Pesticide Residues in Food 2016 Joint

Total Page:16

File Type:pdf, Size:1020Kb

Pesticide Residues in Food 2016 Joint 412 ISSN 1014-11971014-1200 ISSN ISSN0259-2517 1020-055X 8 229 ESTUDIOESTUDIOƒTUDE FAOFAO BiotecnologíaEtudeTitle Spanish prospective agrícola INVESTIGACIÓNPRODUCCIîNFORæTSPLANT YPRODUCTION TECNOLOGIAY SANIDAD paradugdfgdfgdf secteur países sdforestier en desarrollo AND PROTECTIONANIMAL 141PAPER8 enJgfsdFFAO/WHOResultados Afrique de un foro electrónico Meetingf 229 Subtiltle 412 Pesticide residues in food 2016 – Joint FAO/WHO Meeting on Pest Rapport r gional Ð opportunit s et d s ˆ l'horizon 2020 En estaCe publicación rapport r gional se presenta de lÕEtude un informe prospective sobre du las secteur primerasBlurb TEXTforestier seis conferencias en Afrique fournitmediante une correo vue dÕensemble electrónico des The annualorganizadaspossibilit Joint s por oertesMeeting el Foro et ofelectrónicodes the d s FAO ˆ relever Panelde la FAOpour of Expertssobre Helveticarenforcer la biotecnologíaon boldla Pesticide contribution 8/12 Residuesen ladu alimentación secteur in Food forestier andy la agricultura,au the d veloppement Pesticide residues Environmentcelebradasdurable entre and de marzothe lÕAfrique, WHO de 2000 Core dans y Assessmentmayo le contexte de 2001. desGroup Todas changements on las Pesticideconferencias politiques Residues contaron et institutionnels, was con held un moderador, in Rome, d mographiques, duraron aproximadamenteItaly,conomiques, from 12 to dos 22technologiques Septembermeses y se centraron 2016. et environnementaux. The en FAOla biotecnología Panel Surof Experts la agrícola base dÕunhad en metlos examen países in preparatory de en lÕimpact desarrollo. des Las facteurs cuatro de sessionsprimeras fromchangement conferencias 08 to 11 et September destrataron sc narios de 2016. la probables, idoneidad The Meeting il para donne los was unepaíses held indication en in desarrollo pursuance de ce dequi las ofpourrait biotecnologíasrecommendations arriver dÕici actualmente ˆ 2020, si les in food 2016 madedisponibles bytendances previous en actuellesMeetingslos sectores persistent. and agrícola, accepted Les pesquero, priorit by the s forestal et governing les strat y ganadero. gies bodies permettant Las of otras FAO de dos and renforcer conferencias WHO lathat contribution studies trataron de du las secteur should berepercusiones undertaken de jointly la biotecnología by expertsforestier agrícola to evaluateau bien- sobre tre elpossible hambresocial sont hazards y la galement seguridad to humans tudi alimentaria es. arising en fromlos países the en Biotecnología agrícola para países en desarrollo países en desarrollo para agrícola Biotecnología occurrencedesarrollo yof las pesticide consecuencias residues de losin foods.derechos During de propiedad the meeting intelectual the FAO en la Panel alimentación of Experts y la wasagricultura en responsible for reviewing pesticide use patterns esos(use países. of good agricultural practices), data on the chemistry and composition of the pesticides and methods of analysis for pesticide residues and for estimating the maximum residue levels that might occur as a result of the use of the pesticides according to good agricultural use practices. The WHO Core Assessment Group was responsible for reviewing toxicological and related data and for estimating, where possible and appropriate, Joint FAO/WHO Meeting acceptable daily intakes (ADIs) and acute reference doses (ARfDs) of the pesticides for humans. This Title SPINE Title report contains information on ADIs, ARfDs, maximum residue levels, and general principles for the evaluation of pesticides. The recommendations of the Joint Meeting, including further research and on Pesticide Residues information, are proposed for use by Member governments of the respective agencies and other interested parties. icide Residues REPORT 2016 ISBN 92-5-204910-X ISSN 1014-2894 ISBN 978-92-5-109552-2 ISSN 0259-2517 978 9 2 5 2 0 4 9 1 0 4 TC/M/Y4521F/1/2.03/600 FAO FAO FAO 978 9251 095522 I6585EN/1/12.16 FAO Pesticide residues PLANT PRODUCTION AND PROTECTION in food 2016 PAPER Joint FAO/WHO Meeting 229 on Pesticide Residues Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Rome, Italy, 13–22 September 2016 WORLD HEALTH ORGANIZATION FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or of the World Health Organization (WHO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these are or have been endorsed or recommended by FAO or WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by FAO and WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall FAO and WHO be liable for damages arising from its use. The views expressed herein are those of the authors and do not necessarily represent those of FAO or WHO. ISBN 978-92-5-109552-2 © WHO and FAO, 2016 All rights reserved. WHO and FAO encourage the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, provided that appropriate acknowledgement of WHO and FAO as the source and copyright holder is given and that WHO and FAO’s endorsement of users’ views, products or services is not implied in any way. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html) All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/ publications) and can be purchased through [email protected] iii Contents List of participants ................................................................................................................................. v Abbreviations ...................................................................................................................................... viii Use of JMPR reports and evaluations by registration authorities .................................................. xii 1. INTRODUCTION ....................................................................................................................... 1 1.1 Declaration of Interests ....................................................................................................... 2 2. GENERAL CONSIDERATIONS .............................................................................................. 3 2.1 Update on the revision of Principles and Methods for Risk Assessment of Chemicals in Food (EHC 240) .................................................................................................................. 3 2.2 JMPR guidance documents for WHO monographers and reviewers .................................. 4 2.3 Evaluation of genotoxicity data .......................................................................................... 4 2.4 Update of the OECD Livestock Animal Burden Feed Table .............................................. 4 3. RESPONSES TO SPECIFIC ISSUES ....................................................................................... 5 3.1 Concerns raised by the the Codex Committee on Pesticide Residues (CCPR) .................. 5 3.1.1 Acetochlor (280) ................................................................................................................ 5 3.1.2 Chlorothalonil (081) ........................................................................................................... 7 3.1.3 Flonicamid (282) ................................................................................................................ 7 3.1.4 Penthiopyrad (253) ............................................................................................................. 9 3.2 OTHER MATTERS OF INTEREST ................................................................................ 10 3.2.1 Bentazone (172) ............................................................................................................... 10 3.2.2 Picoxystrobin (258) .........................................................................................................
Recommended publications
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Assessing the Single and Combined Toxicity of Chlorantraniliprole And
    toxins Article Assessing the Single and Combined Toxicity of Chlorantraniliprole and Bacillus thuringiensis (GO33A) against Four Selected Strains of Plutella xylostella (Lepidoptera: Plutellidae), and a Gene Expression Analysis Muhammad Zeeshan Shabbir 1,2, Ling He 1,2, Changlong Shu 3, Fei Yin 1,2, Jie Zhang 3 and Zhen-Yu Li 1,2,* 1 Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; [email protected] (M.Z.S.); [email protected] (L.H.); [email protected] (F.Y.) 2 Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China 3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China; [email protected] (C.S.); [email protected] (J.Z.) * Correspondence: [email protected] Abstract: Concerns about resistance development to conventional insecticides in diamondback moth (DBM) Plutella xylostella (L.), the most destructive pest of Brassica vegetables, have stimulated interest in alternative pest management strategies. The toxicity of Bacillus thuringiensis subsp. aizawai (Bt GO33A) combined with chlorantraniliprole (Chl) has not been documented. Here, we examined sin- gle and combined toxicity of chlorantraniliprole and Bt to assess the levels of resistance in four DBM strains. Additionally, enzyme activities were tested in field-original highly resistant (FOH-DBM), Bt-resistant (Bt-DBM), chlorantraniliprole-resistant (CL-DBM), and Bt + chlorantraniliprole-resistant (BtC-DBM) strains. The Bt product had the highest toxicity to all four DBM strains followed by the Citation: Shabbir, M.Z.; He, L.; Shu, mixture of insecticides (Bt + Chl) and chlorantraniliprole.
    [Show full text]
  • Chlorantraniliprole: Reduced-Risk Insecticide for Controlling Insect Pests of Woody Ornamentals with Low Hazard to Bees
    242 Redmond and Potter: Acelepryn Control of Horticultural Pests Arboriculture & Urban Forestry 2017. 43(6):242–256 Chlorantraniliprole: Reduced-risk Insecticide for Controlling Insect Pests of Woody Ornamentals with Low Hazard to Bees Carl T. Redmond and Daniel A. Potter Abstract. Landscape professionals need target-selective insecticides for managing insect pests on flowering woody orna- mentals that may be visited by bees and other insect pollinators. Chlorantraniliprole, the first anthranilic diamide insec- ticide registered for use in urban landscapes, selectively targets the receptors that regulate the flow of calcium to control muscle contraction in caterpillars, plant-feeding beetles, and certain other phytophagous insects. Designated a reduced- risk pesticide by the United States Environmental Protection Agency, it has a favorable toxicological and environmental profile, including very low toxicity to bees and most types of predatory and parasitic insects that contribute to pest sup- pression. Chlorantraniliprole has become a mainstay for managing turfgrass pests, but little has been published concern- ing its performance against the pests of woody ornamentals. Researchers evaluated it against pests spanning five different orders: adult Japanese beetles, evergreen bagworm, eastern tent caterpillar, bristly roseslug sawfly, hawthorn lace bug, ole- ander aphid, boxwood psyllid, oak lecanium scale (crawlers), and boxwood leafminer, using real-world exposure scenarios. Chlorantraniliprole’s efficacy, speed of control, and residual activity as a foliar spray for the leaf-chewing pests was as good, or better, than provided by industry standards, but sprays were ineffective against the sucking pests (lace bugs, aphids, or scales). Basal soil drenches in autumn or spring failed to systemically control boxwood psyllids or leafminers, but autumn drenches did suppress roseslug damage and Japanese beetle feeding the following year.
    [Show full text]
  • The Fall Armyworm – a Pest of Pasture and Hay
    The Fall Armyworm – A Pest of Pasture and Hay. Allen Knutson Extension Entomologist, Texas A&M AgriLife Extension Texas A&M AgriLife Research and Extension Center, Dallas, 2019 revision The fall armyworm, Spodoptera frugiperda, is a common pest of bermudagrass, sorghum, corn, wheat and rye grass and many other crops in north and central Texas. Larvae of fall armyworms are green, brown or black with white to yellowish lines running from head to tail. A distinct white line between the eyes forms an inverted “Y” pattern on the face. Four black spots aligned in a square on the top of the segment near the back end of the caterpillar are also characteristic. Armyworms are very small (less than 1/8 inch) at first, cause little plant damage and as a result often go unnoticed. Larvae feed for 2-3 weeks and full grown larvae are about 1 to 1 1/2 inches long. Given their immense appetite, great numbers, and marching ability, fall armyworms can damage entire fields or pastures in a few days. Once the armyworm larva completes feeding, it tunnels into the soil to a depth of about an inch and enters the pupal stage. The armyworm moth emerges from the pupa in about ten days and repeats the life cycle. The fall armyworm moth has a wingspan of about 1 1/2 inches. The front pair of wings is dark gray with an irregular pattern of light and dark areas. Moths are active at night when they feed on nectar and deposit egg masses. A single female can deposit up to 2000 eggs and there are four to five generations per year.
    [Show full text]
  • Impacts of Insecticides on Predatory Mite, Neoseiulus Fallacis (Acari: Phytoseidae) and Mite Flaring of European Red Mites, Panonychus Ulmi (Acari: Tetranychidae)
    IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology–Doctor of Philosophy 2014 ABSTRACT IMPACTS OF INSECTICIDES ON PREDATORY MITE, NEOSEIULUS FALLACIS (ACARI: PHYTOSEIDAE) AND MITE FLARING OF EUROPEAN RED MITES, PANONYCHUS ULMI (ACARI: TETRANYCHIDAE) By Raja Zalinda Raja Jamil Panonychus ulmi, the European red mite, is a major agricultural pest found in most deciduous fruit growing areas. It is the most important mite species attacking tree fruits in humid regions of North America. Bristle-like mouthparts of this mite species pierce the leaf cell wall and ingestion of their contents including chlorophyll causes bronzing injury to leaves. Heavy mite feeding early in the season (late Jun and July) reduce tree growth and yield as well as the fruit bud formation, thereby reduce yields the following year. Biological control of this pest species by predators has been a cornerstone of IPM. Phytoseiid mite, Neoseiulus fallacis (Garman) is the most effective predator mite in Michigan apple orchards and provides mid- and late-season biological control of European red mites. Achieving full potential of biological control in tree fruit has been challenging due to the periodic sprays of broad-spectrum insecticides. There have been cases of mite flaring reported by farmers in relation to the reduced-risk (RR) insecticides that were registered in commercial apple production in the past ten years. These insecticides are often used in fruit trees to control key direct pests such as the codling moth.
    [Show full text]
  • And Trans-Acting Variants Contribute to Survivorship in a Na Ve Drosophila Melanogaster Population Exposed to Ryanoid Insec
    Cis- and trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides Llewellyn Greena, Paul Battlaya, Alexandre Fournier-Levela, Robert T. Gooda, and Charles Robina,1 aSchool of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia Edited by Trudy F. C. Mackay, Clemson University, Raleigh, NC, and approved April 16, 2019 (received for review December 20, 2018) Insecticide resistance is a paradigm of microevolution, and insecti- others that suggest that resistance to this new insecticide class can cides are responsible for the strongest cases of recent selection in arise through other means (9–12). the genome of Drosophila melanogaster.Hereweuseanaïvepop- While Drosophila melanogaster is not a pest or a direct target ulation and a novel insecticide class to examine the ab initio genetic of chlorantraniliprole applications, it is an organism of interest architecture of a potential selective response. Genome-wide associ- for two reasons. Firstly, D. melanogaster has long served as a ation studies (GWAS) of chlorantraniliprole susceptibility reveal var- model for insecticide resistance (13) and its status as a model iation in a gene of major effect, Stretchin Myosin light chain kinase organism more generally means that there is a wide variety of (Strn-Mlck), which we validate with linkage mapping and transgenic tools available to characterize genetic traits (14). Secondly, se- manipulation of gene expression. We propose that allelic variation lective sweep analyses show that insecticides (particularly the in Strn-Mlck alters sensitivity to the calcium depletion attributable organophosphates) have been major selective agents on D. to chlorantraniliprole’s mode of action.
    [Show full text]
  • Chlorantraniliprole (DPX-E2Y45, Rynaxypyr®, Coragen®) a New Diamide Insecticide… 41
    Zbornik predavanj in referatov 9. slovenskega posvetovanja o varstvu rastlin z mednarodno udeležbo 39 Nova Gorica, 4.–5. marec 2009 CHLORANTRANILIPROLE (DPX-E2Y45, RYNAXYPYR®, CORAGEN®), A NEW DIAMIDE INSECTICIDE FOR CONTROL OF CODLING MOTH (Cydia pomonella), COLORADO POTATO BEETLE (Leptinotarsa decemlineata) AND EUROPEAN GRAPEVINE MOTH (Lobesia botrana) Andrea BASSI1, J. L. RISON2, J. A. WILES3 1DuPont Italy Srl 2Du Pont de Nemours (France) SAS 3Du Pont (UK) Limited ABSTRACT Chlorantraniliprole (DPX-E2Y45, Rynaxypyr®, Coragen®) is a new compound by DuPont belonging to a new class of selective insecticides (anthranilic diamides) featuring a novel mode of action (group 28 in the IRAC classification). By activating the insect ryanodine receptors (RyRs) it stimulates the release and depletion of intracellular calcium stores from the sarcoplasmic reticulum of muscle cells, causing impaired muscle regulation, paralysis and ultimately death of sensitive species (Cordova et al. 2006). Extensively tested in the field since 2002, it is registered or next to market introduction in the majority of agricultural countries worldwide. Development in Slovenia is currently focused in foliar applications in apples, potatoes and grapes. In the EU trials, rates of 10-60 g a.s./ha were highly effective on important pests such as: Cydia pomonella, Cydia molesta, Lobesia botrana, Eupoecilia ambiguella, Leptinotarsa decemlineata, Ostrinia nubilalis and Helicoverpa armigera. The product general features have been presented in previous, referenced papers. It has very low toxicity for mammals (both acute and chronic), high intrinsic activity on target pests, strong ovi- larvicidal and larvicidal properties, long lasting crop protection and no cross-resistance to any existing insecticide. Coragen® demonstrated excellent performance on codling moth and other chewing pests, stability of performance across the different conditions and minimal impact on pollinators, beneficial insects and predatory mites.
    [Show full text]
  • Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis Mellifera L.) Workers Under Laboratory Conditions
    Open Access Austin Environmental Sciences Special Article - Pesticides Acute Toxicity of Selected Insecticides and Their Safety to Honey Bee (Apis mellifera L.) Workers Under Laboratory Conditions Abbassy MA1*, Nasr HM1, Abo-yousef HM2 and Dawood RR1 Abstract 1 Department of Plant Protection, Damanhur University, Objectives: The honey bee, Apis mellifera L., is widely used for the Egypt production of honey, wax, pollen, propolis, royal jelly and venom and crop 2Central Laboratory of Pesticides, Ministry of Agriculture pollination. Since honey bees can be exposed to insecticides in sprayed flowering and Land Reclamation, Egypt crops, therefore, this study aimed to assess the acute toxicity and safety index *Corresponding author: Moustafa A Abbassy, of five commonly used insecticides to honey bee workers in laboratory. Department of Plant Protection, Damanhur University, Methods: Bees were exposed to the insecticides: Imidacloprid, Pesticide Chemistry and Toxicology, Egypt Thiamethoxam, Esfenvalerate, Indoxacarb and Chlorantraniliprole by two Received: May 03, 2020; Accepted: May 25, 2020; methods of exposure: topical application and feeding techniques. LD50 and LC50 Published: June 01, 2020 values for each insecticide to honey bees were determined after 24 and 48 h from treatment. Results: The LD50 values in µg per bee were 0.0018 (indoxacarb), 0.019 (esfenvalerate), 0.024 (thiamethoxam), 0.029 (imidacloprid) and 107.12 -1 (chlorantraniliprole). The LC50 values (mg L ), for each insecticide, were as follows: indoxacarb, 0.091; esfenvalerate, 0.014; thiamethoxam, 0.009; imidacloprid, 0.003 and chlorantraniliprole, 0.026, after 24 h from exposure. In general, the neonicotinoid insecticides were the most toxic to bees by feeding technique, and indoxacarb, esfenvalerate were the most toxic by contact method while chlorantraniliprole had slightly or non- toxic effect by the two methods.
    [Show full text]
  • INSECTICIDE RECOMMENDATIONS for SOYBEANS‐ 2017 Raul T
    ENT‐13 INSECTICIDE RECOMMENDATIONS FOR SOYBEANS‐ 2017 Raul T. Villanueva, Extension Entomologist Kentucky now ranks among the major soybean producing states. More insect problems have been associated with Kentucky soybeans since it has become a major crop. The following information and control aids should enable the grower to minimize losses due to insect pests on soybeans. Evaluation of Soybean Insect Infestations Fields need to be inspected at least once a week from planting until maturity to assesss the need for and to estimate proper timing for soybean insect control. Shaking soybeans over the row middle will generally be adequate in determining the soybean insects present. A cloth or a newspaper 42" x 24" may be used in the row middle to facilitate counting the soybean insects in almost any row width. Place the cloth between two rows, vigorously shake approximately two row‐feet of plants in each row over the cloth. Count the insects and repeat this process at 10 different locations in the field. If you have no available cloth, use the soil surface as the area for counting insects. Use the average number of insects found for determining when to spray. (Note "Time of Treatment" in Control Tables at the end of this publication.) Determining the percent of defoliation by observing the bean field may be difficult because the dense foliage hides damaged leaves. Pull up plants from several locations in the field and place the leaves against a light background. This method should give a fairly accurate measure of the percent defoliation. Refer to the tables for the percent defoliation to determine if control measures are justified.
    [Show full text]
  • Rep12/Pr Joint Fao/Who Food Standards Programme
    E REP12/PR JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX ALIMENTARIUS COMMISSION 35th Session Geneva, Switzerland, 2 – 7 July 2012 REPORT OF THE 44th SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES Shanghai, China, 23 - 28 April 2012 Note: This report includes Codex Circular Letter CL 2012/10-PR. E CX 4/40.2 CL 2012/10-PR May 2012 To: - Codex Contact Points - Interested International Organizations From: Secretariat, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, E-mail: [email protected], Fax: +39 06 57054593) Viale delle Terme di Caracalla, 00153 Rome, Italy SUBJECT: DISTRIBUTION OF THE REPORT OF THE 44TH SESSION OF THE CODEX COMMITTEE ON PESTICIDE RESIDUES (REP11/PR) The report of the 44th Session of the Codex Committee on Pesticide Residues will be considered by the 35th Session of the Codex Alimentarius Commission (Rome, Italy, 2 – 7 July 2012). PART A: MATTERS FOR ADOPTION BY THE 35TH SESSION OF THE CODEX ALIMENTARIUS COMMISSION: 1. Draft Maximum Residue Limits for Pesticides at Step 8 (paras. 28 - 85 and Appendix II); 2. Draft Revision to the Codex Classification of Food and Animal Feed (fruit commodity groups) at Step 8 (para. 107 and Appendix VIII); 3. Draft Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of Maximum Residue Limits for Pesticides to Commodity Groups (including Table 1: Examples of the selection of representative commodities - fruit commodity groups) at Step 8 (para. 127 and Appendix XI); and 4. Proposed Draft Maximum Residue Limits for Pesticides at Step 5/8 (with omission of Steps 6/7) (paras.
    [Show full text]
  • Sublethal Effects of Chlorantraniliprole on Spodoptera Litura (Lepidoptera: Noctuidae) Moth: Implication for Attract-And-Kill Strategy
    toxics Article Sublethal Effects of Chlorantraniliprole on Spodoptera litura (Lepidoptera: Noctuidae) Moth: Implication for Attract-and-Kill Strategy Fanfang Kong 1,†, Yaqin Song 2,†, Qian Zhang 1, Zhongyue Wang 1 and Yongqiang Liu 1,* 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (F.K.); [email protected] (Q.Z.); [email protected] (Z.W.) 2 Guangxi Academy of Specialty Crops, Guilin 541004, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The integrated use of plant-derived volatile attractants and synthetic insecticides in attract- and-kill programs is a useful tool for integrated pest management programs reducing pesticide input. Efficient alternative insecticides are critically needed to replace methomyl, which has been banned on cruciferous vegetables in China because it is also highly toxic to nontarget organisms. In the present study, among 15 commonly used insecticides were screened for toxicity against S. litura moths, where chlorantraniliprole, flubendiamide, and emamectin benzoate was found to −1 have the highest levels of toxicity (LC50 of 0.56, 3.85, and 6.03 mg a.i. L respectively). After exposure to the low lethal concentration LC50 of chlorantraniliprole, fecundity of the moths was substantially reduced. Egg-hatching was lower for LC20- and LC50-treated moth pairs than for untreated control pairs. Net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of × increase (l) were significantly reduced in LC50 LC50 cohorts. Larval mortality was significantly higher in subsequent generations in pairs of LC♀ 50-treated♂ moths.
    [Show full text]