Extracellular Matrix and Connective Tissue the Four Basic Tissue of the Body

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Matrix and Connective Tissue the Four Basic Tissue of the Body EXTRACELLULAR MATRIX AND CONNECTIVE TISSUE THE FOUR BASIC TISSUE OF THE BODY : - EPITHELIUM - MUSCLE - NERVOUS TISSUE - CONNECTIVE TISSUE TISSUE ARE COMPOSED OF CELLS AND AN EXTRACELLULAR MATRIX INTERCELLULAR SUBSTANCES : 1. AMORPHOUS INTERCELLULAR SUBSTANCES ( GROUND SUBSTANCES ). 2. FORMED INTERCELLULAR SUBSTANCES. - COLLAGEN FIBERS - ELASTIC FIBERS - RETICULAR FIBERS 1. GROUND SUBSTANCES : IS AN AMORPHOUS GEL-LIKE MATERIAL, COMPOSED OF GLYCOSAMINOGLYCANS, PROTEOGLYCANS AND GLYCOPROTEINS. GLUCOSAMINOGLYCANS : - GAGs ARE NEGATIVELY CHARGED, LONG, ROD-CHAIN OF REPEATING DISSACHARIDES THAT HAVE THE CAPABILITY OF BINDING LARGE QUANTITIES OF WATER. - NON SULFATED GLYCOSAMINOGLYCANS HYALURONIC ACID DISTRIBUTION : VITREOUS HUMOR OF THE EYE, AND SYNOVIAL FLUID. - SULFATED GLYCOSAMINOGLYCANS : KERATAN SULFAT, HEPARAN SULFAT, HEPARIN, CHONDROITIN SULFAT, DERMATAN SULFAT. DISTRIBUTION : CARTILAGE AND BONE MATRIX, VALVE OF HEART, AORTA, CORNEA AND UMBILICAL CORD. CARTILAGE WITH H.E STAIN SEEM RATHER BLUE, BECAUSE SULFATED GAGs HAVE A ACID CHARACTER, SO FIX HEMATOXILLIN WHICH HAVE BASE CHARACTER. PROEOGLYCANS : SULFATED GAGs ARE USUALLY COVALENT BOUNDS WITH A PROTEIN CORE, THEY FORM A FAMILY OF MACROMOLECULES KNOWN AS PROTEOGLYCANS. FUNCTIONS : - RESIST COMPRESSION, RETARD THE RAPID MOVEMENT OF MICROORGANISM AND METASTATIC CELLS. GLYCOPROTEIN : CELL ADHESIVE GLYCOPROTEIN HAVE BINDING SITES FOR SEVERAL COMPONENTS OF THE EXTRACELLULAR MATRIX AS WELL AS FOR INTEGRIN MOLECULES OF THE CELL MEMBRANE THAT FASCILITATE THE ATTACHMENT OF CELLS TO THE EXTRACELLULAR MATRIX. INTEGRINS, FIBRONECTIN, LAMININ, TENASCIN, CHONDRONECTIN AND OSTEONECTIN. 2. FORMED INTERCELLULAR SUBSTANCES - COLLAGEN FIBER ITS APPEARANCE AT CTS : - LOOK LIKE A TAPE ( RIBBON ), WHICH WALK WINDING. - CONSIST OF COLLAGEN FIBRILS WHICH ONE WITH OTHER ADHERED BY INTERFIBRILLAR CEMENT SUBSTANCE. ULTRA-STRUCTURE APPEARANCE : - ONE FIBRIL CONSIST OF SMALLER STRUCTURE NAMELY IS MICROFIBRIL. - MICROFIBRIL CONSIST OF TRPOCOLLAGEN, AND TROPOCOLLAGEN SOURCE IS PROCOLLAGEN WHICH HAS BEEN MADE IN ROUGH SURFACE ENDOPLASMIC RETICULAR OF CELL WHICH PRODUCED FORMED INTERCELLULAR SUBTANCES. STAIN REACTION OF COLLAGEN FIBER : WITH H.E HAVE RED COLOR. WITH M.A HAVE BLUE COLOR. DISTRIBUTION : ALMOST IN BODY TISSUE. ELASTIC FIBER IF COMPARED WITH COLLAGEN THIS FIBER IS SMOOTHER WITH ELECTRON MICROSCOPE ITS APPEARANCE SEEM CONSIST OF SMOOTH MICROFIBRIL WHICH HAVE A TUBULAR SHAPE. STAINING REACTION : V.v.G : OLD BLUE UNTIL BLACK COLOR ORCEIN : CHOCOLATE COLOR. DISTRIBUTION : LARGE BLOOD VESSEL, MUSCULAR TYPE OF BLOOD VESSEL, EPIGLOTIS AND AURICULA EXTERNA. RETICULAR FIBER : - SMOOTH, HAVE BRANCHES AND LOOK LIKE NET WORK SHAPE. - KNOWN AS PRE-COLLAGEN FIBER, HAVE GREAT AFFINITY TO THE AG IMPREGNATION STAIN AND ALSO CALLED AS ARGIROFILIK FIBER AND HAVE BLACK COLOR. WITH PAS STAIN THE FIBER HAS MAGENTA RED COLOR. - DISTRIBUTION : LIMFATIC ORGAN, BASAL MEMBRANE, BLOOD VESSEL WALL, MUSCLES FIBER, NERVE TISSUE , ENDOCRINE AND EXOCRINE GLANDS..
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • On the Reticular Tissue and Lattice=Fibers Occurring in the Milk=Spots of Omentum
    On the Reticular Tissue and Lattice=fibers occurring in the Milk=spots of Omentum. By Dr. Yukio Hamazaki. From the Pathological Department of Okayama Medical College (Director: Prof. Oto Tam ura). 2 Figures (Plate III) and 3 Text Figures. Ranvier and Weide n reic h regarded the omentum as a flattened- out lymph gland and the abdominal cavity as its lymph sinus. The latter, furthermore, theoretically emphasized that the omentum is nothing but a sheet of reticular tissue, the "taches laiteuses" correspond- ing to the secondary nodules. Lately, Kiy ono agreed with the above view, though lie pointed out that the histiocytic cells in the milk-spots do not form reticular tissue, unlike those in the lymph glands. At the Fifteenth Pathological Congress of Japan (1925) I reported that the milk-spots in the rat, cattle, and pig are provided with a certain kind of reticular tissue. The purpose of the present paper is to settle this problem using specific stainings for the reticular fibers and for the lattice-fibers ("Gitterfasern" of v. Kupffer), which may be in an intiniate relation with them. Material and methods. The material was obtained from the cattle, pig , dog, cat, rabbit, guinea-pig, rat, mouse, chicken and human subject. As the control the organs containing reticular tissue, i. e., lymph glands , spleen and thymus gland were also examined. The material fixed with 10% solution of lormalin was studied as stretched specimens and as sections . For reticulum-staining the eosin-methyl blue method modified by the author was used: 1. Sections are stained for 30 minutes in 1% solution of eosin (a few drops of glacial acetic acid is added to 100 cc of the solution) .
    [Show full text]
  • The Mesocolon a Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization
    ORIGINAL ARTICLE The Mesocolon A Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization Kevin Culligan, MRCS,∗ Stewart Walsh, FRCSEd,∗ Colum Dunne, PhD,∗ Michael Walsh, PhD,† Siobhan Ryan, MB,‡ Fabio Quondamatteo, MD,‡ Peter Dockery, PhD,§ and J. Calvin Coffey, FRCSI∗¶ uring fetal development, the dorsal mesentery suspends the en- Background: Colonic mobilization requires separation of mesocolon from tire gastrointestinal tract from the posterior abdominal wall. The underlying fascia. Despite the surgical importance of planes formed by these D mesocolon is the adult remnant of that part of the dorsal mesentery structures, no study has formally characterized their microscopic features. associated with the colon.1 In the adult human, the transverse and The aim of this study was to determine the histological and electron micro- lateral sigmoid portions of the mesocolon are mobile whereas the as- scopic appearance of mesocolon, fascia, and retroperitoneum, prior to and cending, descending, and medial sigmoid portions are nonmobile and after colonic mobilization. attached to underlying retroperitoneum.2–4 Classic anatomic teaching Methods: In 24 cadavers, samples were taken from right, transverse, de- maintains that the ascending and descending mesocolon “disappear” scending, and sigmoid mesocolon. In 12 cadavers, specimens were stained during embryogenesis.5,6 In keeping with this, the identification of a with hematoxylin and eosin (3 sections) or Masson trichrome (3 sections). In right or left mesocolon in the adult is frequently depicted as anoma- the second 12 cadavers, lymphatic channels were identified by staining im- lous rather than accepted as an anatomic norm.7 Accordingly, the munohistochemically for podoplanin.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • The 4 Types of Tissues: Connective
    The 4 Types of Tissues: connective Connective Tissue General structure of CT cells are dispersed in a matrix matrix = a large amount of extracellular material produced by the CT cells and plays a major role in the functioning matrix component = ground substance often crisscrossed by protein fibers ground substance usually fluid, but it can also be mineralized and solid (bones) CTs = vast variety of forms, but typically 3 characteristic components: cells, large amounts of amorphous ground substance, and protein fibers. Connective Tissue GROUND SUBSTANCE In connective tissue, the ground substance is an amorphous gel-like substance surrounding the cells. In a tissue, cells are surrounded and supported by an extracellular matrix. Ground substance traditionally does not include fibers (collagen and elastic fibers), but does include all the other components of the extracellular matrix . The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water, glycosaminoglycans (most notably hyaluronan ), proteoglycans, and glycoproteins. Usually it is not visible on slides, because it is lost during the preparation process. Connective Tissue Functions of Connective Tissues Support and connect other tissues Protection (fibrous capsules and bones that protect delicate organs and, of course, the skeletal system). Transport of fluid, nutrients, waste, and chemical messengers is ensured by specialized fluid connective tissues, such as blood and lymph. Adipose cells store surplus energy in the form of fat and contribute to the thermal insulation of the body. Embryonic Connective Tissue All connective tissues derive from the mesodermal layer of the embryo . The first connective tissue to develop in the embryo is mesenchyme , the stem cell line from which all connective tissues are later derived.
    [Show full text]
  • Connective Tissues (C.T.)
    Lecture 3: Connective tissues (C.T.) - Colours index : Red : important Grey : doctors notes Pink : Girls slides Objectives : 1. Enumerate the general characteristics of C.T. 2. Classify C.T. Into C.T. Proper (C.T.P.) and special types of C.T. 3. Describe components of C.T.P. 4. Classify C.T.P. and know the distribution and function of each type Definition and components of C.T. 1.It is one of the 4 basic tissues. 2.it is Mesodermal* in origin. Function of C.T 1. Supports, binds and connects other tissue and organs. 2. Provides structural (fix organ position) and metabolic support. General characteristics of C.T : 1. It is formed of widely separated, few cells with abundant extracellular matrix. 2. Most of C.T. Are vascular (have blood vessel). Components of C.T : 1. Cells: different types. 2. Fibers: collagenous, elastic & reticular. 3. Matrix: the intercellular substance = extracellular matrix, where cells and fibers are embedded. *Mesodermal: (the middle layer of an embryo in early development, between endoderm and ectoderm) “Referring to embryology” ;) Types of C.T. (Depending on matrix) - Soft = C.T. Proper - Rigid (firm,rubbery) = Cartilage - Hard (solid) = Bone - Fluid = Blood Components of C.T. Proper ● Cells ● Fibers ● Matrix Cells: 1. Fibroblasts 2. Macrophages 3. Mast cells 4. Plasma cells 5. Adipose cells 6. Leucocytes (اﻟﺧﻼﯾﺎ اﻟﻣﻛوﻧﺔ ﻟﻠـCells: (connective tissue ❖ Fibroblast Macrophages Mast Cells ● It’s the most common cell, L/M: L/M: found nearly in all types of C.T ● Basophilic cytoplasm, rich in Cytoplasm contains numerous proper. lysosomes. basophilic and cytoplasmic granules.
    [Show full text]
  • Characterizing the Invasive Tumor Front of Aggressive Uterine Adenocarcinoma and Leiomyosarcoma
    Characterizing the invasive tumor front of aggressive uterine adenocarcinoma and leiomyosarcoma Sabina Sanegre1, Núria Eritja2, 3, 4, 5, 6, Carlos de Andrea2, 7, Juan Díaz-Martín2, 8, 9, 10, 11, Ángel Díaz-Lagares2, 12, 13, María Amalia Jácome14, Carmen Salguero-Aranda8, 9, 10, 11, David García-Ros7, Ben Davidson15, 16, 17, Rafael López2, 13, 12, Ignacio Melero2, 18, Samuel Navarro2, 1, Santiago Ramon Y Cajal2, 19, Enrique De Álava2, 8, 9, 10, 11, Xavier Matias-Guiu2, 3, 5, 6, 4*, Rosa Noguera2, 20, 1* 1Institute of Health Research (INCLIVA), Spain, 2Centro de Investigaciónació Biomédica en Red del Cáncer (CIBERONC), Spain, 3Department of Pathology, University Hospital ArnauAr de Vilanova, Spain, 4Bellvitge University Hospital, Spain, 5Universitatt de Lleida, Spain, 6Universityniversity of Barcelona, Spain, 7University Clinic of Navarra, Spain, 8Institutetute of Biomedicine of Seville (IBIS), Spain,Sp 9Virgen del Rocío University Hospital, Spain, 10Consejo Superior de Investigaciones CientífiCientíficas (CSIC), Spain, 11Sevilla University, 12 13 Spain, University Clinical Hospital of Santiago, Spain,Spa Health Research Institute of Santiago de Compostelapostela (IDIS), Spain, 14Facultyculty of Science,Scie University of A Coruña, Spain, 15Institute of Clinical Medicine,ne, Faculty of Medicine,Me University of Oslo, Norway, 16Department of Pathology, Oslo University Hospital,l, Norway,Nor 17Norwegian Radium Hospital, Oslo University Hospital, Norway, 18Departamento de Dermatología,D Clínica Universidad de Navarra, Spain, 19Department of
    [Show full text]
  • Autoimmunity Mixed Connective Tissue Disease (CTD)
    Autoimmunity Mixed Connective Tissue Disease (mixed CTD) and Undifferentiated Connective Tissue Disease (UCTD) Autoimmunity and Connective Tissue Disease (CTD) The immune system normally produces antibodies which attack bugs (viruses, bacteria and fungi). Sometimes, for reasons we don’t fully understand, the immune system goes into ‘overdrive’ and produces antibodies which attack the body’s own tissues, causing inflammation. This is called autoimmunity and may cause an autoimmune disease. A common example of this is underactive thyroid where antibodies are produced which attack the thyroid gland. The connective tissues are the structural portions of our body that essentially hold the cells of the body together. These tissues form a framework or matrix for the body. Connective Tissue Disease (CTD) Connective tissue disease is an autoimmune disease where the body produces antibodies against its own connective tissue, causing inflammation. The ‘classic’ connective tissue diseases include: Lupus Rheumatoid arthritis Scleroderma (or systemic sclerosis) Polymyositis and Source: Rheumatology Reference No: 6252-1 Issue date: 26/9/19 Review date: 26/9/22 Page 1 of 4 Dermatomyositis Each of these diseases has a typical presentation with clinical findings that doctors can recognise during an examination. Each also has certain blood test abnormalities and abnormal antibody patterns. However, each of these diseases can start with very mild symptoms before developing the classic features that help in the diagnosis. Undifferentiated Connective Tissue Disease (UCTD) Almost one in four people seen in rheumatology clinics develop an autoimmune disease which doesn't fit neatly into a category, so they are not given a definite disease label. When these conditions have not developed the classic features of a particular disease, doctors will often refer to the condition as "undifferentiated connective tissue disease" or UCTD for short.
    [Show full text]
  • Collagens—Structure, Function, and Biosynthesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Advanced Drug Delivery Reviews 55 (2003) 1531–1546 www.elsevier.com/locate/addr Collagens—structure, function, and biosynthesis K. Gelsea,E.Po¨schlb, T. Aignera,* a Cartilage Research, Department of Pathology, University of Erlangen-Nu¨rnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany b Department of Experimental Medicine I, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany Received 20 January 2003; accepted 26 August 2003 Abstract The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue. D 2003 Elsevier B.V. All rights reserved. Keywords: Collagen; Extracellular matrix; Fibrillogenesis; Connective tissue Contents 1. Collagens—general introduction ............................................. 1532 2. Collagens—the basic structural module.........................................
    [Show full text]
  • Kumka's Response to Stecco's Fascial Nomenclature Editorial
    Journal of Bodywork & Movement Therapies (2014) 18, 591e598 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/jbmt FASCIA SCIENCE AND CLINICAL APPLICATIONS: RESPONSE Kumka’s response to Stecco’s fascial nomenclature editorial Myroslava Kumka, MD, PhD* Canadian Memorial Chiropractic College, Department of Anatomy, 6100 Leslie Street, Toronto, ON M2H 3J1, Canada Received 12 May 2014; received in revised form 13 May 2014; accepted 26 June 2014 Why are there so many discussions? response to the direction of various strains and stimuli. (De Zordo et al., 2009) Embedded with a range of mechanore- The clinical importance of fasciae (involvement in patho- ceptors and free nerve endings, it appears fascia has a role in logical conditions, manipulation, treatment) makes the proprioception, muscle tonicity, and pain generation. fascial system a subject of investigation using techniques (Schleip et al., 2005) Pathology and injury of fascia could ranging from direct imaging and dissections to in vitro potentially lead to modification of the entire efficiency of cellular modeling and mathematical algorithms (Chaudhry the locomotor system (van der Wal and Pubmed Exact, 2009). et al., 2008; Langevin et al., 2007). Despite being a topic of growing interest worldwide, This tissue is important for all manual therapists as a controversies still exist regarding the official definition, pain generator and potentially treatable entity through soft terminology, classification and clinical significance of fascia tissue and joint manipulative techniques. (Day et al., 2009) (Langevin et al., 2009; Mirkin, 2008). It is also reportedly treated with therapeutic modalities Lack of consistent terminology has a negative effect on such as therapeutic ultrasound, microcurrent, low level international communication within and outside many laser, acupuncture, and extracorporeal shockwave therapy.
    [Show full text]
  • Connective Tissue – Material Found Between Cells – Supports and Binds Structures Together – Stores Energy As Fat – Provides Immunity to Disease
    Chapter 4 The Tissue Level of Organization • Group of similar cells – common function • Histology – study of tissues • Pathologist – looks for tissue changes that indicate disease 4-1 4 Basic Tissues (1) • Epithelial Tissue – covers surfaces because cells are in contact – lines hollow organs, cavities and ducts – forms glands when cells sink under the surface • Connective Tissue – material found between cells – supports and binds structures together – stores energy as fat – provides immunity to disease 4-2 4 Basic Tissues (2) • Muscle Tissue – cells shorten in length producing movement • Nerve Tissue – cells that conduct electrical signals – detects changes inside and outside the body – responds with nerve impulses 4-3 Epithelial Tissue -- General Features • Closely packed cells forming continuous sheets • Cells sit on basement membrane • Apical (upper) free surface • Avascular---without blood vessels – nutrients diffuse in from underlying connective tissue • Rapid cell division • Covering / lining versus glandular types 4-4 Basement Membrane • holds cells to connective tissue 4-5 Types of Epithelium • Covering and lining epithelium – epidermis of skin – lining of blood vessels and ducts – lining respiratory, reproductive, urinary & GI tract • Glandular epithelium – secreting portion of glands – thyroid, adrenal, and sweat glands 4-6 Classification of Epithelium • Classified by arrangement of cells into layers – simple = one cell layer thick – stratified = many cell layers thick – pseudostratified = single layer of cells where all cells
    [Show full text]
  • Review: Epithelial Tissue
    Review: Epithelial Tissue • “There are 2 basic kinds of epithelial tissues.” What could that mean? * simple vs. stratified * absorptive vs. protective * glands vs. other • You are looking at epithelial cells from the intestine. What do you expect to see? tight junctions; simple columnar; gobet cells; microvilli • You are looking at epithelial cells from the trachea. What do you expect to see? cilia; pseudostratified columnar; goblet cells 1 4-1 Four Types of Tissue Tissue Type Role(s) - Covers surfaces/passages - Forms glands - Structural support CONNECTIVE - Fills internal spaces - Transports materials - Contraction! - Transmits information (electrically) 2 Classification of connective tissue 1. Connective tissue proper 1a. Loose: areolar, adipose, reticular 1b. Dense: dense regular, dense irregular, elastic 2. Fluid connective tissue 2a. Blood: red blood cells, white blood cells, platelets 2b. Lymph 3. Supporting connective tissue 3a. Cartilage: hyaline, elastic, fibrocartilage 3b. Bone 3 Defining connective tissue by the process of elimination if not epithelial, muscle, or nervous, must be connective! 4 LAB MANUAL Figure 6.4 Areolar connective tissue: A prototype (model) connective tissue. Cell types Extracellular matrix Ground substance Macrophage Fibers = proteins • Collagen fiber • Elastic fiber • Reticular fiber Fibroblast Lymphocyte Adipocyte Capillary Mast cell 5 The Cells of Connective Tissue Proper Melanocytes and macrophages, mesenchymal, mast; Adipo- / lympho- / fibrocytes and also fibroblasts. These are the cells of connective
    [Show full text]