<<

19 93MNRAS.262. .350S 12 2 1 A modelfortheformation,évolutionandstructureofsolarcylinder Mon. Not.R.Astron.Soc.262,350-358(1993) Jesper Sommer-LarsenandVincenzoAntonuccio-Delogu decreasing metalabundance. function ofage.Itthusappears meaningfultomodelthe also showsanapproximatelymonotonie increaseofowith Accepted 1992October29.Received23;inoriginalformFebruary24 the heavyelementabundance ofdiscstarsisadecreasing function oftheagestars(e.g.Fuchs&Widen1987). Astrophysical Observatory,VíaleA.Doria6,1-95125Catania, The starsareusuallyassumedtobecontinuallyheatedby abundance evolution ofthesolarcylinderwithin theframe- It isgenerallyappreciatedthattheverticalvelocitydisper- Clouds. NielsBohrInstitute,Blegdamsvej17,DK-1200Copenhagen0,Denmark stochastic processes,e.g.interactionwithGiantMolecular sion 0.5). the best-fittingmodel(7V=1),wefindthatageofsolarcylinderis on thebasisofalargesetobservationaldatamainlylate-typestars.Star Galactic globularclusters. about 8Gyragoatametalhcityof[Fe/H]=-0.6.Wefurthermorefindthatthestar discrete components,withthetransitionbetweenolddiscandthickoccurring considered. Infallofhalogasisassumedtohappenonacharacteristictime-scalet Schmidt type:2*°c2^,N=1-2.Modelswithathresholdforstarformationarealso disc darkmatterfractionPis0.02±0.07andthattheoldthickare ¿= 11.8±1.0Gyrandthat3.40.4Gyr.Wefindtheupperlimittolocal 0 H v 0 The infalltime-scalederivedinthepresentworkisreasonableagreementwith In conjunctionwiththeGalaxyformationtheoryofSommer-Larsen(SL), It issuggestedthatthethickdiscformedafteramergerbetweensatellitegalaxy The resultsobtainedarelargelyindependentofthestarformationprescription.For work ofstandardchemical-evolutionmodels(e.g.Tinsley model ofSommer-Larsen (1991b). tive predictionsbasedonthe cooling-flow Galaxyformation for discstars,todeterminethe agetofthesolarcylinder, local fractionPofdiscdarkmatter. characteristic time-scaletover whichitwasbuiltupandthe the solarcylinderwithalargesetofdataonmainlylate-type constrain modelsoftheformation,evolutionandstructure a maximum-likelihoodmethod.Inthisfollow-uppaper,we constructed onthebasisofarelativelysmallsetdatausing city dispersionofdiscstarsasafunctionabundancewas stars. Theaimistodetermine thetemporalevolutionofo 1980). 0 x w We alsowishtocomparethe results obtainedtoquantita- In Sommer-Larsen(1991a),amodeloftheverticalvelo- 19 93MNRAS.262. .350S -1 vertical heatingofthediscintermsstellarorbitaldiffusion, The observedrunofdensitywithz,p(z)forlate-typestarsis clusion. and inSection4theresults.In5weinvestigate and finallySection6constitutesthediscussioncon- we selectedasampleof403mainlyGandKdwarfsfromthe taken fromKuijken&Gilmore(1989),whoderiveditforK dwarfs. ThedataareshowninFig.1.o(z)istakenfromthe for the403starsisshowninFig.3,togetherwithdistri- the sampleiscr=22kms~ThecumulativeWdistribution same paper,withthedatashowninFig.2. 2 THEDATA bution expectedforanormaldistributionofvelocitieswith test showsthatthetwodistributionsdifferat95percent velocity dispersionof22kms.AKolmogorov-Smirnov Ghese (1969)catalogue.Theverticalvelocitydispersionof blom (1985).Thissampleconsistsof177mainlyGdwarfs in termsofa‘cold’thindisc,themainolddiscand‘hot’ with agescalculatedfromtheempiricalage-chromospheric late-type main-sequencestars,weusedthedataofSoder- thick disc. significance level.Thelocaldataaremuchbetterinterpreted blom, Duncan&Johnson(1991,theirequation3).Asthe emission relation.WeusedthelatestcalibrationofSoder- blom’s sample,weestimatethattherelativeerroronage t =4.6Gyr,wehavebinnedallstarswithemissionlevels lower thantheonecorrespondingtot=tintobinof ages arenotwellcalibratedgreaterthanthesolarage of astaris40percent(thiscorrespondswellwithSoder- stars olderthantheSun.FromfourdoubleinSoder- w w 0 e Figure 1.Theverticaldensitydistribution oflate-typestars.The observations ofKdwarfsbyKuijken &Gilmore(1989)arerepre- sented bypoints, the modelbysolidline. In Section2wedescribethedata,in3models To obtainthelocalverticalkinematicsoflate-typestars, To obtaintheagedistributionandcr-agerelationfor w © Royal Astronomical Society • Provided by the NASA Astrophysics Data System z [pc] -2 _ 1 blom’s ownestimate).Theresultsandthedataaregivenin Table 1anddisplayedinFigs45. disc fromSoderblom’sdata(ithasbeenassumedthat estimate thestarformationrate(SFR)overlifetimeof with theresultsobtainedinSection4).Thearedis- played inFig.6. ¿= 11.8Gyrand2*38Mpcatpresent-consistent The observationsbyKuijken&Gilmore(1989)arerepresented Figure 2.Theverticalvelocitydispersion,o,asafunctionofz. points, themodelbysolidline. 0 w Figure 3.Thecumulative|W|-distribution for403late-typestars from theGliese(1969)catalogue isshownbythedottedhistogram, the modelbysolidlineand anormaldistributionwiththe sample dispersion of22kmsbythedashedline. We haveusedadiscmodeloftheBahcall(1984)typeto A modelforthesolarcylinder351 19 93MNRAS.262. .350S formation rate and chemicalevolutionarealso presented. to theonepioneeredbyBahcall (1984).Modelsforthestar In thissection,self-consistent modelsofthelocalvertical 352 J.Sommer-LarsenandV.Antonuccio-Delogu disc structureareconstructed. Theapproachisverysimilar 3 THEMODELS type) andisshowninFig.8.Theobservationalerroronthe is takenfromSommer-Larsen(1991a)(thoughwithanew it isofnoimportancethatthesestarsarenotnecessarilylate- line andthemodelconvolvedwitherrorfunctioncharacteristic data for1300discFstars(notethatthefollowinganalysis (1987) (againusingequation20).Thisrelationisbasedon empirical relationbetween[Fe/H]and[O/H]-seeequation of thedatabydashedline. Figure 4.Thelocalagedistributionoflate-typestars.Datafrom [O/H] forthesestarsis0.07dex. Stecklum (1992),thissampleisessentiallyunbiased. [O/H] ofthesestarsis0.11dex.AsshownbyMeusinger& Soderblom (1985)arerepresentedbypoints,themodelsolid 20) andisshowninFig.7.Theobservationalerroronthe In total,dataforabout3000starsareusedinthisanalysis. Finally, thea(z)-[0/H]relationistakenfromStrömgren The localoxygenabundancedistributionof122Gdwarfs w Table 1.Theverticalvelocitydispersion,cr^,of Soderblom’s stars. age >4.6Gyr7224.0±2.0 3.0 Gyrow Gyr [km/s] 2/ v+4 G where ipisthegravitationalpotential, pthetotaldensityand For anaxisymmetricdisc,Poisson’sequationgives curve atR=8 kpcisapproximatelyflat,the firsttwoterms (R, ,z)theusualcylindrical coordinates.Astherotation _ 1dx¡)dip ^ Figure 6.SFR-agerelationforlate-typestars.Fordetails,see caption toFig.4. 3.1 Thediscmodels Figure 5.Thelocala^-agedistributionoflate-typestars.For *'-8Fsra?-’' * details, seecaptiontoFig.4. 0 9A i! ID 19 93MNRAS.262. .350S = zandis 2 Figure 7.Thelocaloxygenabundancedistribution.Datafrom ponent type].Hence model oftheBahcall,Schmidt&Soneira(1982)four-com- of theleft-handsideequation(1)approximatelycancelout the solidlineandmodelconvolvedwitherrorfunction where pisthedensityofdarkhalomaterial.Following characteristic ofthedatabydashedline. Sommer-Larsen (1991a)arerepresentedbypoints,themodel Bahcall, pisexpressedas [we findthistoholdagoodfirstapproximationfor where Pdisc,oPdiscUo)*assumedthatpis Phalo ^Pdisc,0>(3) Pdisc X!P•(4) vertical velocitydispersiona,sothatthediscdensityis dark haloisquiteround-seeSection4. approximately constantfor|z|<3CR.Thisrequiresthatthe |z| <3kpcatÆ=RbasedonareahsticGalaxypotential be expressedas The z-componentfirstmomentoftheVlasovequationforan expressed as found thelast term (the‘tilting’term)tobe relatively unim- subpopulations accordingtocharacteristicvaluesofthe (e.g. Binney&Tremaine1987). Sommer-Larsen(1991a) axisymmetric systemcan,fortheindividualsubcomponents, halo dz halo halo w 0 Again followingBahcall,thediscmaterialisdividedinto 4jt G{pfase“bPhalo)? i © Royal Astronomical Society • Provided by the NASA Astrophysics Data System í: J =ex l 2 J where p^p(z=Zq).Fromequations(2),(3)and(7), following. Figure 8.Thelocalo-[0/H]relation.DatafromStrömgren (1987) arerepresentedbypoints,themodelsolidhistogram portant incomparisontothefirsttwo,soweneglectit the databydashedline. and themodelconvolvedwitherrorfunctioncharacteristicof Without lossofgenerality,wecanassume^(R,z=0) 0 By integration,itthereforefollowsthat ents equation(5)simplifiesto p^z) canthenbeobtainedfromequation(7). interval (/-1,j)¿/10].Theo , /=1,10aretreatedasfree determined numericallyfromequation(8).Thedensities and, fromthesymmetryofdisc,dip/dziz=0)0. Pdisc(z) 2/o'=PÓP 0 ]n(p)_1dip Sommer-Larsen 1991a),sofortheindividualsubcompon- Bahcall (1984),andstarswith M>4.2(approximatelyG contributions totheobserved localdensityaretakenfrom 4jtG dz parameters to be constrainedwhencomparing modelsto dispersions o,/=1,10[bin / correspondingtoagesinthe and later)plusthewhitedwarfs andthegiantsarefurther subdivided into10agebins withcharacteristicvelocity w 0 0 w v w 2 l2 1 dip Observationally, a'(z)-constant(Bahcall1984; A discmodelisobtainedinthefollowingway.Therelative Given pi)andspecifyingavaluefor6,ip{z)canbe dz {o)* w w -2 piexp A modelforthesolarcylinder353 2 (o‘) w y>-ipo ^Pdisc,0* (8) (6) (7) 19 93MNRAS.262. .350S JK 7 1 /y S J 7 f'(ow)~r <7w2 The chemicalevolutionofthestar-formingGalacticdiscis This isthencomparedtothelocallyobservedWdistribu- d2* _2j, d2 determined bythefollowingequations: tion. tion as normal. Hencewemodelthelocalverticalvelocitydistribu- velocity distributionofcomponentjisapproximately Bahcall (1984),itfollowsfroma(z)-constantthatthe and againcomparedtotheobservations.Finally,asshownby 3.2 Modelsofstarformationandchemicalevolution P(W)dW= —dW. This isthencomparedtotheobservationsofKuijken& as Gilmore (1989).Similarly,aasfunctionofziscalculated p(z) =Ep(z)oexp lated as brown or‘black’dwarfs. would bethecaseifdiscdarkflatterwas,forexample, which accountsforthepossibilitythatdisccontains Pdisc,0 =(l+^)písc,0(H) dark matterisdistributedlikethelate-typestars,which unobserved darkmatter.Itisassumedthatanysuchdisc next subsection)andthefarenormalizedsuchthat where the2areobtainedfromstarformationlaw(see pi°cfj(j)X, (10) duce, followingBahcall,afactorPsuchthat contributions ofobservedmatterinthediscmodels. component j-seeTable2,whichspecifiesthedifferent right-hand sideofequation(10)isthelocalmassfraction ^ P(z)E/o'exp[-(V’-^o)/(<4)] are introduced.Hencethelocaldensityofbinjis quantities observations. FollowingSommer-Larsen(1991a),the f w w 354 /.Sommer-LarsenandV.Antonuccio-Delogu ? aw 0 dt dt t* The densityoflate-typestarsasafunctionziscalcu- To completethespecificationofdiscmodels,weintro- 2 J i 2V(z) (<4)EpictV)exp[-)/(o-v] 0 © Royal Astronomical Society • Provided by the NASA Astrophysics Data System 2J Z [po/(f2noi)]exp{-W/[2[o]} w exp 2 Pa z i (14) 0 2 \¡r-_xpQ {¿w) &Z (16) (15) (13) (12) (9) Larsen (1991a). 3.2 4.2ageG (Lacey &Fall1985;seealsoSommer-Larsen1991b). density thresholdforstarformation. threshold]. Wealsoconsidermodelswithagassurface linear) starformationlawsareanalysedastwoextremecases Following Wyse&,theN=1(linear)andN=2(non- Gas &Dust + WhiteDwarfsageG + GiantsageG d2¡ 2 deci- is, followinge.g.Wyse&Silk(1989),expressedas g fraction. [Kennicutt (1989)findsN—1.3aboveastarformation Sommer-Larsen 1991a).Inthispaper,thestarformationlaw diffusion onthechemicalevolution(seediscussionin tion time-scale,whichmaydependonthegassurfacedensity, Table 2.Thelocaldistributionofobservedmatter. Note thatthistransformation isdifferentfromthatusedin and forsimplicityweneglecttheeffectsofradialflows (Sommer-Larsen 1991a),where2and2*arethegas Total observeddensity=0.0958 Sommer-Larsen (1991a).Themodelswereused tocalculate stellar surfacedensitiesrespectivelyandisthestarforma- [G/H] =0.7[Fe/H],[Fe/H]>-1.7. (20) and [O/H] usingtherelation d(Z2) V v v 0 g g dt t x dí When comparingwithobservations,oxygenratherthan The infallrateisparametrizedas Following Pagel(1992),[Fe/H] hasbeenconvertedto dt +T(1-Z) age 6 age G age G age G age G age € -4fl 10 9 8 4 3 2 1 7 6 5 M pc.LMF:localmass [0.9,1.0]t /(^)Eajß [0.8,0.9]t /(^)S<7^ [0.7,0.8]t /(^)Sa*r [0.3,0.4]t /(^)S<7^ [0.2,0.3]to /(^)S<7^ [0.1,0.2]t /(^)S [0.0,0.1]t /(^)S<7^ [0.6,0.7]to /(°vv)^ [0.5,0.6]t /(^)2^ [0.4,0.5]¿o /(0yp)£<7^r 0 o o o o o o o a LMF aw 0.015 8 0.021 4 0.469 4 0.031 11 [km/s] (19) (18) (17) 19 93MNRAS.262. .350S j y 1 y ; fraction of25percent(Kuijken&Gilmore1989)andagas tion rateandyieldwerechosentogiveapresentdiscgas the relativesurfacedensityofstarsasafunctiontime.The which theinfallinggasiscoming.Inthisway,relative given valueoftheinfalltime-scalet(andN),starforma- calculations werecarriedoutinthefollowingway.Fora For theinfallinggas,avalueof[O/H]^-1.05wasused, folded withtheappropriateobservationalerrorfunctions, Larsen 1991a).Thelocalcr-[0/H]relationisalsocalcu- By weightingthe2'andSby/',localage[O/H] corresponding tothe[Fe/H]--1.5typicalofhalo,from abundance of[0/H]=+0.07(fromequation20thiscorre- to thedata. binned inthesamewayasdataandthenfinallycompared lated (thelocala-ageisalreadygivenbythechoiceof distributions oflate-typestarsarecalculated(cf.Sommer- sponds to[Fe/H](¿)=+0.10dex,asfoundintheHyades). surface densities2,y=1,10arecalculated.Foreachofthe The datasetwasfittedusingamaximum-likelihoodtech- flattened byafactorof2[thelimitinglinescorrespondtothe velocity ofv=220kms"atthesolarpositionimpliesthat we assumethateisconstrainedto6^0.15.InFig.9,the the parametere>0.15,probabilitythatlocaldark nique asdescribedindetailKuijken(1991).Forvaluesof combination withthediscshouldgiveatotalrotational resulting discsurfacedensityofthesolarcylinder2is matter fractionPisnegativemorethan95percent.Hence 4 RESULTS spherical andabovethelineg=0.5ifdarkhalois Z(e) shouldlieabovetheline^=1.0ifdarkhalois shown asafunctionofe.Theconstraintthatthedarkhaloin 10 bins,thequantities=2/Alog(Z)arealsocalculated. 10 parametersa,7=1,10).Thelocalrelationsarethen x w w 0 function ofe.For details,seetext. Figure 9.Thediscsurfacedensity ofthesolarcylinder,2,asa c 0 H 0H 10 w disc © Royal Astronomical Society • Provided by the NASA Astrophysics Data System 2 2 been assumedthatthediscisradiallyexponentialwithscale- y= 1,10.WeallowthestarformationlawparameterNto length 4.0kpc].AscanbeseenfromFig.9,ifthedarkhalois appendix ofSommer-Larsen&Christensen1989)andithas zero coreradiuscase,a=jR+z/qH(see (arguments forthedarkhalobeingnearlysphericalaregiven tions, henceq>0.5.Inthefollowingweshalladopt6=0.10 take thetwolimitingvaluesN=1andN=2.Thelinearcase upper limittoPisobtained. in Sommer-Larsen&Christensen1989).Solutionsfor spherical then0.10^6^0.15.Ifq=0.5therearenosolu- case, weobtaint=1.8±0Gyr,^3.4±0.4 0.10^6^0.15 areverysimilarand,byassuming6=0.10,an (Af= 1)givesthebestfit[interestingly,Kennicutt(1989)finds Kuijken (1991).FurtherchecksusingMonteCarlogenerated pseudo-data indicatethatthestandarderrorsgivenare errors havebeencalculatedbythemethoddescribedin TV-1.3, i.e.avalueclosetothelinearcase].For conservative. Theinverseoftheproportionalityfactorin P<0.02±0.07 andtheOj,j=l,10giveninFig.10.Standard to beoftheorder9percent. contribution tothelocaldensityoflate-typedwarfsisfound unchanged bytheintroductionofthisthreshold. tions. Wechooseathresholdvalueof2=8Mpc'(Pagel equation (18),4,isfoundtobe5.5Gyr.Thethick-disc Figure 10.Thea^-agerelation, with thefitstomodelbasedon u surface densitythresholdforstarformationinthecalcula- H thsidashed (equation 23)linesrespectively. diffusion theory.TheLacey(1984) modelisrepresentedbythe solid line,theWielen(1977)models bythedotted(equation22)and 0 i =10.3Gyr,¿¡2.8GyrandjP^0.02±0.07,thatthe pendent ofthestarformationprescriptionused. 1992). Wefindthattheresultsobtainedarevirtually Gp 7=1,10isquitesimilartothatfoundinthelinearcase. t0 0 The 13freeparametersinthefitarehencet,Panda For thenon-linearstarformationlaw(AT=2),wefind Following Kennicutt(1989),wealsointroduceagas 0vy We thusfindthattheresultsobtainedarelargelyinde- A modelforthesolarcylinder355 19 93MNRAS.262. .350S 2 G=a 0=a13 1/2 that theolddiscandthickarediscretecomponents. the dataisverysatisfactory. plotted themodelpredictionsinFigs1-8.Overall,fitto that theageofhaloisapproximately/i=14±1Gyr,in greater thantheageofsolarcylinder.Itthereforefollows predicts thattheageofmetal-weakhaloisabout2.3Gyr discontinuity. We discussbelowpossibledynamicalimplicationsofthis very goodagreementwithrecentabsolutedatingofthe fitted threedifferentlawstothedata,namelysolution However, aspointedoutinthatpaper,thistheoretical metal-weak Galacticglobularclusters(seealsobelow). 8 Gyragoatametallicityof[Fe/H]=—0.6stronglyindicates 356 /.Sommer-LarsenandV.Antonuccio-Delogu given byLacey(1984)forscatteringfromGMC: character ofstellarorbits,andsoon.InFig.10,wehave between thetwodifferentestimatesofisfairlyreasonable. the rotationalstateofyoungproto-galaxy.Theinfall prediction ishighlysensitivetoasyetunknowndetailsabout cent largerthanthatestimatedinSommer-Larsen(1991b). for aconstantdiffusioncoefficient: The resultingtemporalevolutionofodepends,however, perturbations oftheforcefield(Barbaras&Woltjer1967) but theyalsoshowthat,afteraphaseofsteadyincrease preceding sectionssupportandstrengthenthisconclusion, Previous work(Wielen1977;Fuchs&Widen1987)has DISC full dataset. figure, thedifferencebetweenresultsisnegligible, time-scale estimatedinthatpaperwasbasedonastrongly tion oftheGiantMolecularCloudssystem,about on someunderlyingphysicalassumptionsabouttheevolu- (GMC) (Spitzer&Schwarzschild1951)andfromlocal local <7-[0/H]relationisshowninFig.11,togetherwiththe data usedinthefitting,weexcludedStrömgren simplified modeloftherotationalstate.Thusagreement can inducediffusioninphasespaceofapopulationstars. solar neighbourhoodincreaseswithage.Theresultsofthe shown thattheverticalvelocitydispersionofdwarfsin result fromthefulldatafitting.Ascanbeseen result offittingtheremainingdataintermspredicting (1300 starsoutofatotalabout3000)fromthefit.The 5 VERTICALHEATINGOFTHEGALACTIC and twoofthesolutionsgivenbyWielen(1977),namelyone strongly indicatingthatthemodelisoverconstrainedby The fitsareshowninFig.10. Anon-linearxfittothedata 10). ThescatteringofstarsfromGiantMolecularClouds o, afastheatingofthediscoccurredabout8Gyrago(Fig. ha0 shows thatthe best-fitting solutionisLacey’s (1984),witha and theotherforavelocity-dependent diffusioncoefficient: w{L+(21) w w (2+bwt)/- (23) <7=(ai +¿?¿), (22) w w 2 wW The discontinuousjumpinverticaldispersionabout For thelinearstarformationmodel(7V=1),wehave The GalaxyformationtheoryofSommer-Larsen(1991b) The infalltime-scalefoundinthisworkisabout50per To testthesensitivityofsolutionstoamount © Royal Astronomical Society • Provided by the NASA Astrophysics Data System 2 Ä 2 function, theaboveimplicitassumptiontoholdavery bution ofGandKdwarfsrepresentstheSFRsincesolar In thispaper,wehaveimplicitlyassumedthattheagedistri- tracks ofVandenBerg(1985)and&Bell cylinder startedtoform.Basedonthestellarevolutionary found inthispaper.Itispossiblethatsystematicdifferences work isinprogress.Freeman(1991)finds(basedon a disc tothickwhichoccurredabout8Gyrago.Such discontinuous jumpinverticalvelocitydispersionfromold good firstapproximation. (1985), wefind,foranyreasonablechoiceoftheinitialmass 6 DISCUSSIONANDCONCLUSION where theStrömgrendatafor1300starsareomitted,bydashed by thesolidhistogramandmodelfittedtoarestrictedsample, Figure 11.Thelocal(/^-[O/H]relation.modelisrepresented between themetallicitycalibrationscancausethisdifference. disc occursat[Fe/H]-0.4dexratherthanthe0.6 He alsofindsthatthetransitionbetweenolddiscandthick able interest,asthiswouldenabledirectobservationofthe line. that theolddisc andthethickdiscarediscrete components, the (age)-zrelation,([0/H])-z relationandthe[0/H]-age smaller sampleofstars)indicationssuchadiscontinuity. have usedonlythefirstsevendatapointsinfit).Wecan continuous infallofgasfromthe halooveraperiodofabout relation, whicharedisplayedin Figs12-14,respectively. relations, whichmightbeobservableinthefuture.Theseare conclude thatouranalysissupportsLacey’sheatinglaw, although theotherpossibilitiesarenotruledout. started formingabout12±1Gyr ago,thatitwasbuiltupby 23), oneobtainsx~0.968and0.457,respectively(we 3 Gyr,thatthelocaldarkmatter fractionisnegligibleand X~ 0.183;forthetwoothersolutions(equations22and Improvement ofthedatingGandKstarsisconsider- From themodel,wehavederivedthree‘theoretical’ The mainconclusionofthispaper isthatthesolarcylinder 19 93MNRAS.262. .350S 9 Figure 12.The(age)-zrelation.modelisrepresentedbythe solid line. Figure 13.The([0/H])-zrelation.modelisrepresentedbythe solid line. with thetransitionoccurringabout8Gyragoatametallicity of [Fe/H]=-0.6.Wespeculatethatthediscontinuitywas of 5percentthemass disc. probably oftheorderafew times10M,i.e.oftheorder caused byasatelliteaccretionevent(Freeman1990).A metal-weak halois14±1Gyr, inverygoodagreementwith Sommer-Larsen (1991b),we estimatethattheageof simple calculationshowsthat themassofsatellitewas age estimates of metal-weakGalacticglobular clusters 0 In conjunctionwiththeGalaxy formationthoeryof © Royal Astronomical Society • Provided by the NASA Astrophysics Data System the solidline. Figure 14.The[0/H]-agerelation.modelisrepresentedby by twoquitedifferentapproaches. This workwasstartedduringavisitbyJSLtoCatania ACKNOWLEDGMENT this mightimplyanon-zerovalueofthecosmological our Galaxyand,aspointedoutbyPierce(1988)andothers, cosmological model,theageofUniverseisnomorethan (Pierce 1988)impliesthat,evenforanQ<^1classical ment isverysatisfactoryasthetwoageestimatesarederived (13-15 Gyr,VandenBerg1990;Renzini1991).Theagree- REFERENCES gratefully acknowledged.Wehavebenefitedfromdiscus- constant. about 12Gyr.Thisconflictswiththeaboveageestimatesfor Barbanis B.,WoltjerL.,1967,ApJ,150,461 Bahcall J.,SchmidtM.,SoneiraR.1982,ApJ,258,L23 Bahcall J.,1984,ApJ,276,169 Observatory. FinancialsupportfromtheObservatoryis Binney J.,TremaineS.,1987,GalacticDynamics.PrincetonUniv. Freeman K.C.,1990,inWielenR.,ed.,DynamicsandInteractions sions withnumerouscolleagues. Freeman K.C.,1991,inSundeliusB.,ed.,DynamicsofDisc Fuchs B.,WidenR.,1987,inGilmore G.,CarswellB.,eds,The Kuijken K,GilmoreG.,1989,MNRAS, 239,571 Kuijken K,1991,ApJ,372,125 Kennicutt R.C.,1989,ApJ,344,685 Lacey C,1984,MNRAS, 208,687 Gliese W,1969,Veröff.Astron.Rechen-Inst. Heidelb.,22 1 A valueoftheHubbleconstant//-85kms"Mpc" 0 Press, Princeton of Galaxies.Springer,Berlin,p.36 Galaxies. Göteborg,Sweden,p.15 Galaxy. Reidel,Dordrecht,p.375 A modelforthesolarcylinder357 19 93MNRAS.262. .350S 358 J.Sommer-LarsenandV.Antonuccio-Delogu Pagel B.E.J.,1992,inBarbuyB.,RenziniA.,eds,LAUSymp.149, Meusinger H.,StecklumB.,1991,A&A,256,415 Pierce M.J.,1988,PhDthesis,Univ.Hawaii Pagel B.E.J.,1989a,inBeckmaneds, Soderblom D.R,1985,AJ,90,2103 Renzini A.,1991,inBanderyT.,Shankseds,ObservationalTests Soderblom D.R.,DuncanK.,JohnsonR.H.,1991,ApJ,375, Sommer-Larsen J.,1991a,MNRAS,249,368 Evolutionary PhenomenainGalaxies.CambridgeUniv.Press, of Inflation.Reidel,Dordrecht,inpress Stellar PopulationsofGalaxies.Kluwer,Dordrecht,p.133 Cambridge 722 © Royal Astronomical Society • Provided by the NASA Astrophysics Data System VandenBerg D.A.,1985,ApJS,58,711 Wielen R.,1977,A&A,60,263 VandenBerg D.A.,BellR.1985,ApJS,58,561 VandenBerg D.A.,1990,inVangioni-FlamE.etal.,eds,Astro- Tinsley B.M.,1980,Fundam.CosmicPhys.,5,287 Wyse R.G.,SilkJ.,1989,ApJ,339,700 Spitzer L.,SchwarzschildM.,1951,ApJ,114,385 Sommer-Larsen J.,ChristensenP.R.,1989,MNRAS,239,441 Sommer-Larsen J.,1991b,MNRAS,250,356 Strömgren B.,1987,inGilmoreG.,Carswelleds,TheGalaxy. Yvette, p.241 physical AgesandDatingMethods.EditionFrontières,Gifsur Reidel, Dordrecht,p.242