Testing the Efficacy of River Restoration Across Multiple Levels of Biological Organisation

Total Page:16

File Type:pdf, Size:1020Kb

Testing the Efficacy of River Restoration Across Multiple Levels of Biological Organisation Testing the efficacy of river restoration across multiple levels of biological organisation Joseph Edward Anson Huddart September 2017 Department of Life Sciences, Imperial College London & Department of Life Sciences, Natural History Museum Doctor of Philosophy i Statement of originality I, Joseph Huddart, confirm that the research presented within this thesis is my own, with the following acknowledgement: Chapter 6: This chapter was published in Wiley Interdisciplinary Reviews: Water in 2016, and appears here with appropriate permissions from the publisher. I organised the structure, researched the literature and wrote the manuscript. All authors contributed towards the final text. The full list of co-authors is: Joseph Huddart, Murray Thompson, Guy Woodward and Stephen Brooks. Full permission to reproduce the figures here has been received. Signature: The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or format. You may also create and distribute modified versions of the work. This is on the condition that: you credit the author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by naming the licence and linking to the licence text. Where a work has been adapted, you should indicate that the work has been changed and describe those changes. Please seek permission from the copyright holder for uses of this work that are not included in this licence or permitted under UK Copyright Law. i Abstract As we start to count the cost of unprecedented biodiversity loss in terms of impaired provisional, supporting and cultural ecosystem goods and services, so to are we increasingly implementing measures to halt and reverse these impacts. A major focus of these efforts has been the restoration river habitats, which rank among the most degraded globally. However, while river restoration has become a global enterprise, biomonitoring to test the ecological effectiveness of these activities remains exceptional and even then typically lacking the rigour necessary for detecting and tracking ecological responses across space and time. Here I use standardised and quantitative biomonitoring techniques to measure the ecological response to replicated, experimental, reach-scale large wood installations in heavily modified calcareous system. In Chapters 3-5, I used biannual biomonitoring to investigate the response of a target fish species and the wider fish assemblage to restoration and found strong, rapid responses in the target species’ predators (Chapter 3). In Chapter 4, I build food webs revealing changes to the food web structure that indicate enhanced energy transfer between predators and prey following restoration. In Chapter 5 I investigate the effect of restoration on ecosystem functioning, by comparing leaf-litter breakdown rates and colonisation in restored and unrestored reaches. In Chapter 6, I discuss how engaging river users as citizen scientists could advance the ecological success of their interventions and restoration science. The findings presented here highlight the importance of robust biomonitoring methods for revealing, measuring and characterising the response of ecological communities to habitat interventions. Repairing degraded ecosystems is among the most necessary and exciting challenges we have undertaken as a species, and only by advancing our understanding the factors that influence restoration success and failure will we be able to advance the practice of restoration towards an ever more efficient and ecologically effective management practice. ii Acknowledgements Firstly, I would like to thank my supervisors, Steve Brooks and Guy Woodward for giving me the opportunity to take on this project, and for their continued support and guidance throughout. I would also like to thank Murray Thompson for his invaluable contribution and discussion concerning fieldwork methods and analysis, and Clare Gray and Eoin O’Gorman for helping me to crack R as well as food webs. The Swire Foundation deserves a special mention for not only facilitating the project through funding my PhD, but also providing the perfect setting for the experiment on the River Great Stour, and financing and granting permission as principle landowners for the restorations. This leads me on to thanking Nigel Cox and co managing the Swire Estate in Chilham, without their hands on approach to implementing the restorations and vehicular support for every fish survey this project would never have been possible. I would also like to thank Neil Jones and the members of the Stour Fisheries Association for being so supportive of the restorations and the project in general, even when fishing was obstructed as a consequence. I would like to thank the smorgasbord of students and volunteers who donated their time monitoring and processing invertebrates in the laboratory. A special mention to Liam Nash, Sarah Mayor, Clio Hall, Eric Wo, Emily Morgan, Anna Jernstedt, Tom Bell, Isabelle Barratt, Jane Courtnell, Dominique Chavalier, Diego Morata, Jacob Birkenhead, Benjamin Gautier, Pauline Chaillot and particularly Hugh Carter Chironomid taxonomist extraordinaire. Lastly to John Harrison and Guy Burger and the other electrofishing volunteers who provided crucial electrofishing assistance. I would also like to thank John Foster, Nick Brain, David Powell and others from the Environmental Agency who helped to ensure the project could be implemented by meeting the strict flood consent conditions and so keeping the flood alleviation wolves at bay and providing necessary equipment. iii Lastly I would like to thank Katharine Kaufman and my parents Arabella and Harry and siblings the ‘Huddle of Huddarts’: Georgiana, Augusta, Flora, Johnnie and Eddie for being so encouraging and patient. iv Table of Contents !"#$%&'()(*(+&,&'#-(.,%'/012%3/,(444444444444444444444444444444444444444444444444444444444444444444444444444444444()! "#"#"! $%&'(!)'*(+)+,%-.!####################################################################################################################!"! "#"#/! 0+1%,+,!('2,-(+,%-.!%.!,3'!/"2,!4'.,5(6!##########################################################################!/! "#"#7! 0+1%,+,!('2,-(+,%-.!,3'-(6!###################################################################################################!8! "#"#9! $'2,-(%.*!:%,3!;+(*'!:--)!###################################################################################################!<! "#"#8! =%->-.%,-(%.*!+.)!&+;%)+,%-.?!,3'!@'6!,-!+)&+.A%.*!(%&'(!('2,-(+,%-.! 2A%'.A'!+.)!B(+A,%A'!###############################################################################################################################!C! "#"#<! D--)!:'1!,3'-(6?!;%.@%.*!('2,-(+,%-.!,-!'A-262,'>!E5.A,%-.%.*!#####################!"/! )45! 6378(#,0(%"&838(8%'12%1'&(444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444()9! Chapter 2 | General methods and hydromorphological response ......................... 17 2.1 General methods ...................................................................................................... 17 2.1.1 The Chalkstream Environment ........................................................................... 17 2.1.2 Study site ............................................................................................................ 19 2.1.3 Invertebrate sampling ......................................................................................... 23 2.1.4 Fish ..................................................................................................................... 24 2.1.5 Statistical analysis .............................................................................................. 25 2.1.6 LWD restoration ................................................................................................. 26 2.1.7 Hydromorphological profiling ............................................................................ 27 2.2 Hydromorphological response ............................................................................... 28 !"#$%&'()(*(+,%(%"&(,-./(012"(1-(%"&('13&'4(1-%&'2$&51015('&2$,-2&2(%,(#( 2$&51&26.&7(5,-2&'3#%1,-(8&#29'&(:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(;<! 3.1 Abstract(:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::()=! 3.2 Introduction(::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::()>! 3.3 Methods(:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::()?! 3.4 Results(::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::()<! 3.5 Discussion(::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(@=! 3.6 Conclusion(:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(@)! v !"#$%&'()(*(+&,%-'#%.-/(-0(,%'&#1(/&%2-'3,4(./5&,%.6#%./6(%"&(&00&7%(-0(8#'6&( 2--9(#99.%.-/(-/(0#:/#8(0--9(2&;(,%':7%:'&(<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<(=>(
Recommended publications
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Download PDF File (155KB)
    Myrmecological News 16 35-38 Vienna, January 2012 The westernmost locations of Lasius jensi SEIFERT, 1982 (Hymenoptera: Formicidae): first records in the Iberian Peninsula David CUESTA-SEGURA, Federico GARCÍA & Xavier ESPADALER Abstract Three populations of Lasius jensi SEIFERT, 1982, a temporary social parasite, from two separate regions in Spain were detected. These locations represent the westernmost populations of the species. Lasius jensi is a new record for the Iberian Peninsula, bringing the total number of native ant species to 285. Dealate queens were captured with pitfall traps from mid July to mid August. Taking into account the other species present in the three populations, the host species could be Lasius alienus (FÖRSTER, 1850), Lasius grandis FOREL, 1909 or Lasius piliferus SEIFERT, 1992. The zoogeographical significance of those populations, probably a relict from glacial refuge, is briefly discussed. Key words: Ants, Formicidae, Lasius jensi, Chthonolasius, Spain, Iberian Peninsula, new record. Myrmecol. News 16: 35-38 (online 30 June 2011) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 21 January 2011; revision received 26 April 2011; accepted 29 April 2011 Subject Editor: Florian M. Steiner David Cuesta-Segura (contact author), Department of Biodiversity and Environmental Management, Area of Zoology, University of León, E-24071 León, Spain. E-mail: [email protected] Federico García, C/ Sant Fructuós 113, 3º 3ª, E-08004 Barcelona, Spain. E-mail: [email protected] Xavier Espadaler, Animal Biodiversity Group, Ecology Unit and CREAF, Autonomous University of Barcelona, E-08193 Bellaterra, Spain. Introduction Lasius jensi SEIFERT, 1982 belongs to the subgenus Chtho- tribution data. A fortiori, a distinctive situation occurs at nolasius RUZSKY, 1912, whose species are temporary so- the description of any new species.
    [Show full text]
  • Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me.
    [Show full text]
  • Is Lasius Bicornis (Förster, 1850) a Very Rare Ant Species?
    Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 154 (2018): 37–43 Is Lasius bicornis (Förster, 1850) a very rare ant species? (Hymenoptera: Formicidae) François VANKERKHOVEN1, Luc CRÈVECOEUR2, Maarten JACOBS3, David MULS4 & Wouter DEKONINCK5 1 Mierenwerkgroep Polyergus, Wolvenstraat 9, B-3290 Diest (e-mail: [email protected]) 2 Provinciaal Natuurcentrum, Craenevenne 86, B-3600 Genk (e-mail: [email protected]) 3 Beukenlaan 14, B-2200 Herentals (e-mail: [email protected]) 4 Tuilstraat 15, B-1982 Elewijt (e-mail: [email protected]) 5 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels (e-mail: [email protected]) Abstract Since its description based on a single alate gyne by the German entomologist Arnold Förster, Lasius bicornis (Förster, 1850), previously known as Formicina bicornis, has been sporadically observed in the Eurasian region and consequently been characterized as very rare. Here, we present the Belgian situation and we consider some explanations for the status of this species. Keywords: Hymenoptera, Formicidae, Lasius bicornis, faunistics, Belgium Samenvatting Vanaf de beschrijving door de Duitse entomoloog Arnold Förster, werd Laisus bicornis (Förster, 1850), voordien Formicina bicornis en beschreven op basis van een enkele gyne, slechts sporadisch waargenomen in de Euraziatische regio. De soort wordt dan meer dan 150 jaar later als ‘zeer zeldzaam’ genoteerd. In dit artikel geven we een overzicht van de Belgische situatie en overwegen enkele punten die de zeldzaamheid kunnen verklaren. Résumé Depuis sa description par l’entomologiste allemand Arnold Förster, Lasius bicornis (Förster, 1850), anciennement Formicina bicornis décrite sur base d'une seule gyne ailée, n'a été observée que sporadiquement en Eurasie, ce qui lui donne un statut de «très rare».
    [Show full text]
  • Above-Belowground Effects of the Invasive Ant Lasius Neglectus in an Urban Holm Oak Forest
    U B Universidad Autónoma de Barce lona Departamento de Biología Animal, de Biología Vegetal y de Ecología Unidad de Ecología Above-belowground effects of the invasive ant Lasius neglectus in an urban holm oak forest Tesis doctoral Carolina Ivon Paris Bellaterra, Junio 2007 U B Universidad Autónoma de Barcelona Departamento de Biología Animal, de Biología Vegetal y de Ecología Unidad de Ecología Above-belowground effects of the invasive ant Lasius neglectus in an urban holm oak forest Memoria presentada por: Carolina Ivon Paris Para optar al grado de Doctora en Ciencias Biológicas Con el Vº. Bº.: Dr Xavier Espadaler Carolina Ivon Paris Investigador de la Unidad de Ecología Doctoranda Director de tesis Bellaterra, Junio de 2007 A mis padres, Andrés y María Marta, y a mi gran amor Pablo. Agradecimientos. En este breve texto quiero homenajear a través de mi más sincero agradecimiento a quienes me ayudaron a mejorar como persona y como científica. Al Dr Xavier Espadaler por admitirme como doctoranda, por estar siempre dispuesto a darme consejos tanto a nivel profesional como personal, por darme la libertad necesaria para crecer como investigadora y orientarme en los momentos de inseguridad. Xavier: nuestras charlas más de una vez trascendieron el ámbito académico y fue un gustazo escucharte y compartir con vos algunos almuerzos. Te prometo que te enviaré hormigas de la Patagonia Argentina para tu deleite taxonómico. A Pablo. ¿Qué puedo decirte mi amor qué ya no te haya dicho? Gracias por la paciencia, el empuje y la ayuda que me diste en todo momento. Estuviste atento a los más mínimos detalles para facilitarme el trabajo de campo y de escritura.
    [Show full text]
  • Arthropods in Linear Elements
    Arthropods in linear elements Occurrence, behaviour and conservation management Thesis committee Thesis supervisor: Prof. dr. Karlè V. Sýkora Professor of Ecological Construction and Management of Infrastructure Nature Conservation and Plant Ecology Group Wageningen University Thesis co‐supervisor: Dr. ir. André P. Schaffers Scientific researcher Nature Conservation and Plant Ecology Group Wageningen University Other members: Prof. dr. Dries Bonte Ghent University, Belgium Prof. dr. Hans Van Dyck Université catholique de Louvain, Belgium Prof. dr. Paul F.M. Opdam Wageningen University Prof. dr. Menno Schilthuizen University of Groningen This research was conducted under the auspices of SENSE (School for the Socio‐Economic and Natural Sciences of the Environment) Arthropods in linear elements Occurrence, behaviour and conservation management Jinze Noordijk Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 3 November 2009 at 1.30 PM in the Aula Noordijk J (2009) Arthropods in linear elements – occurrence, behaviour and conservation management Thesis, Wageningen University, Wageningen NL with references, with summaries in English and Dutch ISBN 978‐90‐8585‐492‐0 C’est une prairie au petit jour, quelque part sur la Terre. Caché sous cette prairie s’étend un monde démesuré, grand comme une planète. Les herbes folles s’y transforment en jungles impénétrables, les cailloux deviennent montagnes et le plus modeste trou d’eau prend les dimensions d’un océan. Nuridsany C & Pérennou M 1996.
    [Show full text]
  • In a Western Balkan Peat Bog
    A peer-reviewed open-access journal ZooKeys 637: 135–149Spatial (2016) distribution and seasonal changes of mayflies( Insecta, Ephemeroptera)... 135 doi: 10.3897/zookeys.637.10359 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Spatial distribution and seasonal changes of mayflies (Insecta, Ephemeroptera) in a Western Balkan peat bog Marina Vilenica1, Andreja Brigić2, Mladen Kerovec2, Sanja Gottstein2, Ivančica Ternjej2 1 University of Zagreb, Faculty of Teacher Education, Petrinja, Croatia 2 University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia Corresponding author: Marina Vilenica ([email protected]) Academic editor: B. Price | Received 31 August 2016 | Accepted 9 November 2016 | Published 2 December 2016 http://zoobank.org/F3D151AA-8C93-49E4-9742-384B621F724E Citation: Vilenica M, Brigić A, Kerovec M, Gottstein S, Ternjej I (2016) Spatial distribution and seasonal changes of mayflies (Insecta, Ephemeroptera) in a Western Balkan peat bog. ZooKeys 637: 135–149. https://doi.org/10.3897/ zookeys.637.10359 Abstract Peat bogs are unique wetland ecosystems of high conservation value all over the world, yet data on the macroinvertebrates (including mayfly assemblages) in these habitats are still scarce. Over the course of one growing season, mayfly assemblages were sampled each month, along with other macroinvertebrates, in the largest and oldest Croatian peat bog and an adjacent stream. In total, ten mayfly species were recorded: two species in low abundance in the peat bog, and nine species in significantly higher abundance in the stream. Low species richness and abundance in the peat bog were most likely related to the harsh environ- mental conditions and mayfly habitat preferences.In comparison, due to the more favourable habitat con- ditions, higher species richness and abundance were observed in the nearby stream.
    [Show full text]
  • Variations on a Theme
    HENRY JOUTSIJOKI Variations on a Theme The Classification of Benthic Macroinvertebrates ACADEMIC DISSERTATION To be presented, with the permission of the board of the School of Information Sciences of the University of Tampere, for public discussion in the Auditorium Pinni B 1100, Kanslerinrinne 1, Tampere, on November 9th, 2012, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere School of Information Sciences Finland Copyright ©2012 Tampere University Press and the author Distribution Tel. +358 40 190 9800 Bookshop TAJU [email protected] P.O. Box 617 www.uta.fi/taju 33014 University of Tampere http://granum.uta.fi Finland Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1777 Acta Electronica Universitatis Tamperensis 1251 ISBN 978-951-44-8952-5 (print) ISBN 978-951-44-8953-2 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2012 Abstract This thesis focused on the classification of benthic macroinvertebrates by us- ing machine learning methods. Special emphasis was placed on multi-class extensions of Support Vector Machines (SVMs). Benthic macroinvertebrates are used in biomonitoring due to their properties to react to changes in water quality. The use of benthic macroinvertebrates in biomonitoring requires a large number of collected samples. Traditionally benthic macroinvertebrates are separated and identified manually one by one from samples collected by biologists. This, however, is a time-consuming and expensive approach. By the automation of the identification process time and money would be saved and more extensive biomonitoring would be possible. The aim of the thesis was to examine what classification method would be the most appro- priate for automated benthic macroinvertebrate classification.
    [Show full text]
  • A428 Black Cat to Caxton Gibbet Improvements
    A428 Black Cat to Caxton Gibbet improvements TR010044 Volume 6 6.3 Environmental Statement Appendix 8.17: Aquatic Invertebrates Planning Act 2008 Regulation 5(2)(a) Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 26 February 2021 PCF XXX PRODUCT NAME | VERSION 1.0 | 25 SEPTEMBER 2013 | 5124654 A428 Black Cat to Caxton Gibbet improvements Environmental Statement – Appendix 8.17: Aquatic Invertebrates Infrastructure Planning Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 A428 Black Cat to Caxton Gibbet Improvements Development Consent Order 202[ ] Appendix 8.17: Aquatic Invertebrates Regulation Number Regulation 5(2)(a) Planning Inspectorate Scheme TR010044 Reference Application Document Reference TR010044/APP/6.3 Author A428 Black Cat to Caxton Gibbet improvements Project Team, Highways England Version Date Status of Version Rev 1 26 February 2021 DCO Application Planning Inspectorate Scheme Ref: TR010044 Application Document Ref: TR010044/APP/6.3 A428 Black Cat to Caxton Gibbet improvements Environmental Statement – Appendix 8.17: Aquatic Invertebrates Table of contents Chapter Pages 1 Introduction 1 1.1 Background and scope of works 1 2 Legislation and policy 3 2.1 Legislation 3 2.2 Policy framework 3 3 Methods 6 3.1 Survey Area 6 3.2 Desk study 6 3.3 Field survey: watercourses 7 3.4 Field survey: ponds 7 3.5 Biodiversity value 10 3.6 Competence of surveyors 12 3.7 Limitations 13 4 Results 14 4.1 Desk study 14 4.2 Field survey 14 5 Summary and conclusion 43 6 References 45 7 Figure 1 47 Table of Tables Table 1.1: Summary of relevant legislation for aquatic invertebrates ..................................
    [Show full text]
  • Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships
    Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships Submitted by: Dipl. Biol. Robin Niechoj Supervisor: Prof. John Breen Submitted in accordance with the academic requirements for the Degree of Doctor of Philosophy to the Department of Life Sciences, Faculty of Science and Engineering, University of Limerick Limerick, April 2011 Declaration I hereby declare that I am the sole author of this thesis and that it has not been submitted for any other academic award. References and acknowledgements have been made, where necessary, to the work of others. Signature: Date: Robin Niechoj Department of Life Sciences Faculty of Science and Engineering University of Limerick ii Acknowledgements/Danksagung I wish to thank: Dr. John Breen for his supervision, encouragement and patience throughout the past 5 years. His infectious positive attitude towards both work and life was and always will be appreciated. Dr. Kenneth Byrne and Dr. Mogens Nielsen for accepting to examine this thesis, all the CréBeo team for advice, corrections of the report and Dr. Olaf Schmidt (also) for verification of the earthworm identification, Dr. Siobhán Jordan and her team for elemental analyses, Maria Long and Emma Glanville (NPWS) for advice, Catherine Elder for all her support, including fieldwork and proof reading, Dr. Patricia O’Flaherty and John O’Donovan for help with the proof reading, Robert Hutchinson for his help with the freeze-drying, and last but not least all the staff and postgraduate students of the Department of Life Sciences for their contribution to my work. Ich möchte mich bedanken bei: Katrin Wagner für ihre Hilfe im Labor, sowie ihre Worte der Motivation.
    [Show full text]
  • Influences of Diet on the Life Histories of Aquatic Insectsi,2 Toplankton Toxicants, N
    PERSPECTIVES 335 Res. Board Influences of Diet on the Life Histories of Aquatic Insectsi,2 toplankton toxicants, N. H. ANDERSON AND KENNETH W. CUMMINS Fish. Res. Department of Entomology and Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA iver into a !33. ,RAM. 1975. ANDERSON, N. H., AND K. W. CUMMINS. 1979. Influences of diet on the life histories of aquatic le effect of insects. J. Fish. Res. Board Can. 36: 335-342. growth of Benthic species are partitioned into functional feeding groups based on food-acquiring mechanisms. Effects of food quality on voltinism, growth rate, and size at maturity are demon- I larvae of strated for representatives of gougers and shredders, collectors, and scrapers. Food quality for iscidae). J. predators is uniformly high, but food quantity (prey density) obviously influences their life histories. A food switch from herbivory to predation, or some ingestion of animal tissues, in large dams stream flow the later stages is a feature of the life cycle of many aquatic insects. Temperature interacts with and C. H. both food quality and quantity in effects on growth as well as having a direct effect on control of metabolism. Thus further elaboration of the role of food in life history phenomena will d seasonal require controlled field or laboratory studies to partition the effects of temperature and food. .ructure of Key words: aquatic insects, feeding strategies, functional groups, life histories i. W. Esch II, ERDA ANDERSON, N. H., AND K. W. CUMMINS. 1979. Influences of diet on the life histories of aquatic G.
    [Show full text]
  • The Role of Chironomidae in Separating Naturally Poor from Disturbed Communities
    From taxonomy to multiple-trait bioassessment: the role of Chironomidae in separating naturally poor from disturbed communities Da taxonomia à abordagem baseada nos multiatributos dos taxa: função dos Chironomidae na separação de comunidades naturalmente pobres das antropogenicamente perturbadas Sónia Raquel Quinás Serra Tese de doutoramento em Biociências, ramo de especialização Ecologia de Bacias Hidrográficas, orientada pela Doutora Maria João Feio, pelo Doutor Manuel Augusto Simões Graça e pelo Doutor Sylvain Dolédec e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Agosto de 2016 This thesis was made under the Agreement for joint supervision of doctoral studies leading to the award of a dual doctoral degree. This agreement was celebrated between partner institutions from two countries (Portugal and France) and the Ph.D. student. The two Universities involved were: And This thesis was supported by: Portuguese Foundation for Science and Technology (FCT), financing program: ‘Programa Operacional Potencial Humano/Fundo Social Europeu’ (POPH/FSE): through an individual scholarship for the PhD student with reference: SFRH/BD/80188/2011 And MARE-UC – Marine and Environmental Sciences Centre. University of Coimbra, Portugal: CNRS, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, University Lyon1, France: Aos meus amados pais, sempre os melhores e mais dedicados amigos Table of contents: ABSTRACT .....................................................................................................................
    [Show full text]