The Biology of Gossypium Hirsutum L. and Gossypium Barbadense L. (Cotton)

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Gossypium Hirsutum L. and Gossypium Barbadense L. (Cotton) The Biology of Gossypium hirsutum L. and Gossypium barbadense L. (cotton) Version 2.1 April 2013 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. Version 2 (February 2008) has been updated to include an appendix containing a weed risk assessment of cotton based on the National Post-Border Weed Risk Management Protocol. References to the new appendix have been added in the text. Minor updates to the sections on seed dispersal, out-crossing rates and commercial production of GM cotton have also been made. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> The Biology of Gossypium hirsutum & G. barbadense (cotton) Office of the Gene Technology Regulator TABLE OF CONTENTS PREAMBLE ............................................................................................................................... 1 SECTION 1 TAXONOMY ........................................................................................................ 1 1.1 TAXONOMY AND DISTRIBUTION OF NATIVE AUSTRALIAN COTTON SPECIES ................. 3 SECTION 2 ORIGIN AND CULTIVATION ............................................................................ 4 2.1 CENTRE OF DIVERSITY AND DOMESTICATION............................................................. 4 2.2.1 Origin in Australia..................................................................................... 6 2.2 COMMERCIAL USES .................................................................................................. 6 2.3 CULTIVATION IN AUSTRALIA .................................................................................... 8 2.3.1 Commercial propagation ........................................................................... 8 2.3.2 Scale of cultivation .................................................................................... 8 2.3.3 Cultivation practices ................................................................................ 13 2.4 CROP IMPROVEMENT.............................................................................................. 15 2.4.1 Breeding .................................................................................................. 15 2.4.2 Genetic modification ................................................................................ 16 SECTION 3 MORPHOLOGY................................................................................................. 17 3.1 PLANT MORPHOLOGY ............................................................................................. 17 3.2 REPRODUCTIVE MORPHOLOGY ............................................................................... 19 SECTION 4 DEVELOPMENT................................................................................................ 20 4.1 REPRODUCTION ..................................................................................................... 20 4.1.1 Asexual reproduction ............................................................................... 20 4.1.2 Sexual reproduction ................................................................................. 21 4.2 POLLINATION AND POLLEN DISPERSAL .................................................................... 22 4.2.1 Pollen ...................................................................................................... 22 4.2.2 Pollination............................................................................................... 23 4.2.3 Out-crossing rates ................................................................................... 23 4.3 FRUIT/SEED DEVELOPMENT AND SEED DISPERSAL .................................................... 26 4.3.1 Fruit development .................................................................................... 26 4.3.2 Seed dispersal.......................................................................................... 27 4.4 SEED DORMANCY AND GERMINATION ..................................................................... 29 4.4.1 Seed dormancy ........................................................................................ 29 4.4.2 Germination ............................................................................................ 30 4.4.3 Seedling survival ..................................................................................... 31 4.5 VEGETATIVE GROWTH............................................................................................ 31 SECTION 5 BIOCHEMISTRY ............................................................................................... 31 5.1 TOXINS .................................................................................................................. 31 5.1.1 Gossypol ................................................................................................. 32 5.1.2 Cyclopropenoid Fatty Acids ..................................................................... 33 5.2 ALLERGENS ........................................................................................................... 34 5.3 BENEFICIAL PHYTOCHEMICALS ............................................................................... 34 5.3.1 Medicines ................................................................................................ 34 5.3.2 Stock feed ................................................................................................ 35 SECTION 6 ABIOTIC INTERACTIONS............................................................................... 35 6.1 NUTRIENT REQUIREMENTS ..................................................................................... 35 6.2 TEMPERATURE REQUIREMENTS AND TOLERANCES ................................................... 37 6.3 WATER USE ........................................................................................................... 37 6.4 OTHER TOLERANCES .............................................................................................. 38 SECTION 7 BIOTIC INTERACTIONS ................................................................................. 39 7.1 WEEDS .................................................................................................................. 39 7.1.1 Weed Control .......................................................................................... 39 7.2 PESTS AND PATHOGENS .......................................................................................... 40 7.2.1 Pests........................................................................................................ 40 7.2.2 Pathogens................................................................................................ 43 iii The Biology of Gossypium hirsutum & G. barbadense (cotton) Office of the Gene Technology Regulator 7.3 OTHER INTERACTIONS ............................................................................................ 45 SECTION 8 WEEDINESS ....................................................................................................... 46 8.1 WEEDINESS STATUS ON A GLOBAL SCALE ................................................................ 46 8.2 WEEDINESS STATUS IN AUSTRALIA ......................................................................... 46 8.3 WEEDINESS IN AGRICULTURAL ECOSYSTEMS........................................................... 47 8.4 WEEDINESS IN NATURAL ECOSYSTEMS .................................................................... 47 8.5 CONTROL MEASURES ............................................................................................. 48 8.6 WEED RISK ASSESSMENT OF COTTON ...................................................................... 49 SECTION 9 POTENTIAL FOR VERTICAL GENE TRANSFER ........................................ 50 9.1 INTRASPECIFIC CROSSING ....................................................................................... 50 9.2 NATURAL INTERSPECIFIC AND INTERGENERIC CROSSING .......................................... 50 9.2.1 Crosses between G. barbadense and G. hirsutum ..................................... 50 9.2.2 Crosses with native Gossypium spp .......................................................... 51 9.3 CROSSING UNDER EXPERIMENTAL CONDITIONS ....................................................... 52 9.3.1 Cross-pollination with G- and K-genome natives ...................................... 52 9.3.2 Cross-pollination with C-genome natives ................................................. 53 9.3.3 Cross-pollination with other plant taxa .................................................... 55 REFERENCES ............................................................................................................................. 56 APPENDIX A WEEDS OF COTTON ....................................................................................... 85 APPENDIX B WEED RISK ASSESSMENT OF COTTON ...................................................... 86 iv The Biology of Gossypium hirsutum & G. barbadense (cotton) Office of the Gene Technology Regulator PREAMBLE This document describes the biology of Gossypium hirsutum (upland cotton) and Gossypium barbadense (pima cotton), with particular reference to the Australian environment, cultivation and use. Information included relates to the taxonomy and origins of cultivated G. hirsutum and G. barbadense, general descriptions of their morphology, reproductive biology,
Recommended publications
  • Natural Materials for the Textile Industry Alain Stout
    English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ...................................................................................................................
    [Show full text]
  • Gossypium Barbadense: an Approach for in Situ Conservation in Cerrado, Brazil
    Journal of Agricultural Science; Vol. 8, No. 8; 2016 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Gossypium barbadense: An Approach for in Situ Conservation in Cerrado, Brazil Andrezza Arantes Castro1, Lúcia Vieira Hoffmann2, Thiago Henrique Lima1, Aryanny Irene Domingos Oliveira1, Rafaela Ribeiro Brito1, Letícia de Maria Oliveira Mendes1, Caio César Oliveira Pereira1, Guilherme Malafaia1 & Ivandilson Pessoa Pinto de Menezes1 1 Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Goiás, Brazil 2 Embrapa Algodão, Campina Grande, Paraíba, Brazil Correspondence: Ivandilson Pessoa Pinto de Menezes, School Genetic Molecular Laboratory, Instituto Federal Goiano, Urutaí, Brazil. Tel: 55-64-9279-9708. E-mail: [email protected] Received: May 27, 2016 Accepted: June 16, 2016 Online Published: July 15, 2016 doi:10.5539/jas.v8n8p59 URL:http://dx.doi.org/10.5539/jas.v8n8p59 Abstract Abandonment of planting of Gossypium barbadense has endangered its existence. The objective was to determine the characteristicof the maintenance of Gossypium barbadense in the Central-West Region of Brazil, with the aim to foster the conservation of the species. Expeditions were conducted in 2014-2015 in Southeast Goiás, where cotton collection has not been reported before. Data from previous collections in Goiás, Mato Grosso, Mato Grosso do Sul and Distrito Federal available in Albrana database were considered this study. In the Central-West Region of Brazil, 466 accesses of G. barbadense were recorded, found most frequently in backyards (91.4%), but also spontaneous plants (7.5%), farm boundary (0.8%) and commercial farming (0.2%) have also been found. The main use indicated by VDU was as medicinal plant (0.66), therefore this is the main reason for in situ preservation.
    [Show full text]
  • Characterization of Some Common Members of the Family Malvaceae S.S
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.79-86/Naskar and Mandal Research Article CHARACTERIZATION OF SOME COMMON MEMBERS OF THE FAMILY MALVACEAE S.S. ON THE BASIS OF MORPHOLOGY OF SELECTIVE ATTRIBUTES: EPICALYX, STAMINAL TUBE, STIGMATIC HEAD AND TRICHOME *Saikat Naskar and Rabindranath Mandal Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124, West Bengal, India *Author for Correspondence: [email protected] ABSTRACT Epicalyx, staminal tube, stigma and trichome morphological characters have been used to characterize some common members of Malvaceae s.s. These characters have been analyzed following a recent molecular phylogenetic classification of Malvaceae s.s. Stigmatic character is effective for segregation of the tribe Gossypieae from other tribes. But precise distinction of other two studied tribes, viz. Hibisceae and Malveae on the basis of this character proved to be insufficient. Absence of epicalyx in Malachra has indicated an independent evolutionary event within Hibisceae. Distinct H-shaped trichome of Malvastrum has pointed out its isolated position within Malveae. Staminal tube morphological similarities of Abutilon and Sida have suggested their closeness. A key to the genera has been provided for identification purpose. Keywords: Malvaceae s.s., Epicalyx, Staminal Tube, Stigma, Trichome INTRODUCTION Epicalyx and monadelphous stamens are considered as key characters of the family Malvaceae s.s. Epicalyx was recognized as an important character for taxonomic value by several authors (Fryxell, 1988; Esteves, 2000) since its presence or absence was employed to determine phylogenetic interpretation within the tribes of Malvaceae s.s.
    [Show full text]
  • Polyploidy and the Evolutionary History of Cotton
    POLYPLOIDY AND THE EVOLUTIONARY HISTORY OF COTTON Jonathan F. Wendel1 and Richard C. Cronn2 1Department of Botany, Iowa State University, Ames, Iowa 50011, USA 2Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, Oregon 97331, USA I. Introduction II. Taxonomic, Cytogenetic, and Phylogenetic Framework A. Origin and Diversification of the Gossypieae, the Cotton Tribe B. Emergence and Diversification of the Genus Gossypium C. Chromosomal Evolution and the Origin of the Polyploids D. Phylogenetic Relationships and the Temporal Scale of Divergence III. Speciation Mechanisms A. A Fondness for Trans-oceanic Voyages B. A Propensity for Interspecific Gene Exchange IV. Origin of the Allopolyploids A. Time of Formation B. Parentage of the Allopolyploids V. Polyploid Evolution A. Repeated Cycles of Genome Duplication B. Chromosomal Stabilization C. Increased Recombination in Polyploid Gossypium D. A Diverse Array of Genic and Genomic Interactions E. Differential Evolution of Cohabiting Genomes VI. Ecological Consequences of Polyploidization VII. Polyploidy and Fiber VIII. Concluding Remarks References The cotton genus (Gossypium ) includes approximately 50 species distributed in arid to semi-arid regions of the tropic and subtropics. Included are four species that have independently been domesticated for their fiber, two each in Africa–Asia and the Americas. Gossypium species exhibit extraordinary morphological variation, ranging from herbaceous perennials to small trees with a diverse array of reproductive and vegetative
    [Show full text]
  • By Susan Shelton Mural Imagery Key Top Section
    “Nurturing the Dream” By Susan Shelton Mural Imagery Key Top Section: The quotes reflect the overall theme of the mural: the importance of finding a balance between the work we do as students, workers, activists, and caregivers, and the time needed for reflection, nourishment of the spirit and restoration of strength. The large rectangular tiles on pillars A, B, C, D are inspired by Wangari Maathai’s “I Will be a Hummingbird” story. This folk tale poignantly illustrates the importance of doing one’s best, no matter how insignificant our efforts may feel at times, in the face of a seemingly insurmountable task. Pillars: The mural pillars showcase the conceptual and artistic participation of the students and staff of the Student Community Center, and other members of the university community, who were invited to contribute their suggestions for the imagery featured, and who also participated in painting the individual tiles. The tiles represent the various identities, paths, goals, causes and struggles of the students: academic, social, personal and political. Pillar A: 1. World View: North and South America 2. Wi-Fi Symbol/Connectivity 3. Power Symbol in the Digital Age 4. Hands Holding Seedling: Cultivating Hope/Justice/Stewardship 5. Filipino Sun 6. Irish Symbol: Love, Loyalty and Friendship 7. Love, Pride and Celebration of African Heritage 8. Lotus: Ancient Asian Polyvalent Symbol 9. Raised Fist with Olive Branch: Nonviolent Protest/Activism 10. Study of Astronomy/Astrophysics 11. Study of Enology/Viticulture 12. Study of Music/Music Bringing People Together 13. McNair Scholarship Program 14. Salaam: Peace/Peace Be With You (written in Amharic) 15.
    [Show full text]
  • The Language of Flowers Is Almost As Ancient and Universal a One As That of Speech
    T H E LANGUAGE OF FLOWERS; OR, FLORA SYMBOLIC A. INCLUDING FLORAL POETRY, ORIGINAL AND SELECTED. BY JOHN INGRAM. “ Then took he up his garland, And did shew what every flower did signify.” Philaster. Beaumont and Fletcher. WITH ORIGINAL ILLUSTRATIONS, PRINTED IN COLOURS BY TERRY. LONDON AND NEW YORK: FREDERICK WARNE AND CO. 1887. vA^tT Q-R 7 SO XSH mi TO Eliza Coo k THIS VOLUME IS AFFECTIONATELY INSCRIBED BY HER FRIEND THE AUTHOR. o Preface. j^IIE LANGUAGE OF FLOWERS has probably called forth as many treatises in explanation of its few and simple rules as has any other mode of communicating ideas; but I flatter myself that this book will be found to be the most complete work on the subject ever published—at least, in this country. I have thoroughly sifted, condensed, and augmented the productions of my many predecessors, and have endeavoured to render the present volume in every re¬ spect worthy the attention of the countless votaries which this “ science of sweet things ” attracts ; and, although I dare not boast that I have exhausted the subject, I may certainly affirm that followers will find little left to glean in the paths that I have traversed. As I have made use of the numerous anecdotes, legends, and poetical allusions herein contained, so Preface. VI have I acknowledged the sources whence they came. It there¬ fore only remains for me to take leave of my readers, with the hope that they will pardon my having detained them so long over a work of this description , but “Unheeded flew the hours, For softly falls the foot of Time That only treads on flowers.” J.
    [Show full text]
  • Genetic Variability Studies in Gossypium Barbadense L
    Electronic Journal of Plant Breeding, 1(4): 961-965 (July 2010) Research Article Genetic variability studies in Gossypium barbadense L. genotypes for seed cotton yield and its yield components K. P. M. Dhamayanathi , S. Manickam and K. Rathinavel Abstract A study was carried out during kharif 2006-07 with twenty five Gossypium barbadense L genotypes to obtain information on genetic variability, heritability and genetic advance for seed cotton yield and its yield attributes. Significant differences were observed for characters among genotypes. High genetic differences were recorded for nodes/plant, sympodia, bolls as well as fruiting points per plant, seed cotton yield, lint index indicating ample scope for genetic improvement of these characters through selection. Results also revealed high heritability coupled with high genetic advance for yield and most of the yield components as well as fibre quality traits. Sympodia/plant, fruiting point /plant, number of nodes/plant, number of bolls per plant, and lint index were positively correlated with seed cotton yield per plant and appeared to be interrelated with each other. It is suggested that these characters could be considered as selection criteria in improving the seed cotton yield of G. barbadense , L genotypes. Key words : Gossypium barbadense , genetic variability, heritability, genetic advance, lint index, selection criteria Introduction Seed cotton yield is a complex trait governed by Cotton is the most widely used vegetable fibre and several yield contributing characters such as plant also the most important raw material for the textile height, number of monopodia, number of industry, grown in tropical and subtropical regions sympodia, number of bolls, number of fruiting in more than 80 countries all over the world.
    [Show full text]
  • Abundance of Frankliniella Schultzei (Thysanoptera: Thripidae) in Flowers on Major Vegetable Crops of South Florida Author(S): Garima Kakkar, Dakshina R
    Abundance of Frankliniella schultzei (Thysanoptera: Thripidae) in Flowers on Major Vegetable Crops of South Florida Author(s): Garima Kakkar, Dakshina R. Seal, Philip A. Stansly, Oscar E. Liburd and Vivek Kumar Source: Florida Entomologist, 95(2):468-475. 2012. Published By: Florida Entomological Society DOI: http://dx.doi.org/10.1653/024.095.0231 URL: http://www.bioone.org/doi/full/10.1653/024.095.0231 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 468 Florida Entomologist 95(2) June 2012 ABUNDANCE OF FRANKLINIELLA SCHULTZEI (THYSANOPTERA: THRIPIDAE) IN FLOWERS ON MAJOR VEGETABLE CROPS OF SOUTH FLORIDA GARIMA KAKKAR1,*, DAKSHINA R. SEAL1, PHILIP A.
    [Show full text]
  • Managing Thrips and Tospoviruses in Tomato1
    ENY859 Managing Thrips and Tospoviruses in Tomato1 Joe Funderburk, Scott Adkins, Josh Freeman, Sam Hutton, Phil Stansly, Hugh Smith, Gene McAvoy, Crystal Snodgrass, Mathews Paret, and Norm Leppla2 Several invasive species of thrips have established in Florida review information on the situation in Florida (Funderburk and are causing serious economic losses to vegetable, 2009; Frantz and Mellinger 2009; Weiss et al. 2009). ornamental, and agronomic crops. Damage to crops results from thrips feeding and egg-laying injury, by the thrips The western flower thrips is the most efficient vector of vectoring of plant diseases, the cost of using control tactics, Tomato spotted wilt virus (TSWV). This virus is one of and the loss of pesticides due to resistance. Western flower about twenty known species of tospoviruses (Sherwood thrips (Frankliniella occidentalis), which was introduced et al. 2001a, b). Epidemics of tomato spotted wilt (TSW) and became established in north Florida in the early 1980s, occur frequently in numerous crops in north Florida. Until is the major thrips pest of tomatoes. The western flower recently, it was thought that TSW occurred sporadically in thrips did not become an economic problem in central central and south Florida. Most infections were confined to and south Florida until 2005 (Frantz and Mellinger 2009). a few isolated plants in a field, transplants, mainly pepper, Two other invasive species, melon thrips, Thrips palmi, and which originated from planthouses in Georgia. Secondary chilli thrips, Scirtothrips dorsalis, are not damaging pests of spread (i.e., within the field) away from the initial site of tomato. infection was rarely, if ever, seen.
    [Show full text]
  • Immature Development and Survival of Neoseiulus Cucumeris (Oudemans
    Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae) Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang To cite this version: Guang-Yun Li, Nick Pattison, Zhi-Qiang Zhang. Immature development and survival of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on eggs of Tyrophagus curvipenis (Fain & Fauvel) (Acari: Acaridae). Acarologia, Acarologia, 2021, 61 (1), pp.84-93. 10.24349/acarologia/20214415. hal- 03118398 HAL Id: hal-03118398 https://hal.archives-ouvertes.fr/hal-03118398 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Acarologia A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes
    [Show full text]
  • CHEMISTRY and HISTOLOGY of the GLANDS of the COTTON PLANT, with NOTES on the OCCURRENCE of SIMILAR GLANDS in RELATED Plantsl
    CHEMISTRY AND HISTOLOGY OF THE GLANDS OF THE COTTON PLANT, WITH NOTES ON THE OCCURRENCE OF SIMILAR GLANDS IN RELATED PLANTSl By ERNEST E. STANFORD, Scientific Assistant, and ARNO VIEHOEVER, Pharmacog- nosist in Charge, Pharmacognosy Laboratory, Bureau of Chemistry, United States Department of Agriculture INTRODUCTION The work herein reported forms a portion of a chemical and biological investigation of the cotton plant (Gossypium spp.), the purpose of which is to isolate and determine the substance or substances which attract the boll weevil. A previous paper (77)2 discusses the isolation of certain glucosids and the products of their hydrolysis, as well as preliminary studies of an ethereal oil which manifested some attraction for the boll weevil. Both the glucosids and this oil, as well as several other sub- stances, are largely localized in prominent internal glands which are very numerous in nearly all parts of the cotton plant. The main purpose of this paper is to discuss the occurrence, formation, structure, and con- tents of these glands. Glands of another type, more properly referred to as "nectaries/' also occur in the cotton plant. These are superficial in position and definitely localized. The internal glands have nothing in common with these nectaries save the function of secretion. In certain taxonomic and other literature, however, either or both types are referred to indis- criminately simply as "glands." Therefore, it seems advisable also to discuss briefly in this paper the nature and occurrence of the nectaries, in order to distinguish them clearly from the internal secretory organs, which form the main subject of the present study.
    [Show full text]
  • Normas Para Confecção Da Versão
    UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira UBERLÂNDIA - MG 2017 UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE GENÉTICA E BIOQUÍMICA PÓS-GRADUAÇÃO EM GENÉTICA E BIOQUÍMICA Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma Aluna: Rafaela Cabral Marinho Orientadora: Profª. Drª. Ana Maria Bonetti Co-orientador: Prof. Dr. Paulo Eugênio Alves Macedo de Oliveira Tese apresentada à Universidade Federal de Uberlândia como parte dos requisitos para obtenção do Título de Doutora em Genética e Bioquímica (Área Genética) UBERLÂNDIA – MG 2017 ii Dados Internacionais de Catalogação na Publicação (CIP) Sistema de Bibliotecas da UFU, MG, Brasil. M338p Marinho, Rafaela Cabral, 1988 2017 Poliploidia e variações reprodutivas em Bombacoideae (Malvaceae): distribuição geográfica, filogeografia e tamanho do genoma / Rafaela Cabral Marinho. - 2017. 100 f. : il. Orientadora: Ana Maria Bonetti. Coorientador: Paulo Eugênio Alves Macedo de Oliveira. Tese (doutorado) - Universidade Federal de Uberlândia, Programa de Pós-Graduação em Genética e Bioquímica. Disponível em: http://dx.doi.org/10.14393/ufu.di.2018.134 Inclui bibliografia. 1. Genética - Teses. 2. Malvaceae
    [Show full text]