(Piperales) I. Plastid DNA Phylogeny and Chromosome Number of Peperomia Subgenus Micropiper

Total Page:16

File Type:pdf, Size:1020Kb

(Piperales) I. Plastid DNA Phylogeny and Chromosome Number of Peperomia Subgenus Micropiper ISSN 1346-7565 Acta Phytotax. Geobot. 70 (1): 1–17 (2019) doi: 10.18942/apg.201815 Biosystematic Studies on the Family Piperaceae (Piperales) I. Plastid DNA Phylogeny and Chromosome Number of Peperomia subgenus Micropiper * Yukihiro h. kobaYashi , shizuka Fuse and Minoru n. TaMura Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. * [email protected] (author for correspondence) To evaluate the evolutionary relationships among species of Peperomia subg. Micropiper, a phylogenet- ic analysis based on the DNA sequences of plastid regions atpB-rbcL, psbK-I, rpL16, rpS16, trnG, trnK (including matK), trnL-L-F, and trnS-G was conducted using 20 species, in addition to four outgroup species. The trnK sequences of 46 species and trnL-L-F sequence of one species were quoted from Gen- Bank and also included in the analysis. The results showed that P. subg. Micropiper includes seven major clades, which are also supported by morphological characteristics. They are recognized as section- equivalent plant groups, namely Alatoid, Blandoid, Glabelloid, Glaucoid, Japonicoid, Lanceolatoid, and Rotundifolioid. A chromosome analysis of the subgenus yielded nine new counts: 2n = 22 (diploid) for P. alata, P. bicolor, P. diaphanoides, P. flexicaulis, P. hylophila, P. polystachya and P. prosterata, 2n = 44 (tetraploid) for P. okinawensis and 2n = 132 (dodecaploid) for P. reticulata. Japonicoid, which occurs outside the Americas, i.e. in Asia, Africa, and the Pacific islands, is tetraploid, decaploid, and dodeca- ploid (not diploid), while the remaining six plant groups are native to the Americas and diploid (except Glaucoid, which is tetraploid). Further, P. diaphanoides is conspecific with P. glabella. Peperomia boninsimensis from the Ogasawara Islands, Japan, is more closely related to Polynesian species than to other Japanese species. Peperomia okinawensis should be regarded as a variety of P. japonica. Key words: chromosome number, Micropiper, molecular phylogeny, Peperomia blanda, Peperomia boninsimensis, Peperomia diaphanoides, Peperomia japonica var. okinawensis, Piperaceae, plastid DNA, primitive angiosperms Piperales Bercht. & J. Presl have long attract- Piperaceae Giseke, along with Saururaceae ed attention as primitive angiosperms (Cronquist Rich. ex T. Lestib. and Aristolochiaceae Juss., 1957, 1988, Takhtajan 1969, Tamura 1974, En- constitute the Piperales. (APG IV 2016). The dress & Friis 1994). They share apocarpy, mono- family is considered to be one of the more mor- sulcate pollen grains, ethereal oil cells, and rich phologically advanced of the Piperales (Tamura endosperm with other primitive angiosperms, 1974), because it has simple flowers with only one such as Magnoliales Juss. ex Bercht. & J. Presl, orthotropous ovule per ovary and lacks a peri- Canellales Cronq., and Chloranthales Mart., all of anth. Based on Samain et al. (2008), the Pipera- which (including Piperales) are included in the ceae include five genera: Piper L., Peperomia basal clades of angiosperms (APG IV 2016). Ruiz & Pav., Zippelia Blume, Manekia Trel., and Piperales may also be related to monocots. Burg- Verhuellia Miq. er (1977) reported the morphological similarity to The molecular phylogenetics of the Pepero- monocots; e.g. atactostele and 3-merous flowers. mia has been studied by Wanke et al. (2006), Nevertheless, the taxonomy of Piperales has not Smith et al. (2008), Samain et al. (2009), and been adequately studied. Frenzke et al. (2015). They analyzed the DNA se- 2 Acta Phytotax. Geobot. Vol. 70 Fig. 1. Morphology and habit of species of Peperomia subg. Micropiper. A, P. verticillata (Blandoid) [Kobayashi 90 (KYO)] with dimorphic leaves (a, b); B, P. prostrata (Alatoid) [Kobayashi 6 (KYO)] with shoot continuing to grow after flowering (c) and white-lined veins of leaves (d); C, P. bicolor [Kobayashi 96 (KYO)]; D, P. japonica (Japonicoid) [Tamura et al. 44019 (KYO)]; E, P. glabella (Glabelloid) [Kobayashi 34 (KYO)] with grooved veins of leaves (e); F, P. galioides (Glau- coid) [Kobayashi 86 (KYO)] with dimorphic leaves (f, g). quences of trnK (3,204 bp), trnL+trnL- distinguished from other subgenera by densely F+ndhF+g3pd (5,235 bp), trnK+ITS+26S (5,906 the viscid-papillose fruits. Based on Frenzke et bp), and trnK+trnK-psbA (4,870 bp), respectively, al. (2015) and Tropicos (2018), 419 of the 596 spe- and revealed the monophyly of the genus and the cies of P. subg. Micropiper are endemic to the subgeneric relationships. Frenzke et al. (2015) American tropics, while the remaining 177 spe- classified Peperomia (1,520 spp.) into 14 subgen- cies are distributed in Asia, Africa, and the Pa- era primarily based on molecular phylogenetic cific islands. In contrast, the 13 subgenera are en- data: Micropiper (Miq.) Miq. (596 spp.), Pseudo- demic to the Americas, with the exception of P. cupula Frenzke & Scheiris (157 spp.), Leptorhyn- tetraphylla of subg. Pseudocupula. Thus, molec- chum (Dahlst.) Trel. ex Samain (147 spp.), Multi- ular phylogenetic studies of P. subg. Micropiper palmata Scheiris & Frenzke (105 spp.), Tildenia are needed to improve our understanding of (Miq.) Miq. ex Dahlst. (58 spp.), Oxyrhynchum Asian Peperomia. In addition, few data regarding (Dahlst.) Samain (57 spp.), Fenestratae Pino (42 chromosome number and polyploidy are avail- spp.), Peperomia (18 spp.), Erasmia (Miq.) Dahlst. able (Table 1), although these are important char- (13 spp.), Pleurocarpidium Dahlst. (11 spp.), His- acters for tracing evolution along molecular phy- pidulae Frenzke & Scheiris (10 spp.), Perlucida logenetic trees. Scheiris & Frenzke (7 spp.), Phyllobryon (Miq.) In Japan, there are three species of Pepero- Scheiris & Frenzke (7 spp.), and Panicularia mia, P. boninsimensis, P. japonica and P. oki- Miq. (6 spp.). However, the remaining 286 spe- nawensis, all of which have taxonomic issues. cies have not been assigned to any of the subgen- Peperomia boninsimensis is endemic to the Oga- era. sawara Islands, which are ca. 1,000 km distant In this study, we focused on Peperomia subg. from Honshu, and its close relatives are unknown. Micropiper (Fig. 1), which was circumscribed by In Tseng et al. (1999), P. japonica is treated as a Frenzke et al. (2015). It consists of pantropically synonym of P. blanda; however, this synonymy distributed terrestrial or epiphytic herbs that are has not been confirmed by molecular methods. February 2019 kobaYashi & al. –Cp Phylogeny of Peperomia subg. Micropiper 3 Table 1. Present and previous cytological studies of the Peperomia subg. Micropiper species that were investigated here mo- lecular phylogenetically. Taxon Present count Previous count Reference (2n) (n) (2n) P. alata Ruiz & Pav. 22* P. bicolor Sodiro 22* 36 Jose et al. (1994) P. blanda (Jacq.) Kunth 22 22 Samuel & Morawetz (1989) P. boninsimensis Makino 110 Okada (1986) P. boninsimensis c.110 Ono (1977) P. diaphanoides Dahlst. 22* P. dindygulensis Miq. 44 Mathew et al. (1999) P. dindygulensis 44II Mathew et al. (1998) P. fenzlei Regel 44 Samuel & Morawetz (1989) P. fernandeziana Miq. 22+2 Valdebenito et al. (1992) P. fernandeziana 23+2, c.22 Spooner et al. (1987) P. fernandeziana c.22 Sanders et al. (1983) P. flexicaulis Wawra 22* P. galioides Kunth 44 c.22 Valdebenito et al. (1992) P. glabella (Sw.) A. Dietr. 22 22 Samuel & Morawetz (1989) P. glabella ‘Variegata’ 36 Jose et al. (1992) P. heyneana Miq. 22 Mathew et al. (1999) P. heyneana 22II Mathew et al. (1998) P. hylophila C. DC. 22* P. japonica Makino 44 Okada (1986) P. okinawensis T. Yamaz. 44* P. polystachya (Ait.) Hook. 22* P. portulacoides (Lam.) A. Dietr. 22 44 Mathew et al. (1999) P. portulacoides 22II Mathew et al. (1998) P. prostrata B. S. Williams 22* P. reticulata Balf. f. 132* P. rotundifolia (L.) Kunth 22 Jose et al. (1994) P. rubella Hook. 22 22 Bai & Subramanian. (1985), Samuel & Morawetz. (1989) P. skottsbergii C. DC. c.24 Valdebenito et al. (1992) P. skottsbergii c.23 Spooner et al. (1987) P. skottsbergii 22–24 Sanders et al. (1983) P. urvilleana A. Rich. 22 Beuzenberg & Hair (1983) P. urvilleana 44 Murray & Lange (1999) P. verticillata (L.) A. Dietr. 22 22 Samuel & Morawetz (1989) *These numbers are first counted. Although the independence of P. okinawensis has species, second to accumulate information on been questioned (Yonekura 2015), its molecular chromosome number and ploidy level of P. subg. phylogeny has not been evaluated. Micropiper to assess the cytological diversity in The purpose of this study was first to con- the subgenus, and third to revise the previous struct a molecular phylogenetic tree of Pepero- species-level taxonomic treatments and deter- mia subg. Micropiper to show species-level reso- mine the evolutionary units within P. subg. Mi- lution and to reveal the relationships among the cropiper based on all available information. 4 Acta Phytotax. Geobot. Vol. 70 Table 2. Plant materials used in this study. All voucher specimens are preserved in the herbarium of Kyoto University (KYO). Taxon Source / Origin Chro- Voucher mosome Accession number observa- tion atpB-rbcL psbK-I rpL16 rpS16 trnG trnK trnL-L-F trnS-G Peperomia subg. Micropiper a P. alata Cult. KBG , America Kobayashi 92 ○ LC440976 LC440939 LC456943 LC456906 LC440902 LC457017 LC440693 LC456980 Cult. KBG, P. bicolor Kobayashi 96 America ○ LC440962 LC440925 LC456929 LC456892 LC440888 LC457003 LC440679 LC456966 Cult. KBG, P. blanda Kobayashi 75 America ○ LC440973 LC440936 LC456940 LC456903 LC440899 LC457014 LC440690 LC456977
Recommended publications
  • Clase 9 Magnoliidae-2015.Pdf
    Origen y Clasificación de las Angiospermas Son un grupo natural? Cuáles son las novedades evolutivas de las plantas con flor? Cuándo y dónde se originó el grupo? Cuáles son sus antecesores? Cómo eran las primeras plantas con flor? Cuáles son las relaciones con las restantes plantas vasculares? Dra. Susana E. Freire Prof. Titular - Botánica Sistemática II Fac. de Cs. Naturales y Museo, UNLP Filogenia de las Tracheophyta Progymnospermopsidas “Gimnospermae” † † † † Angiospermas Pteridospermopsidas Pinopsidas Rhyniopsidas Lycopsidas Psilophyton Monilophytas Gnetopsidas Gynkgopsidas Cycadopsidas Aneurophyytales Archaeopteridales Hojas retinervadas Doble fecundación / Endosperma Xilema con vasos Tubos cribos con células anexas semilla Óvulos con 2 tegumentos Carpelos cerrados heterosporía + Gametofitos reducidos xilema 2rio + Microsporofilos con 4 sacos polínicos megáfilos Perianto zoofilo ramificación monopodial traqueidas fuertemente engrosadas traqueidas Modificado de Judd et al 2002. Origen de las Angiospermas 130 millones de años Lugar y tiempo de Origen de las Angiospermas 130 millones de años a bajas latitudes Flora del Cretácico Bosques montañosos tropicales: (a) Araucaria (b) Taxodiáceas (c) Cycadáceas (d) Cycadeoideales (a) (e) Lycópsidas (h) (f) Helechos (g) Angiospermas (sa) (h) Angiospermas (h) (i) Gnetópsidas (h, a) (j) Angiospermas (A) Antecesores de las Angiospermas deAntecesores las Lyginopteridales s s e a a l s s i t a a m e r y t l r d e i h y a s t e a o p h s a p p i r o e o o p s o n l e g d d o s o f o u t i k í a t a
    [Show full text]
  • Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales
    Kingdom: Plantae Phylum: Tracheophyta Class: Magnoliopsida Order: Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales, Caryophyllales, Celastrales, Ericales, Fabales, Garryales, Gentianales, Lamiales, Laurales, Magnoliales, Malpighiales, Malvales, Myrtales, Oxalidales, Picramniales, Piperales, Proteales, Rosales, Santalales, Sapindales, Solanales Family: Achariaceae, Anacardiaceae, Annonaceae, Apocynaceae, Aquifoliaceae, Araliaceae, Bignoniaceae, Bixaceae, Boraginaceae, Burseraceae, Calophyllaceae, Canellaceae, Cannabaceae, Capparaceae, Cardiopteridaceae, Caricaceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Clusiaceae, Combretaceae, Dichapetalaceae, Ebenaceae, Elaeocarpaceae, Emmotaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Goupiaceae, Hernandiaceae, Humiriaceae, Hypericaceae, Icacinaceae, Ixonanthaceae, Lacistemataceae, Lamiaceae, Lauraceae, Lecythidaceae, Lepidobotryaceae, Linaceae, Loganiaceae, Lythraceae, Malpighiaceae, Malvaceae, Melastomataceae, Meliaceae, Monimiaceae, Moraceae, Myristicaceae, Myrtaceae, Nyctaginaceae, Ochnaceae, Olacaceae, Oleaceae, Opiliaceae, Pentaphylacaceae, Phyllanthaceae, Picramniaceae, Piperaceae, Polygonaceae, Primulaceae, Proteaceae, Putranjivaceae, Rhabdodendraceae, Rhamnaceae, Rhizophoraceae, Rosaceae, Rubiaceae, Rutaceae, Sabiaceae, Salicaceae, Sapindaceae, Sapotaceae, Simaroubaceae, Siparunaceae, Solanaceae, Stemonuraceae, Styracaceae, Symplocaceae, Ulmaceae, Urticaceae, Verbenaceae, Violaceae, Vochysiaceae Genus: Abarema, Acioa, Acosmium, Agonandra, Aiouea, Albizia, Alchornea,
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • New Synonymies in the Genus Peperomia Ruiz & Pav
    Candollea 61(2): 331-363 (2006) New synonymies in the genus Peperomia Ruiz & Pav. (Piperaceae) – an annotated checklist GUIDO MATHIEU & RICARDO CALLEJAS POSADA ABSTRACT MATHIEU, G. & R. CALLEJAS POSADA (2006). New synonymies in the genus Peperomia Ruiz & Pav. (Piperaceae) – an annotated checklist. Candollea 61: 331-363. In English, English and French abstracts. In this annotated checklist, 111 names of taxa of Peperomia Ruiz & Pav. (Piperaceae) are placed into synonymies, 26 former synonymized names are re-established, and 10 existing synonyms are transferred and placed under a different accepted name of taxon. In addition, 43 lectotypes are designated. Appropriate nomenclatural as well as taxonomic justification is provided. RÉSUMÉ MATHIEU, G. & R. CALLEJAS POSADA (2006). Nouvelles synonymies dans le genre Pepero- mia Ruiz & Pav. (Piperaceae) – une liste annotée. Candollea 61: 331-363. En anglais, résumés anglais et français. Dans cette liste annotée, 111 noms de taxa de Peperomia Ruiz & Pav. (Piperaceae) sont placés en synonymies, 26 anciens noms synonymes sont ré-établis, et 10 synonymes existants sont transferrés et placés sous un nom de taxon différent. En addition, 43 lectotypes sont désignés. La nomenclature appropriée ainsi que la ju stification taxonomique est donnée. KEY-WORDS: PIPERACEAE – Peperomia – Synonymy – TRGP database Introduction Taxonomy underlies every biological concept. Any formulation of hypothesis in ecology, systematics, biogeography and comparative biology in general is based on taxonomic decisions. A choice of areas for conservation relies on abundance, population structure and geographical distribution of a targeted species, whose taxonomy is of critical importance for final considerations on its real status. In our age of genomics, nomenclatural issues may seem irrelevant for many, but yet are crucial for maintaining a clear and rigid perspective on the taxonomy of a particular group.
    [Show full text]
  • Phenology of Neotropical Pepper Plants (Piperaceae) and Their Association with Their Main Dispersers, Two Short-Tailed Fruit Bats, Cavollia Pevspidllata and C
    OIKOS 104: 362-376, 2004 Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Cavollia pevspidllata and C. castanea (Phyllostomidae) Wibke Thies and Elisabeth K. V. Kalko Thies, W. and Kalko, E. K. V. 2004. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, CaroUia perspicillata and C. castanea (Phyllostomidae). - Oikos 104: 362-376. To relate differences in phenological strategies of a group of closely related plants to biotic (pollinators, dispersers) and abiotic (water, light) factors, we studied leafing, flowering, and fruiting phenology of 12 species of Piper (Piperaceae) in a neotropical lowland forest in Panama for 28 months. We asked how Piper may partition time and vertebrate frugivores to minimize possible competition for dispersal agents. Based on habitat preferences and physiological characteristics we discriminate be- tween forest Piper species (eight species) and gap Piper species (four species). Forest Piper species flowered synchronously mostly at the end of the dry season. Gap Piper species had broader or multiple flowering peaks distributed throughout the year with a trend towards the wet season. Both groups of Piper species showed continuous fruit production. Fruiting peaks of forest Piper species were short and staggered. Gap Piper species had extended fruiting seasons with multiple or broad peaks. Both groups of Piper species also differed in their time of ripening and disperser spectrum. Forest Piper species ripened in late afternoon and had a narrow spectrum consisting mainly of two species of frugivorous bats: CaroUia perspicillata and C. castanea (Phyllostomidae).
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Piperaceae) Revealed by Molecules
    Annals of Botany 99: 1231–1238, 2007 doi:10.1093/aob/mcm063, available online at www.aob.oxfordjournals.org From Forgotten Taxon to a Missing Link? The Position of the Genus Verhuellia (Piperaceae) Revealed by Molecules S. WANKE1 , L. VANDERSCHAEVE2 ,G.MATHIEU2 ,C.NEINHUIS1 , P. GOETGHEBEUR2 and M. S. SAMAIN2,* 1Technische Universita¨t Dresden, Institut fu¨r Botanik, D-01062 Dresden, Germany and 2Ghent University, Department of Biology, Research Group Spermatophytes, B-9000 Ghent, Belgium Downloaded from https://academic.oup.com/aob/article/99/6/1231/2769300 by guest on 28 September 2021 Received: 6 December 2006 Returned for revision: 22 January 2007 Accepted: 12 February 2007 † Background and Aims The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. † Methods Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Biodiversity As a Resource: Plant Use and Land Use Among the Shuar, Saraguros, and Mestizos in Tropical Rainforest Areas of Southern Ecuador
    Biodiversity as a resource: Plant use and land use among the Shuar, Saraguros, and Mestizos in tropical rainforest areas of southern Ecuador Die Biodiversität als Ressource: Pflanzennutzung und Landnutzung der Shuar, Saraguros und Mestizos in tropischen Regenwaldgebieten Südecuadors Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Andrés Gerique Zipfel aus Valencia Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 9.12.2010 Vorsitzender der Promotionskommission: Prof. Dr. Rainer Fink Erstberichterstatterin: Prof. Dr. Perdita Pohle Zweitberichterstatter: Prof. Dr. Willibald Haffner To my father “He who seeks finds” (Matthew 7:8) ACKNOWLEDGEMENTS Firstly, I wish to express my gratitude to my supervisor, Prof. Dr. Perdita Pohle, for her trust and support. Without her guidance this study would not have been possible. I am especially indebted to Prof. Dr. Willibald Haffner as well, who recently passed away. His scientific knowledge and enthusiasm set a great example for me. I gratefully acknowledge Prof. Dr. Beck (Universität Bayreuth) and Prof. Dr. Knoke (Technische Universität München), and my colleagues and friends of the Institute of Geography (Friedrich-Alexander Universität Erlangen-Nürnberg) for sharing invaluable comments and motivation. Furthermore, I would like to express my sincere gratitude to those experts who unselfishly shared their knowledge with me, in particular to Dr. David Neill and Dr. Rainer Bussmann (Missouri Botanical Garden), Dr. Roman Krettek (Deutsche Gesellschaft für Mykologie), Dr. Jonathan Armbruster, (Auburn University, Alabama), Dr. Nathan K. Lujan (Texas A&M University), Dr. Jean Guffroy (Institut de Recherche pour le Développement, Orleans), Dr.
    [Show full text]
  • Universidad Nacional Del Centro Del Peru
    UNIVERSIDAD NACIONAL DEL CENTRO DEL PERU FACULTAD DE CIENCIAS FORESTALES Y DEL AMBIENTE "COMPOSICIÓN FLORÍSTICA Y ESTADO DE CONSERVACIÓN DE LOS BOSQUES DE Kageneckia lanceolata Ruiz & Pav. Y Escallonia myrtilloides L.f. EN LA RESERVA PAISAJÍSTICA NOR YAUYOS COCHAS" TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO FORESTAL Y AMBIENTAL Bach. CARLOS MICHEL ROMERO CARBAJAL Bach. DELY LUZ RAMOS POCOMUCHA HUANCAYO – JUNÍN – PERÚ JULIO – 2009 A mis padres Florencio Ramos y Leonarda Pocomucha, por su constante apoyo y guía en mi carrera profesional. DELY A mi familia Héctor Romero, Eva Carbajal y Milton R.C., por su ejemplo de voluntad, afecto y amistad. CARLOS ÍNDICE AGRADECIMIENTOS .................................................................................. i RESUMEN .................................................................................................. ii I. INTRODUCCIÓN ........................................................................... 1 II. REVISIÓN BIBLIOGRÁFICA ........................................................... 3 2.1. Bosques Andinos ........................................................................ 3 2.2. Formación Vegetal ...................................................................... 7 2.3. Composición Florística ................................................................ 8 2.4. Indicadores de Diversidad ......................................................... 10 2.5. Biología de la Conservación...................................................... 12 2.6. Estado de Conservación
    [Show full text]