LANDFIRE Biophysical Setting Model Biophysical Setting 2611040 Mogollon Chaparral

Total Page:16

File Type:pdf, Size:1020Kb

LANDFIRE Biophysical Setting Model Biophysical Setting 2611040 Mogollon Chaparral LANDFIRE Biophysical Setting Model Biophysical Setting 2611040 Mogollon Chaparral This BPS is lumped with: This BPS is split into multiple models: General Information Contributors (also see the Comments field) Date 7/19/2005 Modeler 1 Matt Brooks [email protected] Reviewer Modeler 2 Reviewer Modeler 3 Reviewer Vegetation Type Dominant Species Map Zone Model Zone CAHO3 Upland Shrubland 26 Alaska Northern Plains ARPU5 California N-Cent.Rockies General Model Sources CEGR Great Basin Pacific Northwest Literature CEMO2 Great Lakes South Central Local Data QUTU2 Hawaii Southeast Expert Estimate PUST Northeast S. Appalachians QUPA4 Southwest Geographic Range This ecological system occurs across central AZ (Mogollon Rim), central to south central and western NM, southern UT, and eastern and southeastern NV (MZs 17, 13 and 14). It often dominates along the mid-elevation transition from the Mojave, Sonoran and northern Chihuahuan deserts. Biophysical Site Description This BpS is found in mountains from 1000-2200m. It occurs on foothills, mountain slopes and canyons in drier habitats below the encinal (southwestern oak woodlands) and Pinus ponderosa woodlands and above desert grasslands. Stands are often associated with more xeric and coarse-textured substrates such as limestone, basalt or alluvium, especially in transition areas with more mesic woodlands. Typical of xeric montane moderate to steep slopes. The soils are generally shallow and derived from granite, basalt or other igneous volcanic rocks. These soils occur in mesic (moderately warm) temperture regimes and ustic (moderately moist) moisture regimes with thin, organic surface horizons. Vegetation Description The species composition and dominants vary across the range of this BpS. The moderate to dense shrub canopy includes species such as Quercus turbinella, Quercus toumeyi, Quercus undulata, Cercocarpus montanus, Canotia holacantha, Ceanothus greggii, Garrya wrightii, Juniperus deppeana, Purshia stansburiana, Rhus ovata, Rhus trilobata and Arctostaphylos pungens and Arctostaphylos pringlei at higher elevations. Shrubs resprout rapidly after fire, often making the vegetation impenetrable. Most chaparral species are fire-adapted, resprouting vigorously after burning or producing fire-resistant seeds. Stands occurring within montane woodlands are seral and a result of recent fires. Forty percent cover at dry sites to 80% cover at wetter sites comprised of moderately tall statured (1-2.5m) evergreen woody shrubs with dense crowns. **Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity. Wednesday, March 19, 2014 Page 1 of 5 Disturbance Description Typical fire regime in these systems varies with the amount of canopy closure, organic accumulation and the fire regimes of adjacent vegetation. The only significant disturbance to the system is stand-replacing fire occurring every 50-100yrs on average. Fire frequency is highly variable across this BpS. Fire regimes may have greater variability and be less frequent outside of the central Mogollon range for example, in isolated mountain ranges in south-central NM. Adjacency or Identification Concerns This BpS will be hard to distinguish from BpS 1103 (Great Basin Semi-Desert Chaparral) or 1108 (Sonora-Mojave Semi-Desert Chaparral). In the northern range of MZ25 may be confused with southern Rocky Mountain lower montane-foothill shrubland BpS 1086. At higher elevations, chaparral vegetation may blend into pinyon/junper woodlands, ponderosa pine woodlands or oak woodlands (encinal). At lower elevations, desert grasslands can be encroached by chaparral where fire suppression and livestock grazing have increased fire return intervals. Stand replacement fires will periodically remove these trees. Native Uncharacteristic Conditions In the upper and lower elevational gradient, this BpS may have expanded into the ponderosa pine forest and lower grasslands due to the influence of fire suppression. Scale Description Vegetation found in small patches of 10ac to whole mountain slopes of 100,000ac with the largest stands ocurring in central AZ. Issues/Problems There is very little research or evidence to support the estimated historical fire regimes in this BpS. Comments The main distribution of this BpS is not in MZ26 so this model was imported from the same BpS in MZ25 without changes. For MZ25, this model was reviewed and revised on 10 May 2006 by Cameron Tongier, Mark Kaib and Steven Yanoff to better reflect conditions in south-central and western NM and southeast AZ. Description document was altered slightly, but VDDT model was not changed. BpS 141104 is the same as BpS 131104. BpS 131104 was based on BpS 171104. The main modification was to use an MFRI of 75yrs (mid-point of the range) in both model classes compared to 50yrs. Other changes were made to the vegetation and disturbance descriptions to adapt to Mojave Desert mapping zone. This BpS for MZ17 is essentially BpS 171103 with minor modifications to the descriptions. The components of BpS 1103 for MZ16 were proposed by James Bowns and translated into VDDT by Louis Provencher on 3/2/05. Vegetation Classes **Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity. Wednesday, March 19, 2014 Page 2 of 5 Indicator Species and Structure Data (for upper layer lifeform) Class A 10 % Canopy Position Min Max Early Development 1 All Structure QUTU2 Cover 090%% Upper Layer Lifeform Upper Height Shrub 0m Shrub 1.0m Herbaceous ARPU5 Tree Size Class None Upper Shrub Upper layer lifeform differs from dominant lifeform. Tree Fuel Model CEGR 4 Upper CEMO2 Description Upper After fire, some shrubs resprout strongly from roots or from the base of plants. Shrubs can cause stands to become impenetrable. Stand replacement fire occurs every 75yrs on average. After 10yrs, succession to class B. Indicator Species and Structure Data (for upper layer lifeform) 90 % Class B Canopy Position Min Max Mid Development 1 Closed QUTU2 Cover 41%% 100 Upper Layer Lifeform Upper Height Shrub 1.1m Shrub >3.1m Herbaceous ARPU5 Tree Size Class None Upper Shrub Upper layer lifeform differs from dominant lifeform. Tree Fuel Model CEGR 4 Upper CEMO2 Description Upper Dense shrubs with grasses present in the few openings. Shrub composition same as in class A. The only disturbance is stand replacing fire every 75yrs on average. Canopy cover will generally be >50%. Indicator Species and Structure Data (for upper layer lifeform) Class C 0 % Canopy Position Min Max [Not Used] [Not Used] Cover %% Height Upper Layer Lifeform Tree Size Class Herbaceous Shrub Upper layer lifeform differs from dominant lifeform. Tree Fuel Model Description **Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity. Wednesday, March 19, 2014 Page 3 of 5 Indicator Species and Class D 0 % Canopy Position Structure Data (for upper layer lifeform) Min Max [Not Used] [Not Used] Cover %% Upper Layer Lifeform Height Herbaceous Tree Size Class Shrub Upper layer lifeform differs from dominant lifeform. Tree Fuel Model Description Class E Indicator Species and Structure Data (for upper layer lifeform) 0 % Canopy Position Min Max [Not Used] [Not Used] Cover %% Upper Layer Lifeform Height Herbaceous Tree Size Class Shrub Upper layer lifeform differs from dominant lifeform. Tree Fuel Model Description Disturbances Fire Intervals Fire Regime Group**: IV Avg FI Min FI Max FI Probability Percent of All Fires Replacement 75 50 100 0.01333 100 Historical Fire Size (acres) Mixed Avg 500 Surface Min 5 All Fires 75 0.01335 Max 5000 Fire Intervals (FI): Fire interval is expressed in years for each fire severity class and for all types of fire Sources of Fire Regime Data combined (All Fires). Average FI is central tendency modeled. Minimum and Literature maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all Local Data fires is the percent of all fires in that severity class. Expert Estimate Additional Disturbances Modeled Insects/Disease Native Grazing Other (optional 1) Wind/Weather/Stress Competition Other (optional 2) References Barbour, M.G. and J. Major, editors. 1977. Terrestrial vegetation of California. John Wiley and Sons, New York. 1002 pp. Brooks, M.L., T.C. Esque and T. Duck, 2003. Fuels and Fire Regimes in Creosotebush, Blackbrush, and Interior Chaparral Shrublands. Report for the Southern Utah Demonstration Fuels Project. USDA Forest **Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity. Wednesday, March 19, 2014 Page 4 of 5 Service. Rocky Mountain Research station, Montana. 18 pp. Brown, J.K. and J. Kapler-Smith, eds. 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42. vol 2. Ogden, UT: USDA Forest Service, Rocky Mountain
Recommended publications
  • Interior Arizona Chaparral
    Rapid Assessment Reference Condition Model The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004 and 2005. For more information, please visit www.landfire.gov. Please direct questions to [email protected]. Potential Natural Vegetation Group (PNVG) R3CHAPsw Interior Arizona Chaparral General Information Contributors (additional contributors may be listed under "Model Evolution and Comments") Modelers Reviewers Tyson Swetnam [email protected] Linda Wadleigh [email protected] Reese Lolley [email protected] Vegetation Type General Model Sources Rapid AssessmentModel Zones Shrubland Literature California Pacific Northwest Local Data Great Basin South Central Dominant Species* Expert Estimate Great Lakes Southeast Northeast S. Appalachians QUTU LANDFIRE Mapping Zones CEGR Northern Plains Southwest 14 24 28 N-Cent.Rockies APPR 15 25 13 QUPU 23 27 Geographic Range Central and Northern Arizona, Central New Mexico. Some patches associated with Sky Islands of Southern Arizona and New Mexico. Also extends into the Mojave Desert and southern Great Basin. Biophysical Site Description Occurs across central Arizona (Mogollon Rim), and western New Mexico. It dominates along the mid- elevation transition from the Mojave, Sonoran, and Northern Chihuahuan deserts into mountains (1000- 2200 m). It occurs along foothills, mountain slopes and canyons in drier habitats below the encinal and Pinus Ponderosa woodlands. Stands are often associated with xeric coarse-textured substrates such as limestone, basalt or alluvium, especially in transition areas with more mesic woodlands (NatureServe 2004). Vegetation Description Vegetation is less dense than California chaparral, with aerial coverage of 35-80% ground surface in Arizona (Cable 1957, Carmichael et al.
    [Show full text]
  • Adenostoma Sparsifolium Torr. (Rosaceae), Arctostaphylos Peninsularis Wells (Ericaceae), Artemisia Tridentata Nutt
    66 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY Ceanothus greggii A. Gray (Rhamnaceae), Adenostoma sparsifolium Torr. (Rosaceae), Arctostaphylos peninsularis Wells (Ericaceae), Artemisia tridentata Nutt. (Asteraceae), Quercus chrysolepis Liebm. and Q. dumosa Nutt. (Fagaceae), and Pinus jefferyi Grev. & BaH. (Pinaceae). On 27 and 29 October 1989 the unmated females were caged at a site in the vicinity of Mike's Sky Ranch in the Sierra San Pedro Martir, approximately 170 km south of the international border. Despite sunny weather and at a similar elevation and floral com­ munity, no males were attracted. Two males were deposited as voucher specimens in both of the following institutions: Universidad Autonoma de Baja California Norte, Ensenada, Mexico, and the Essig Mu­ seum of Entomology, University of California, Berkeley. Eleven specimens are in the private collection of John Noble, Anaheim Hills, California; the remaining 22 specimens are in the collection of the author. RALPH E. WELLS, 303-8 Hoffman Street, Jackson, California 95642. Received for publication 10 February 1990; revised and accepted 15 March 1991. Journal of the Lepidopterists' SOCiety 45(1), 1991, 66-67 POSITIVE RELATION BETWEEN BODY SIZE AND ALTITUDE OF CAPTURE SITE IN TORTRICID MOTHS (TORTRICIDAE) Additional key words: North America, biometrics, ecology. Earlier I reported a positive correlation between forewing length and altitude of capture site in the Nearctic tortricid Eucosma agricolana (Walsingham) (Miller, W. E. 1974, Ann. Entomol. Soc. Amer. 67:601-604). The all-male sample was transcontinental, with site altitudes ranging from near sea level on east and west coasts to more than 2700 m in the Rocky Mountains. Altitudes of capture came from labels of some specimens, and from topographic maps for others.
    [Show full text]
  • Ceanothus Crassifolius Torrey NRCS CODE: Family: Rhamnaceae (CECR) Order: Rhamnales Subclass: Rosidae Class: Magnoliopsida
    I. SPECIES Ceanothus crassifolius Torrey NRCS CODE: Family: Rhamnaceae (CECR) Order: Rhamnales Subclass: Rosidae Class: Magnoliopsida Lower right: Ripening fruits, two already dehisced. Lower center: Longitudinal channeling in stems of old specimen, typical of obligate seeding Ceanothus (>25 yr since last fire). Note dark hypanthium in center of white flowers. Photos by A. Montalvo. A. Subspecific taxa 1. C. crassifolius Torr. var. crassifolius 2. C. crassifolius Torr. var. planus Abrams (there is no NRCS code for this taxon) B. Synonyms 1. C. verrucosus Nuttal var. crassifolius K. Brandegee (Munz & Keck 1968; Burge et al. 2013) 2. C. crassifolius (in part, USDA PLANTS 2019) C. Common name 1. hoaryleaf ceanothus, sometimes called thickleaf ceanothus or thickleaf wild lilac (Painter 2016) 2. same as above; flat-leaf hoary ceanothus and flat-leaf snowball ceanothus are applied to other taxa (Painter 2016) D. Taxonomic relationships Ceanothus is a diverse genus with over 50 taxa that cluster in to two subgenera. C. crassifolius has long been recognized as part of the Cerastes group of Ceanothus based on morphology, life-history, and crossing studies (McMinn 1939a, Nobs 1963). In phylogenetic analyses based on RNA and chloroplast DNA, Hardig et al. (2000) found C. crassifolius clustered into the Cerastes group and in each analysis shared a clade with C. ophiochilus. In molecular and morphological analyses, Burge et al. (2011) also found C. crassifolius clustered into Cerastes. Cerastes included over 20 taxa and numerous subtaxa in both studies. Eight Cerastes taxa occur in southern California (see I. E. Related taxa in region). E. Related taxa in region In southern California, the related Cerastes taxa include: C.
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • Reference Plant List
    APPENDIX J NATIVE & INVASIVE PLANT LIST The following tables capture the referenced plants, native and invasive species, found throughout this document. The Wildlife Action Plan Team elected to only use common names for plants to improve the readability, particular for the general reader. However, common names can create confusion for a variety of reasons. Common names can change from region-to-region; one common name can refer to more than one species; and common names have a way of changing over time. For example, there are two widespread species of greasewood in Nevada, and numerous species of sagebrush. In everyday conversation generic common names usually work well. But if you are considering management activities, landscape restoration or the habitat needs of a particular wildlife species, the need to differentiate between plant species and even subspecies suddenly takes on critical importance. This appendix provides the reader with a cross reference between the common plant names used in this document’s text, and the scientific names that link common names to the precise species to which writers referenced. With regards to invasive plants, all species listed under the Nevada Revised Statute 555 (NRS 555) as a “Noxious Weed” will be notated, within the larger table, as such. A noxious weed is a plant that has been designated by the state as a “species of plant which is, or is likely to be, detrimental or destructive and difficult to control or eradicate” (NRS 555.05). To assist the reader, we also included a separate table detailing the noxious weeds, category level (A, B, or C), and the typical habitats that these species invade.
    [Show full text]
  • Transactions
    DESERT BIGHORN COUNCIL TRANSACTIONS VOLUME 45 Desert Bighorn Council 2001 Transactions A Compilation of Papers Presented at the 45thAnnual Meeting Hermosillo, Sonora, Mexico April 18-21,2001 Jonathan D. Hanna, Editor Arizona Game and Fish Department 7200 E. University, Mesa, AZ 85207 Reviewers for the 200 1 Desert Bighorn Council Transactions: Francisco Abarca, Clay Brewer, Bob Henry, Dana McGehee, Ted McKinney, Eric Rominger Illustrations by Pat Hansen Carlos Castdo and Jim debs Secretary Darren Divine Treasurer Charles Douglas William Brighanl (Chair), James DeForge, Amy Fisher, Mark Jorgensen, Raymond Lee, and John W ehausen Richard Weaver Mara W eisenberger Gary Montoya Trans actions : Raymond Lee Ross Haley Warren Kelly Doris Weaver William Brigham Special thanks to the Foundation for North herican Wild Sheep for their generous support of the Desert Bighorn Cow~cilAnnual Meeting Brian F. Wakeling ... ............................................................................ .2 Brian F. Wakeling ...........................................................................................................................4 Eric M. Rorninger and Elise Goldstein ....................................................................................... .6 ESTATUS DEL GO CHMAIRlEaON EN NEW EXIC8 EN EL 2008. Eric M. Romhger y Elise Goldstein ............................................................................................ -13 $ OF DESERT BPGXOW SHEEP PlFJ TEXAS - 2008. Michael T. Bitt hael D. Hobson .................................................
    [Show full text]
  • Special Status Vegetation Species and Noxious Weeds
    5.3.10 Special Status Vegetation Species and Noxious Weeds 5.3.10.1 Affected Environment Special Status Vegetation Species Overview. This section presents information on the 58 special status plant species that potentially occur in the survey area, based on habitat requirements. The list of species was derived from an overall list of 101 species, including plants listed by the USFWS list as threatened, endangered, proposed, candidate, and conservation agreement species potentially occurring in Mohave and Coconino counties, Arizona, and Washington and Kane counties, Utah; Glen Canyon GCNRA Special Status Plant Species list; and the BLM Sensitive Plant Species List for the Arizona Strip, and for Kane and Washington counties, Utah (Table 5-88). Table 5-88 Special Status Plant Species with Potential to Occur within the Area of Potential Effect Page 1 of 4 Found in Area of Species Name and Family Status1 Potential Effect (Yes/No) Acer glabrum (Rocky Mountain maple) GCNRA G5 No Aceraceae Acer grandidentatum (Bigtooth maple) GCNRA G5 No Aceraceae `Aralia racemosa (American spikenard) GCNRA G5 No Araliaceae Arctomecon humilis (Dwarf bear-poppy) ESA LE No Papaveraceae Asclepias welshii (Welsh’s milkweed) ESA LT, CH No Asclepidaceae Astragalus ampullarioides (Shivwits milkvetch) ESA LE, CH No Fabaceae Astragalus ampullarius (Gumbo milkvetch) BLM UT No Fabaceae Astragalus holmgreniorum (Paradox [Holmgren] milkvetch) ESA LE, CH No Fabaceae Astragalus striatiflorus (Escarpment milkvetch) BLM UT No Fabaceae Camissonia bairdii (Baird camissonia) BLM
    [Show full text]
  • Inventory of Sensitive Species and Ecosystems in Utah, Endemic And
    ,19(1725<2)6(16,7,9(63(&,(6$1'(&26<67(06 ,187$+ (1'(0,&$1'5$5(3/$1762)87$+ $129(59,(:2)7+(,5',675,%87,21$1'67$786 &HQWUDO8WDK3URMHFW&RPSOHWLRQ$FW 7LWOH,,,6HFWLRQ E 8WDK5HFODPDWLRQ0LWLJDWLRQDQG&RQVHUYDWLRQ&RPPLVVLRQ 0LWLJDWLRQDQG&RQVHUYDWLRQ3ODQ 0D\ &KDSWHU3DJH &RRSHUDWLYH$JUHHPHQW1R8& 6HFWLRQ9$D 3UHSDUHGIRU 87$+5(&/$0$7,210,7,*$7,21$1'&216(59$7,21&200,66,21 DQGWKH 86'(3$570(172)7+(,17(5,25 3UHSDUHGE\ 87$+',9,6,212):,/'/,)(5(6285&(6 -81( 6#$.'1(%106'065 2CIG #%-019.'&)/'065 XKK +0641&7%6+10 9*;&1'576#**#8'51/#0;4#4'2.#065! 4CTKV[D['EQTGIKQP 4CTKV[D[5QKN6[RG 4CTKV[D[*CDKVCV6[RG 'PFGOKEUD[.KHG(QTO 'PFGOKEUD[#IGCPF1TKIKP *+5614;1(4#4'2.#06+08'0614;+076#* 75(KUJCPF9KNFNKHG5GTXKEG 1VJGT(GFGTCN#IGPEKGU 7VCJ0CVKXG2NCPV5QEKGV[ 7VCJ0CVWTCN*GTKVCIG2TQITCO *196175'6*+54'2146 $CUKUHQT+PENWUKQP 0QVGUQP2NCPV0QOGPENCVWTG 5VCVWU%CVGIQTKGUHQT+PENWFGF2NCPVU )GQITCRJKE&KUVTKDWVKQP 2NCPVUD[(COKN[ #TGCUHQT#FFKVKQPCN4GUGCTEJ '0&'/+%#0&4#4'2.#0651(76#* *KUVQTKECN 4CTG 9CVEJ 2GTKRJGTCN +PHTGSWGPV 6CZQPQOKE2TQDNGOU #FFKVKQPCN&CVC0GGFGF KKK .+6'4#674'%+6'& $SSHQGL[$ 3ODQWVZLWK)HGHUDO$JHQF\6WDWXV $SSHQGL[% 3ODQWVE\&RXQW\ $SSHQGL[& 3ODQWVE\)DPLO\ +0&': KX .+561(6#$.'5 2CIG 6CDNG *KUVQT[QH7VCJRNCPVVCZCNKUVGFQTTGXKGYGFCUECPFKFCVGU HQTRQUUKDNGGPFCPIGTGFQTVJTGCVGPGFNKUVKPIWPFGTVJG HGFGTCN'PFCPIGTGF5RGEKGU#EV 6CDNG 0WOGTKECNCPCN[UKUQHRNCPVVCZCD[UVCVWUECVGIQT[ .+561((+)74'5 (KIWTG 'EQTGIKQPUQHVJGYGUVGTP7PKVGF5VCVGU X XK $&.12:/('*0(176 7KLVUHYLHZRIHQGHPLFDQGUDUHSODQWVSHFLHVLVDFRPSRQHQWRIDODUJHULQWHUDJHQF\HIIRUWWR FRPSOHWHDQLQYHQWRU\RIVHQVLWLYHVSHFLHVDQGHFRV\VWHPVLQ8WDK7KH8WDK'LYLVLRQRI:LOGOLIH
    [Show full text]
  • Plant Palette for the Town of Camp Verde, Arizona a Tree City USA Since 2014
    Suggested Plant Palette For the Town of Camp Verde, Arizona A Tree City USA Since 2014 Second Edition 2020 Compiled by The Camp Verde Tree Advisory Committee Plant Palette for the Town of Camp Verde Second Edition- 2020 Plant Palette for the Town of Camp Verde Second Edition- 2020 Table of Contents INTRODUCTION THE RIGHT PLANT IN THE RIGHT PLACE FLOWERS 2 ANGELITA DAISY (TETRANEURIS ACAULIS) 3 BABY'S BREATH (GYSOPHILA PANICULATA) 4 CHOCOLATE FLOWER (BERLANDERIA LYRATA ) 5 DESERT GLOBE MALLOW (SPHAERALCEA AMBIGUA) 6 DESERT MARIGOLD (BAILEYA MULTIRADIATA) 7 FIREWHEEL (GAILLARDIA PULCHELLA) 8 GOLDEN COLUMBINE (AQUILEGIA CHRYSANTHA) 9 GOODDING VERBENA (GLANDULARIA GOODINGII) 10 MEXICAN EVENING PRIMROSE (OENOTHER SPECIOSA) 11 FIRECRACKER PENSTEMON (PENSTEMON EATONII) 12 PALMER’S PENSTEMON (PENSTEMON PALMERI) 12 PARRY’S PENSTEMON (PENSTEMON PARRYI) 13 PURPLE CONE FLOWER (ECHINACEA PURPUREA) 14 RED HOT POKER (KNOPHIA SSP.) 15 ROSEMARY (ROSMARINUS OFFICINALIS 'PROSTRATUS') 16 SANDPAPER VERBENA (VERBENA RIGIDA) 17 SHOWY MILKWEED (ASCLEPIAS SPECIOSA) 18 GRASSES 19 BEARGRASS (NOLINA MICROCARPA) 20 BLUE GRAMA GRASS (BOUTELOUA GRACILIS) 21 BUFFALOGRASS (BOUTELOUA DACTYLOIDES) 22 DEER GRASS (MULENBERGIA RIGENS) 23 LITTLE BLUESTEM (SCHIZACHYRIUM SCOPARIUM) 24 PINK MUHLYGRASS (MULENBERGIA CAPILLARIS) 25 PURPLE THREE AWN (ARISTIDA PURPUREA) 26 SHRUBS 27 AUTUMN SAGE (SALVIA GREGGII) 28 BUSH DALEA/INDIGO BUSH (DALEA PULCHRA) 29 CHIHUAHUAN SAGE (LEUCOPHYLLUM LAEVIGATUM) 30 DESERT CEANOTHUS (CEANOTHUS GREGGII A. GRAY) 31 DESERT HONEYSUCKLE (ANISACANTHUS THURBERI)
    [Show full text]
  • Vegetation Alliances of the San Dieguito River Park Region, San Diego County, California
    Vegetation alliances of the San Dieguito River Park region, San Diego County, California By Julie Evens and Sau San California Native Plant Society 2707 K Street, Suite 1 Sacramento CA, 95816 In cooperation with the California Natural Heritage Program of the California Department of Fish and Game And San Diego Chapter of the California Native Plant Society Final Report August 2005 TABLE OF CONTENTS Introduction...................................................................................................................................... 1 Methods ........................................................................................................................................... 2 Study area ................................................................................................................................... 2 Existing Literature Review........................................................................................................... 2 Sampling ..................................................................................................................................... 2 Figure 1. Study area including the San Dieguito River Park boundary within the ecological subsections color map and within the County inset map............................................................ 3 Figure 2. Locations of the field surveys....................................................................................... 5 Cluster analyses for vegetation classification ............................................................................
    [Show full text]
  • Moth Larval Host Plants — Desert Survivors (Dec. 2017) Scientific Name Common Name Caterpillars That Use These Species Abutilon Spp
    Moth Larval Host Plants — Desert Survivors (Dec. 2017) Scientific Name Common Name Caterpillars that Use These Species Abutilon spp. Desert mallow Bird dropping moth, Owlet moth, Crambid seed moth Acaciella hirta (Acacia Fernball acacia Silk moth, Mesquite stinger flannel angustissima) moth Agastache wrightii Wright’s horsemint Crambid moth Agave spp. Century plant, agave Yucca moth, Tortrix moth Aloysia wrightii Wright's beebrush Rustic sphinx moth Ambrosia spp. Ragweed Bird dropping moth, Geometrid moth Amorpha spp. False indigo bush Tortrix leaf roller moth, Pyralid moth Artemisia ludoviciana subsp. Western mugwort, white Flower moth, Tortrix moth redolens sagebrush Asclepias spp. Milkweed Milkweed tussock tiger moth Atriplex spp. Saltbush Geometrid moth Baccharis brachyphylla Shortleaf baccharis Owlet moth Baccharis salicifolia Seep willow Tiger moth Baccharis sarathroides Desert broom Flower moth, Owlet moth, Geometrid moth, Desert Broom gall moth Bahia absinthifolia Desert bahia Owlet moth Bebbia juncea var. aspera Sweet bush Tiger moth, Tortrix moth Bidens aurea Arizona beggarticks Sunflower moth, Dart moth Bothriochloa barbinodis Cane beardgrass Owlet moth Bouteloua curtipendula Sideoats grama Hualapai buckmoth, Viened Ctenucha moth Bouvardia ternifolia Smooth bouvardia Falco sphinx moth Brickellia californica California brickelbush Flower moth, Geometrid moth, Northern giant tiger moth Buddleja sessiliflora Rio Grande butterfly bush Hooded owlet moth Calliandra eriophylla Native fairyduster (2) Melipotis moths Ceanothus greggii Desert deerbrush Cecrops eyed silkmoth, Prominent moth, (4) geometrid moths, Owlet moth Celtis pallida Desert hackberry Small prominent moth, Randa’s eyed silk moth Celtis reticulata Canyon hackberry Io Silkmoth, Small prominent moth, Cleft headed looper moth !1 Scientific Name Common Name Caterpillars that Use These Species Calylophus hartwegii Sundrops White lined sphinx moth, Flower moth Cercocarpus breviflorus Hairy mountain mahogany Cecrops eyed silkmoth, Owlet moth, (4) Geometrid moths, Sulphur moth Chilopsis linearis subsp.
    [Show full text]
  • Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 ON THE COVER Chisos Basin, as viewed from Casa Grande Peak. Image provided by NPS Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 James Von Loh Cogan Technology, Inc. 8140 East Lightening View Drive Parker, Colorado 80134 Dan Cogan Cogan Technology, Inc. 21 Valley Road Galena, Illinois 61036 February 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]