella Alexiou- has been found and a case of B. quin- lymph nodes were palpable. He was Daniel, Department of Microbiology, AHEPA tana endocarditis has been established treated with lincomycin and cefdi- University Hospital, Thessaloniki 54006, (unpub. data). The public health rele- toren pivoxil with no improvement. Greece; fax: +32310994821; email: salex- vance of Bartonella infections in On day 3, the patient informed care- [email protected] small mammals in Greece compared givers that he had been in a bamboo with other countries remains to be grove on days 1 and 11 before the defined. onset of symptoms. C-reactive protein of the serum sample collected on day Afrodite Tea,* 3 was positive (= 7.6 mg/dL). From Stella Alexiou-Daniel,† Reemerging Murine this finding, spotted fever was sus- Androniki Papoutsi,* Anna Papa,* Typhus, Japan pected; the disease is endemic in and Antonis Antoniadis* Tokushima. On day 4, the exanthema *Aristotelian University of Thessaloniki, To the Editor: Murine typhus is had spread systemically, and treat- Thessaloniki, Greece; and †American an arthropod-borne infectious disease ment with minocycline was started, Hellenic Educational Progressive caused by Rickettsia typhi, which is which led to a gradual decrease in Association University Hospital, distributed widely around the world Thessaloniki, Greece fever and rashes. The patient was (1–4). In Japan, tsutsugamushi dis- admitted to the Tokushima University ease occurs most frequently in per- References Hospital on day 6 of the illness for sons infected with rickettsioses (5). diagnosis and further treatment. 1. Karem KL, Paddock CD, Regnery RL. Spotted fever caused by R. japonica Serum samples were collected Bartonella henselae, Bartonella quintana also occurs in the southwestern part of and Bartonella bacilliformis: historical from the patient on days 5, 6, 9, 20, pathogens of emerging significance. Japan (6,7). In the 1940s and 1950s, and 34. Indirect immunoperoxidase Microbes Infect 2000;2:1193–205. many murine typhus cases were tests on the serum samples for tsut- 2. Ellis BA, Regnery RL, Beati L, Bacellar F, reported in Japan. These diagnoses sugamushi disease, spotted fever, Rood M, Glass G, et al. Rats of the genus were made according to the clinical Rattus are reservoir hosts for pathogenic murine typhus, and Q fever on day 5 Bartonella species: an Old World origin for features of the illness and the reactiv- of the illness were negative for a New World disease? J Infect Dis ity of the serum samples to OX19 in immunoglobulin (Ig) G and IgM anti- 1999;180:220–4. Weil-Felix tests. A few cases were bodies (<1:40). Weil-Felix tests on the 3. Holmberg M, Mills JN, McGill S, diagnosed on the basis of symptoms Benjamin G, Ellis BA. Bartonella infection serum samples on days 5 and 9 of the in sylvatic small mammals of central exhibited by animals infected with illness were negative for OX2, OX19, Sweden. Epidemiol Infect 2003;130: isolated rickettsiae and complement and OXK. Indirect immunofluores- 149–57. fixation tests, in addition to results of cence of the serum samples on days 6, 4. Birtles RJ, Raoult D. Comparison of partial the Weil-Felix tests. The Weil-Felix citrate synthase gene (gltA) sequences for 9, 20, and 34 of the illness was con- phylogenetic analysis of Bartonella test is useful for preliminary screen- ducted by using strains 18 and species.
Recommended publications
  • Genetic Diversity of Bartonella Species in Small Mammals in the Qaidam
    www.nature.com/scientificreports OPEN Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China Huaxiang Rao1, Shoujiang Li3, Liang Lu4, Rong Wang3, Xiuping Song4, Kai Sun5, Yan Shi3, Dongmei Li4* & Juan Yu2* Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientifc basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge’ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplifcation and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in diferent tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical diference, but that in diferent habitats had statistical diference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identifed (two diferent Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specifc characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China.
    [Show full text]
  • Endocarditis Due to Bartonella Quintana, the Etiological Agent of Trench Fever
    PRACTICE | CASES CPD VULNERABLE POPULATIONS Endocarditis due to Bartonella quintana, the etiological agent of trench fever Carl Boodman MD, Terence Wuerz MD MSc (Epi), Philippe Lagacé-Wiens MD n Cite as: CMAJ 2020 December 7;192:E1723-6. doi: 10.1503/cmaj.201170 CMAJ Podcasts: author interview at www.cmaj.ca/lookup/doi/10.1503/cmaj.201170/tab-related-content 48-year-old man presented to the emergency depart- ment with a 2-day history of pleuritic chest pain and KEY POINTS shortness of breath. His medical history included HIV • Bartonella quintana, the causal agent of trench fever, is infection,A diagnosed 14 years earlier in the context of intraven- transmitted by body lice (Pediculus humanus var. corporis). ous drug use. Three months previously, he had an undetectable • Although B. quintana is notorious for causing disease in the First viral load and a CD4 count of 94 cells/mm3 (normal range: 500– World War, outbreaks of trench fever have recently occurred in 1400 cells/mm3) or 0.09 (normal range 0.50–1.40) × 109/L. The urban populations experiencing homelessness. patient adhered to his prescribed antiretroviral regimen (darunavir, • B. quintana causes culture-negative endocarditis and may be ritonavir and abacavir-lamivudine) and prophylaxis against oppor- fatal without antimicrobial and surgical treatment, despite mild tunistic infections (valacyclovir, trimethoprim-sulfamethoxazole symptomatology during chronic bacteremia. Consultation with infectious disease specialists is encouraged. and fluconazole). In addition, the patient had a congenital soli- Because B. quintana evades identification in routine blood tary kidney with normal baseline renal function, alcohol expos- • cultures, diagnosis of B.
    [Show full text]
  • The Approved List of Biological Agents Advisory Committee on Dangerous Pathogens Health and Safety Executive
    The Approved List of biological agents Advisory Committee on Dangerous Pathogens Health and Safety Executive © Crown copyright 2021 First published 2000 Second edition 2004 Third edition 2013 Fourth edition 2021 You may reuse this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view the licence visit www.nationalarchives.gov.uk/doc/ open-government-licence/, write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email [email protected]. Some images and illustrations may not be owned by the Crown so cannot be reproduced without permission of the copyright owner. Enquiries should be sent to [email protected]. The Control of Substances Hazardous to Health Regulations 2002 refer to an ‘approved classification of a biological agent’, which means the classification of that agent approved by the Health and Safety Executive (HSE). This list is approved by HSE for that purpose. This edition of the Approved List has effect from 12 July 2021. On that date the previous edition of the list approved by the Health and Safety Executive on the 1 July 2013 will cease to have effect. This list will be reviewed periodically, the next review is due in February 2022. The Advisory Committee on Dangerous Pathogens (ACDP) prepares the Approved List included in this publication. ACDP advises HSE, and Ministers for the Department of Health and Social Care and the Department for the Environment, Food & Rural Affairs and their counterparts under devolution in Scotland, Wales & Northern Ireland, as required, on all aspects of hazards and risks to workers and others from exposure to pathogens.
    [Show full text]
  • Bartonella: Feline Diseases and Emerging Zoonosis
    BARTONELLA: FELINE DISEASES AND EMERGING ZOONOSIS WILLIAM D. HARDY, JR., V.M.D. Director National Veterinary Laboratory, Inc. P.O Box 239 Franklin Lakes, New Jersey 07417 201-891-2992 www.natvetlab.com or .net Gingivitis Proliferative Gingivitis Conjunctivitis/Blepharitis Uveitis & Conjunctivitis URI Oral Ulcers Stomatitis Lymphadenopathy TABLE OF CONTENTS Page SUMMARY……………………………………………………………………………………... i INTRODUCTION……………………………………………………………………………… 1 MICROBIOLOGY……………………………………………………………………………... 1 METHODS OF DETECTION OF BARTONELLA INFECTION.………………………….. 1 Isolation from Blood…………………………………………………………………….. 2 Serologic Tests…………………………………………………………………………… 2 SEROLOGY……………………………………………………………………………………… 3 CATS: PREVALENCE OF BARTONELLA INFECTIONS…………………………………… 4 Geographic Risk factors for Infection……………………………………………………. 5 Risk Factors for Infection………………………………………………………………… 5 FELINE BARTONELLA DISEASES………………………………………………………….… 6 Bartonella Pathogenesis………………………………………………………………… 7 Therapy of Feline Bartonella Diseases…………………………………………………… 14 Clinical Therapy Results…………………………………………………………………. 15 DOGS: PREVALENCE OF BARTONELLA INFECTIONS…………………………………. 17 CANINE BARTONELLA DISEASES…………………………………………………………... 17 HUMAN BARTONELLA DISEASES…………………………………………………………… 18 Zoonotic Case Study……………………………………………………………………... 21 FELINE BLOOD DONORS……………………………………………………………………. 21 REFERENCES………………………………………………………………………………….. 22 This work was initiated while Dr. Hardy was: Professor of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York and Director,
    [Show full text]
  • INFECTIOUS DISEASES of HAITI Free
    INFECTIOUS DISEASES OF HAITI Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Infectious Diseases of Haiti - 2010 edition Copyright © 2010 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-090-4 ISBN-10: 1-61755-090-6 Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. © 2010 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 314 Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Introduction: The GIDEON e-book series Infectious Diseases of Haiti is one in a series of GIDEON ebooks which summarize the status of individual infectious diseases, in every country of the world.
    [Show full text]
  • 555 BCBSA Reference Number: 2.04.10 NCD/LCD: N/A
    Medical Policy Identification of Microorganisms Using Nucleic Acid Probes Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History • Endnotes Policy Number: 555 BCBSA Reference Number: 2.04.10 NCD/LCD: N/A Related Policies • Intravenous Antibiotic Therapy and Associated Diagnostic Testing for Lyme Disease, #171 • Multitarget Polymerase Chain Reaction Testing for Diagnosis of Bacterial Vaginosis, #711 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members The use of nucleic acid testing using a direct or amplified probe technique (without quantification of viral load) may be considered MEDICALLY NECESSARY for the following microorganisms: • Bartonella henselae or quintana • Bordetella pertussis • Candida species • Chlamydia pneumoniae • Chlamydiatrachomatis • Clostridium difficile • Enterococcus, vancomycin-resistant (eg, enterococcus vanA, vanB) • Enterovirus • Herpes simplex virus • Human papillomavirus • Influenza virus • Legionella pneumophila • Mumps • Mycobacterium species • Mycobacterium tuberculosis • Mycobacterium avium intracellulare • Mycoplasma pneumoniae • Neisseria gonorrhoeae 1 • Rubeola (measles) • Staphylococcus aureus • Staphylococcus aureus, methicillin resistant • Streptococcus, group A • Streptococcus, group B • Trichomonas vaginalis • Zika virus. The use of molecular diagnostics for the diagnosis and management
    [Show full text]
  • Human Bartonellosis: an Underappreciated Public Health Problem?
    Tropical Medicine and Infectious Disease Review Human Bartonellosis: An Underappreciated Public Health Problem? Mercedes A. Cheslock and Monica E. Embers * Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA; [email protected] * Correspondence: [email protected]; Tel.: +(985)-871-6607 Received: 24 March 2019; Accepted: 16 April 2019; Published: 19 April 2019 Abstract: Bartonella spp. bacteria can be found around the globe and are the causative agents of multiple human diseases. The most well-known infection is called cat-scratch disease, which causes mild lymphadenopathy and fever. As our knowledge of these bacteria grows, new presentations of the disease have been recognized, with serious manifestations. Not only has more severe disease been associated with these bacteria but also Bartonella species have been discovered in a wide range of mammals, and the pathogens’ DNA can be found in multiple vectors. This review will focus on some common mammalian reservoirs as well as the suspected vectors in relation to the disease transmission and prevalence. Understanding the complex interactions between these bacteria, their vectors, and their reservoirs, as well as the breadth of infection by Bartonella around the world will help to assess the impact of Bartonellosis on public health. Keywords: Bartonella; vector; bartonellosis; ticks; fleas; domestic animals; human 1. Introduction Several Bartonella spp. have been linked to emerging and reemerging human diseases (Table1)[ 1–5]. These fastidious, gram-negative bacteria cause the clinically complex disease known as Bartonellosis. Historically, the most common causative agents for human disease have been Bartonella bacilliformis, Bartonella quintana, and Bartonella henselae.
    [Show full text]
  • Seroprevalence of Six Pathogens Transmitted by the Ixodes Ricinus
    www.nature.com/scientificreports OPEN Seroprevalence of six pathogens transmitted by the Ixodes ricinus ticks in asymptomatic individuals Received: 9 October 2018 Accepted: 7 January 2019 with HIV infection and in blood Published: xx xx xxxx donors Agnieszka Pawełczyk1,5, Małgorzata Bednarska2,5, Justyna D. Kowalska3, Beata Uszyńska- Kałuża4, Marek Radkowski1 & Renata Welc-Falęciak 2,5 The objective of our study was to estimate the seroprevalence of six pathogens transmitted by ticks in HIV-infected persons and blood donors in Poland (B. burgdorferi s.l., A. phagocytophilum, Ehrlichia spp., Babesia spp., Rickettsia spp. Bartonella henselae) to assess the frequency of exposure to such microorganisms in immunocompetent and immunocompromised individuals in endemic regions for I. ricinus ticks. Serum samples were collected from 227 HIV-infected patients and 199 blood donors. All samples were analyzed for antibodies against six tick-borne pathogens and seroprevalence rates were statistically compared between two tested group as well as age, sex and lymphocyte T CD4+ level in HIV infected patients. The seroprevalence of tick-borne infections in HIV-infected patients is higher than that of the healthy population in Poland, although no association between serological status of patients and lymphocyte CD4+ T cell level has been observed. The frequency of tick-borne coinfections and doubtful results of serological tests were signifcantly higher in HIV-positive individuals. In Poland, the possibility of tick-borne diseases transmission with blood is rather negligible. Recently the experts of the Center for Disease Control and Prevention’s have summarized the alarming increase in the number of vector-borne disease cases reported in the United States and territories from 2004 to 20161.
    [Show full text]
  • Bartonella Quintana Is a Genomic Derivative of the Zoonotic Agent Bartonella Henselae
    The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae Cecilia M. Alsmark*†‡, A. Carolin Frank*†, E. Olof Karlberg*†, Boris-Antoine Legault*, David H. Ardell*§, Bjo¨ rn Canba¨ ck*¶, Ann-Sofie Eriksson*, A. Kristina Na¨ slund*, Scott A. Handley*ʈ, Maxime Huvet*, Bernard La Scola*,**, Martin Holmberg††, and Siv G. E. Andersson*‡‡ *Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, 752 36 Uppsala, Sweden; and ††Department of Medical Sciences, Section for Infectious Diseases, Uppsala University Hospital, 752 85 Uppsala, Sweden Edited by Stanley Falkow, Stanford University, Stanford, CA, and approved February 19, 2004 (received for review September 4, 2003) We present the complete genomes of two human pathogens, henselae has mainly been studied in human umbilical vein Bartonella quintana (1,581,384 bp) and Bartonella henselae endothelial cells, and internalization has been shown to occur (1,931,047 bp). The two pathogens maintain several similarities in both by conventional phagocytosis and by an invasome-mediated being transmitted by insect vectors, using mammalian reservoirs, mechanism (5). Colonization of endothelial cells is important in infecting similar cell types (endothelial cells and erythrocytes) and both reservoir and incidental mammalian hosts and is considered causing vasculoproliferative changes in immunocompromised essential for the establishment and maintenance of the angio- hosts. A primary difference between the two pathogens is their proliferative lesions (4, 6–8). reservoir ecology. Whereas B. quintana is a specialist, using only Of the 19 described Bartonella species that infect a wide variety the human as a reservoir, B. henselae is more promiscuous and is of domestic and wild animals such as cats, dogs, mice, rats, frequently isolated from both cats and humans.
    [Show full text]
  • Infectious Diseases of the Dominican Republic
    INFECTIOUS DISEASES OF THE DOMINICAN REPUBLIC Stephen Berger, MD 2018 Edition Infectious Diseases of the Dominican Republic Copyright Infectious Diseases of the Dominican Republic - 2018 edition Stephen Berger, MD Copyright © 2018 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN: 978-1-4988-1759-2 Visit www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia - bacterial) or etiologic grouping (Coltiviruses - Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application.
    [Show full text]
  • Chronic Lyme Disease and Co-Infections: Differential Diagnosis
    Send Orders of Reprints at [email protected] 158 The Open Neurology Journal, 2012, 6, (Suppl 1-M10) 158-178 Open Access Chronic Lyme Disease and Co-infections: Differential Diagnosis Walter Berghoff* Practice of Internal Medicine, Rheinbach, 53359, Germany Abstract: In Lyme disease concurrent infections frequently occur. The clinical and pathological impact of co-infections was first recognized in the 1990th, i.e. approximately ten years after the discovery of Lyme disease. Their pathological synergism can exacerbate Lyme disease or induce similar disease manifestations. Co-infecting agents can be transmitted together with Borrelia burgdorferi by tick bite resulting in multiple infections but a fraction of co-infections occur inde- pendently of tick bite. Clinically relevant co-infections are caused by Bartonella species, Yersinia enterocolitica, Chlamy- dophila pneumoniae, Chlamydia trachomatis, and Mycoplasma pneumoniae. In contrast to the USA, human granulocytic anaplasmosis (HGA) and babesiosis are not of major importance in Europe. Infections caused by these pathogens in pa- tients not infected by Borrelia burgdorferi can result in clinical symptoms similar to those occurring in Lyme disease. This applies particularly to infections caused by Bartonella henselae, Yersinia enterocolitica, and Mycoplasma pneumo- niae. Chlamydia trachomatis primarily causes polyarthritis. Chlamydophila pneumoniae not only causes arthritis but also affects the nervous system and the heart, which renders the differential diagnosis difficult. The diagnosis is even more complex when co-infections occur in association with Lyme disease. Treatment recommendations are based on individual expert opinions. In antibiotic therapy, the use of third generation cephalosporins should only be considered in cases of Lyme disease. The same applies to carbapenems, which however are used occasionally in infections caused by Yersinia enterocolitica.
    [Show full text]
  • Bartonella Quintana, an Unrecognized Cause of Infective Endocarditis In
    SYNOPSIS Bartonella quintana, an Unrecognized Cause of Infective Endocarditis in Children in Ethiopia Diana Tasher, Alona Raucher-Sternfeld, Akiva Tamir, Michael Giladi, Eli Somekh In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Emerging Infectious Diseases. Medscape, LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team. Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 75% minimum passing score and complete the evaluation at http://www.medscape.org/journal/eid; and (4) view/print certificate. For CME questions, see page 1439. Release date: July 14, 2017; Expiration date: July 14, 2018 Learning Objectives Upon completion of this activity, participants will be able to: • Distinguish features of infection with Bartonella quintana. • Identify the country of origin of children in the current case series of Bartonella endocarditis. • Assess presenting symptoms of Bartonella endocarditis among children. • Analyze clinical findings associated with Bartonella endocarditis among children. CME Editor Claudia Chesley, BA, Technical Writer/Editor, Emerging Infectious Diseases. Disclosure: Claudia Chesley, BA, has disclosed no relevant financial relationships.
    [Show full text]