Nutritional Composition of Some Wild Edible Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

Nutritional Composition of Some Wild Edible Mushrooms Türk Biyokimya Dergisi [Turkish Journal of Biochemistry–Turk J Biochem] 2009; 34 (1) ; 25–31. Research Article [Araştırma Makalesi] Yayın tarihi 26 Mart, 2009 © TurkJBiochem.com [Published online 26 March, 2009] Nutritional Composition of Some Wild Edible Mushrooms [Bazı Yabani Yenilenebilir Mantarların Besinsel İçeriği] 1Ahmet Colak, ABSTRACT 1Özlem Faiz Objectives: The aim of this study is to determine the nutritional content of some 2Ertuğrul Sesli wild edible mushrooms from Turkey Trabzon-Maçka District. Methods: Eight different species of wild edible mushrooms (Craterellus cornuco- pioides (L.) P. Karst, Armillaria mellea (Vahl) P. Kumm., Sarcodon imbricatus (L.) P. Karst., Lycoperdon perlatum Pers., Lactarius volemus (Fr.) Fr., Ramaria flava (Schaeff.) Quél. Cantharellus cibarius Fr., Hydnum repandum L.) were analyzed in terms of moisture, protein, crude fat, carbohydrate, ash zinc, manganese, iron and copper contents. The identification of the species was made according to anatomi- 1Department of Chemistry, Karadeniz Technical cal and morphological properties of mushrooms. University, 61080 Trabzon, Turkey 2Department of Science Education, Karadeniz Results: The protein, crude fat and carbohydrate contents (limit values%:avarage) of Technical University, 61335 Trabzon, Turkey investigated mushroom samples were found to be 21.12-50.10:34.08, 1.40-10.58:6.34 and 34-70:55, respectively. The zinc, manganese, iron and copper contents of the mushrooms samples were found to be in the range of 47.00-370.00 mg/kg, 7.10- 143.00 mg/kg, 30.20-550.00 mg/kg and 15.20-330.00 mg/kg, respectively. Conclusion: It is shown that the investigated mushrooms were rich sources of pro- tein and carbohydrates and had low amounts of fat. Metal contents and energy val- ues of the studied mushrooms were nearly similar to each other and agreed-well with the previous data. The results make these wild edible mushrooms popular to consume as good food sources. Key Words: biochemical composition, edible mushroom, micronutrient elements. Yazışma Adresi [Correspondence Address] Dr. Ahmet Colak ÖZET Department of Chemistry, Karadeniz Technical Amaç: Bu çalışmanın amacı, Türkiye’de Trabzon-Maçka bölgesinde bulunan bazı University, 61080 Trabzon, Turkey yenilebilir yabani mantarların besinsel içeriklerini belirlemektir. Tel:+90-462-377-24-89; Fax:+90-462-325-31-96 Yöntem: Sekiz farklı yenilebilir yabani mantar türü (Craterellus cornucopioi- E-mail : [email protected] des (L.) P. Karst, Armillaria mellea (Vahl) P. Kumm., Sarcodon imbricatus (L.) P. Karst., Lycoperdon perlatum Pers., Lactarius volemus (Fr.) Fr., Ramaria flava (Schaeff.) Quél., Cantharellus cibarius Fr., Hydnum repandum L.); nem, protein, ham yağ, karbohidrat, kül ve mikroelement olarak çinko, mangan, demir ve bakır içerikleri açısından incelendi. Türlerin teşhisi, matarların anatomik ve morfolojik özellikleri göz önüne alınarak yapılmıştır. Bulgular: İncelenen mantarların protein, ham yağ ve karbohidrat içerikleri (%hu- dut aralığı:ortalama değer) sırasıyla 21.12-50.10:34.08, 1.40-10.58:6.34 ve 34-70:55 olarak belirlendi. Mantar örneklerinin çinko içeriğinin, 47.00-370.00 mg/kg, man- gan içeriğinin, 7.10-143.00 mg/kg, demir içeriğinin, 30.20-550.00 mg/kg ve bakır içeriğinin ise 15.20-330.00 mg/kg aralığında değişkenlik gösterdiği tespit edildi. Sonuçlar: Çalışılan yabani yenilebilir mantarların zengin birer protein ve kar- bohidrat kaynağı oldukları ve az miktarda lipid içerdikleri belirlendi. İncelenen mantarların metal içerikleri ve enerji değerleri birbirine çok yakın ve daha önceki verilerle uyum içerisindedir. Elde edilen sonuçlar, bu yabani yenilebilir mantarları, [Received: 7 September 2008; Accepted: 29 January 2009] besin kaynağı olarak tüketilebilirlikleri açısından popüler kılmaktadır. Kayıt Tarihi: 7 Eylül 2008; Kabul Tarihi: 29 Ocak 2009 Anahtar Kelimeler: biyokimyasal içerik, yenilebilir mantar, mikroelement. http://www.TurkJBiochem.com 25 ISSN 1303–829X (electronic) 0250–4685 (printed) Introduction lected from Lisar High Plateau of Maçka (1500 meter above sea level) in Trabzon which is in the East Black Wild edible mushrooms are traditionally used by many Sea region of Turkey. The colour, odour and other ap- Asian countries as food and medicine (1,2), and are be- parent properties of the mushroom and vegetation were coming more and more important in our diet for their noted in the field. The photographs of specimens were nutritional characteristics. Some edible mushroom spe- taken in the field and the mushrooms were examined cies are sources of physiological agents for medicinal microscopically in the laboratory in three days after col- applications, possessing antitumour, cardiovascular, lection. Spore prints were made to determine the colour antiviral, antibacterial and other activities (3,4,5). Each of the spores and used for the measurements. Micro- mushroom type produces a specific set of metabolites scopic examinations (spore, hyphae, basidia and cystid- capable of dealing with the set of microbes that coexist ia) were performed using Nikon research microscopes. in that specific environment (6). Fungus pilei were moistened by adding a few drops of The consumption of wild edible mushrooms is increas- potassium hydroxide solution and were sectioned. The ing due to a good content of proteins and trace minerals. sections were subsequently stained with methylene blue Mushrooms are valuable healthy foods, low in calories, and examined. The identification of the species was fats, and essentials fatty acids, and high in vegetable made according to above systematical criteria obtained proteins, vitamins and minerals (7, 8). from macroscopic and microscopic examinations (10, Turkey has a large edible mushroom potential because 11, 12). Mushroom samples were carried into the labora- it possesses favorable environmental conditions for the tory in an ice bath and stored deep-frozen at –34°C until growth of mushrooms. Therefore, Turkey is becoming used. All other biochemical studies were completed in an important exporter for wild edible mushrooms. In the ten days. All reagents were of analytical grade and used East Black Sea region, the climate, especially in spring as obtained. and autumn, is ideal for fungal growth (9). Despite of the potential economic importance of these Sample preparation wild growing mushrooms in the collecting area (Ma- The whole mushroom samples (without division into pi- çka district of Trabzon-Turkey), this is the first study leus and stipe) were used in this study. Fresh samples, af- has been carried out on their biochemical composition. ter removal of external material such as mud, bush, soil, In this investigation, we have examined the proximate plant etc. by washing with demineralized water, were biochemical composition of eight different wild edible airdried between filter papers. Approximately 5 g of mushrooms species (Figure 1), in terms of moisture, each sample were taken immediately for determination protein, crude fat, carbohydrate, ash and micronutrient of moisture. Remaining samples were stored in deep-fro- elements. We hope that the results may be valuable for zen until analysis (13). While examining the nutritional chemotaxonomical and cultivation purposes of mush- composition of mushroom samples, the maturation stage rooms. of them was not considered. It must be emphasized that this is an effective factor on diversity of the measured Materials and Methods parameters for each mushroom sample. Mushroom materials, microscopic examina- Chemical analysis tions and chemicals The following components were determined on airdried In the period of August-September, 2004, eight wild ed- material: moisture, by drying in a moisture determina- ible mushroom species (Table 1 and Figure 1) were col- tion apparatus (Precisa HA60) at 110 ºC until circulation Table 1. Some Properties of the Analyzed Mushroom Species Name Edibility Habitat Family Craterellus cornucopioides (L.) P. Karst. Good In deciduous woods Cantharellaceae Armillaria mellea (Vahl) P. Kumm. Edible On or around of trees Marasmiaceae Sarcodon imbricatus (L.) P. Karst. Edible In coniferous woods Bankeraceae Lycoperdon perlatum Pers. Edible In woodland Lycoperdaceae Lactarius volemus (Fr.) Fr. Good Under trees Russulaceae Ramaria flava (Schaeff.) Quél. Edible In mixed woods Gomphaceae Cantharellus cibarius Fr. Edible In woodland Cantharellaceae Hydnum repandum L. Edible In woodland Hydnaceae Turk J Biochem, 2009; 34 (1) ; 25–31. 26 Colak et al. 20 (A) (B) (C) (D) (E) (F) (G) (H) Figure 1. Fructification organs of investigated mushroom species (photographed by E. Figure 1. FructificationSesli). organs of investigated(A) C. mushroomcornucopioides species (photographed, (B) by E.A. Sesli). mellea, (C) S. imbricatus, (A) C. cornucopioides (B) A. mellea(D) L. perlatum, (E) L. volemus, (F) R. flava, (G) C. cibarius, (C) S. imbricatus(H) H. repandum (D) L. perlatum (E) L. volemus (F) R. flava (G) C. cibarius (H) H. repandum Turk J Biochem, 2009; 34 (1) ; 25–31. 27 Colak et al. was completed; ash, from the incinerated residue ob- Results and Discussion tained at 550°C after 3 h; crude protein, by the Kjeldahl method with a conversion factor of 6.25 (14,15); crude Chemical analysis fat, gravimetrically determined after Soxhlet extraction The chemical composition and calculated energy val- with petroleum ether (2,13). The total carbohydrate was ues for investigated mushroom species are shown in calculated as 100% - (% moisture+ % ash+ % crude pro- Table 2. While examining the nutritional composition
Recommended publications
  • Wild Mushroom Harvester Registration Form
    625 Robert Street North, Saint Paul, MN 55155-2538 www.mda.state.mn.us Food and Feed Safety Division Wild Mushroom Harvester Registration The data on this form will be used to process your application for the Minnesota Department of Agriculture’s Wild Mushroom Harvester registration. It is illegal for unregistered wild mushroom harvesters to sell foraged mushrooms to food establishments in Minnesota. During the period your application is being processed, all information provided except your name and address will be private data accessible only to you, MDA staff with a valid work assignment, law enforcement, the state and legislative auditors, and to anyone who has your consent or is named in a valid court order. If your application is approved, the information provided on this application will be available to anyone who asks for it and will be displayed on our online wild mushroom forager database. Items which have a * are required, your application cannot be processed without them. First Name* Last Name* Food License/Registration Number (if any) Phone* Address* City* State* Zip* Which species are you registering for? Please select all that apply. Black Trumpet (Carterellus cornucopiodes and fallax) Lion’s Mane (Hericium erinaceus) Porcini (Boletus edulis complex) Hedgehog (Hydnum repandum complex) Chanterelles (Cantharellus species) Lobster (Hypomyces lactifluorum) Yellow Foot (Craterellus tubaeformis) True Morel (Morchella species) Cloud (Entoloma arbortivum) Oyster (Pleurotus ostreatus, populinus, and pulmonarius) Giant Puffball (Calvatia gigantea) Sulpher Shelf (Laetiporus sulphereus and cincinnatus) Maitake (Grifola frondosa) Other Species (please specify): Bear’s Tooth (Hericium americanum) Coral Tooth (Hericium coralloides) Include a copy of the document(s) issued by an accredited college or university or a mycological society certifying that the mushroom harvester has successfully completed a wild mushroom identification course.
    [Show full text]
  • G. Gulden & E.W. Hanssen Distribution and Ecology of Stipitate Hydnaceous Fungi in Norway, with Special Reference to The
    DOI: 10.2478/som-1992-0001 sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 sommerfeltia~ J is owned and edited by the Botanical Garden and Museum, University of Oslo. SOMMERFELTIA is named in honour of the eminent Norwegian botanist and clergyman S0ren Christian Sommerfelt (1794-1838). The generic name Sommerfeltia has been used in (1) the lichens by Florke 1827, now Solorina, (2) Fabaceae by Schumacher 1827, now Drepanocarpus, and (3) Asteraceae by Lessing 1832, nom. cons. SOMMERFELTIA is a series of monographs in plant taxonomy, phytogeo­ graphy, phytosociology, plant ecology, plant morphology, and evolutionary botany. Most papers are by Norwegian authors. Authors not on the staff of the Botanical Garden and Museum in Oslo pay a page charge of NOK 30.00. SOMMERFEL TIA appears at irregular intervals, normally one article per volume. Editor: Rune Halvorsen 0kland. Editorial Board: Scientific staff of the Botanical Garden and Museum. Address: SOMMERFELTIA, Botanical Garden and Museum, University of Oslo, Trondheimsveien 23B, N-0562 Oslo 5, Norway. Order: On a standing order (payment on receipt of each volume) SOMMER­ FELTIA is supplied at 30 % discount. Separate volumes are supplied at the prices indicated on back cover. sommerfeltia 13 G. Gulden & E.W. Hanssen Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline 1992 ISBN 82-7420-014-4 ISSN 0800-6865 Gulden, G. and Hanssen, E.W. 1992. Distribution and ecology of stipitate hydnaceous fungi in Norway, with special reference to the question of decline.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Diversity, Nutritional Composition and Medicinal Potential of Indian Mushrooms: a Review
    Vol. 13(4), pp. 523-545, 22 January, 2014 DOI: 10.5897/AJB2013.13446 ISSN 1684-5315 ©2014 Academic Journals African Journal of Biotechnology http://www.academicjournals.org/AJB Review Diversity, nutritional composition and medicinal potential of Indian mushrooms: A review Hrudayanath Thatoi* and Sameer Kumar Singdevsachan Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar-751003, Odisha, India. Accepted 2 January, 2014 Mushrooms are the higher fungi which have long been used for food and medicinal purposes. They have rich nutritional value with high protein content (up to 44.93%), vitamins, minerals, fibers, trace elements and low calories and lack cholesterol. There are 14,000 known species of mushrooms of which 2,000 are safe for human consumption and about 650 of these possess medicinal properties. Among the total known mushrooms, approximately 850 species are recorded from India. Many of them have been used in food and folk medicine for thousands of years. Mushrooms are also sources of bioactive substances including antibacterial, antifungal, antiviral, antioxidant, antiinflammatory, anticancer, antitumour, anti-HIV and antidiabetic activities. Nutriceuticals and medicinal mushrooms have been used in human health development in India as food, medicine, minerals among others. The present review aims to update the current status of mushrooms diversity in India with their nutritional and medicinal potential as well as ethnomedicinal uses for different future prospects in pharmaceutical application. Key words: Mushroom diversity, nutritional value, therapeutic potential, bioactive compound. INTRODUCTION Mushroom is a general term used mainly for the fruiting unexamined mushrooms will be only 5%, implies that body of macrofungi (Ascomycota and Basidiomycota) there are 7,000 yet undiscovered species, which if and represents only a short reproductive stage in their life discovered will be provided with the possible benefit to cycle (Das, 2010).
    [Show full text]
  • Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
    molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H.
    [Show full text]
  • New Species and Distribution Records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a Key to the Lowland Neotropical Taxa
    fungal biology 116 (2012) 1263e1274 journal homepage: www.elsevier.com/locate/funbio New species and distribution records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to the lowland neotropical taxa Jessie K. UEHLINGa,*,1, Terry W. HENKELa, M. Catherine AIMEb, Rytas VILGALYSc, Matthew E. SMITHd aDepartment of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA bDepartment of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA cDepartment of Biology, Duke University, Durham, NC 27708, USA dDepartment of Plant Pathology, University of Florida, Gainesville, FL 32611, USA article info abstract Article history: Three new and one previously described species of Clavulina (Clavulinaceae, Cantharel- Received 4 April 2012 lales, Basidiomycota) are reported from the central Guiana Shield region from tropical rain- Received in revised form forests dominated by ectomycorrhizal trees of the leguminous genus Dicymbe (Fabaceae 19 September 2012 subfam. Caesalpinioideae). We provide morphological, DNA sequence, habitat, and fruiting Accepted 21 September 2012 occurrence data for each species. The new species conform to a generic concept of Clavu- Available online 7 November 2012 lina that includes coralloid, branched basidiomata with amphigenous hymenia, basidia Corresponding Editor: with two or 2À4 incurved sterigmata and postpartal septa present or absent, and smooth, H. Thorsten Lumbsch hyaline, guttulate basidiospores. Placements of the new species in Clavulina were corrobo- rated with DNA sequence data from the internal transcribed spacer and large subunit of Keywords: the nuclear ribosomal repeat, and their infrageneric relationships were examined with Cantharelloid clade phylogenetic analyses based on DNA from the region coding for the second largest subunit Coral fungi of DNA-dependent RNA polymerase II (rpb2).
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Antioxidants of Edible Mushrooms
    Molecules 2015, 20, 19489-19525; doi:10.3390/molecules201019489 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Antioxidants of Edible Mushrooms Maja Kozarski 1, Anita Klaus 2, Dragica Jakovljevic 3, Nina Todorovic 3, Jovana Vunduk 2, Predrag Petrović 4, Miomir Niksic 2, Miroslav M. Vrvic 3,5 and Leo van Griensven 6,* 1 Department for Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia; E-Mail: [email protected] 2 Department for Industrial Microbiology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia; E-Mails: [email protected] (A.K.); [email protected] (J.V.); [email protected] (M.N.) 3 Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade 11001, Serbia; E-Mails: [email protected] (D.J.); [email protected] (N.T.); [email protected] (M.M.V.) 4 Institute of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia; E-Mail: [email protected] 5 Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, Belgrade 11000, Serbia 6 Plant Research International, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen 6700 AA, The Netherlands * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +31-748-0992; Fax: +31-741-8094. Academic Editor: David D. Kitts Received: 4 September 2015 / Accepted: 21 October 2015 / Published: 27 October 2015 Abstract: Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans.
    [Show full text]
  • Systematics of Division Basidiomycota 2
    References: Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the Fungi (10th ed.).Wallingford, UK: CABI. Webster, J., & Weber, R. (2007). Introduction to fungi. Cambridge, UK: Cambridge University Press. SYSTEMATICS OF DIVISION BASIDIOMYCOTA 2 THELEPHOROID CLADE This includes the order Thelephorales, a small group of predominantly ectomycorrhizal fungi with variable basidiocarps. The most important genus is Thelephora. T. terrestris produces clusters of fanshaped basidiocarps which are chocolate-brown in colour with a paler margin. They are often formed around the stem of young trees, seemingly ‘choking’ them. Basidiocarps of T. terrestris superficially resemble those of Stereum but are monomitic, composed of clamped generative hyphae only. The basidiospores are brown and warty. Thelephora terrestris fruits in association with coniferous trees growing on light sandy soils and heaths. It isone of a group of early-stage ectomycorrhizal associates of a variety of trees and also forms mycorrhiza with Arbutus menziesii, a member of the Ericaceae (Webster& Weber, 2007). HYMENOCHAETOID CLADE One feature that distinguishes the five Homobasidiomycete clades considered in the previous sections from the remaining three clades is the structure of the parenthesome, i.e. the membranous structure overarching the septal pore. In the five clades already described, the typical homobasidiomycete dolipore with a perforated parenthesome is found, whereas in the hymenochaetoid, cantharelloid and gomphoid_phalloid clades shown in, the parenthesome is generally imperforate. Imperforate parenthesomes are also found in certain Heterobasidiomycetes, namely Dacrymycetales and Auriculariales. The hymenochaetoid clade comprises about 630 species recruited from three families, namely the entire Hymenochaetaceae and parts of Corticiaceae and Polyporaceae (Webster& Weber, 2007).
    [Show full text]
  • Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016
    Species List for Arizona Mushroom Society White Mountains Foray August 11-13, 2016 **Agaricus sylvicola grp (woodland Agaricus, possibly A. chionodermus, slight yellowing, no bulb, almond odor) Agaricus semotus Albatrellus ovinus (orange brown frequently cracked cap, white pores) **Albatrellus sp. (smooth gray cap, tiny white pores) **Amanita muscaria supsp. flavivolvata (red cap with yellow warts) **Amanita muscaria var. guessowii aka Amanita chrysoblema (yellow cap with white warts) **Amanita “stannea” (tin cap grisette) **Amanita fulva grp.(tawny grisette, possibly A. “nishidae”) **Amanita gemmata grp. Amanita pantherina multisquamosa **Amanita rubescens grp. (all parts reddening) **Amanita section Amanita (ring and bulb, orange staining volval sac) Amanita section Caesare (prov. name Amanita cochiseana) Amanita section Lepidella (limbatulae) **Amanita section Vaginatae (golden grisette) Amanita umbrinolenta grp. (slender, ringed cap grisette) **Armillaria solidipes (honey mushroom) Artomyces pyxidatus (whitish coral on wood with crown tips) *Ascomycota (tiny, grayish/white granular cups on wood) **Auricularia Americana (wood ear) Auriscalpium vulgare Bisporella citrina (bright yellow cups on wood) Boletus barrowsii (white king bolete) Boletus edulis group Boletus rubriceps (red king bolete) Calyptella capula (white fairy lanterns on wood) **Cantharellus sp. (pink tinge to cap, possibly C. roseocanus) **Catathelesma imperiale Chalciporus piperatus Clavariadelphus ligula Clitocybe flavida aka Lepista flavida **Coltrichia sp. Coprinellus
    [Show full text]
  • A New Species of Cantharellus (Cantharellales, Basidiomycota, Fungi) from Subalpine Forest in Yunnan, China
    Phytotaxa 252 (4): 273–279 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.252.4.3 A new species of Cantharellus (Cantharellales, Basidiomycota, Fungi) from subalpine forest in Yunnan, China SHI-CHENG SHAO1,2, PEI-GUI LIU2*, XIAO-FEI TIAN2, BART BUYCK3 & YAN-HONG GENG4 1Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sci- ences, Mengla County, Menglun 666303, Yunnan, China. 2Key Laboratory for Plant Biodiversity and Biogeography for East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 3Muséum National d’Histoire Naturelle, Département Systématique et Evolution, CP 39, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, 12 Rue Buffon, F-75005 Paris, France 4 Environmental Education Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Menglun 666303, Yunnan, China *Author for correspondence. E-mail:[email protected] Abstract Cantharellus versicolor is described and illustrated as a new species based on morphological and molecular characters. The most significant features to distinguish the new species from other known Cantharellus are its extremely fleshy, turning gray after injury and with black floccose-fibrillose scales composed of thick-walled and irregular, erect hyphae on the pileus. It is described from the subalpine belt of Shangri-La, northwestern Yunnan, China. Phylogenetic analysis of the transcription elongation factor 1-alpha sequence data further support its systematic position in the subgenus Cantharellus and its descrip- tion as a new species.
    [Show full text]
  • Sarcodon in the Neotropics I. New Species From
    Mycologia, 107(3), 2015, pp. 591–606. DOI: 10.3852/14-185 # 2015 by The Mycological Society of America, Lawrence, KS 66044-8897 Sarcodon in the Neotropics I: new species from Guyana, Puerto Rico and Belize Arthur C. Grupe II pakaraimensis, S. portoricensis, S. quercophilus and S. Anthony D. Baker umbilicatus and, along with morphological differ- Department of Biological Sciences, Humboldt State ences, supported their recognition as distinct species. University, Arcata, California 95521 Macromorphological, micromorphological, habitat Jessie K. Uehling and DNA sequence data from the nuc rDNA internal University Program in Genetics & Genomics, Duke transcribed spacer region (ITS) are provided for each University, Durham, North Carolina 27708 of the new species. A key to Neotropical Sarcodon species and similar extralimital taxa is provided. Matthew E. Smith Key words: Bankeraceae, Caribbean, Central Department of Plant Pathology, University of Florida, Gainesville, Florida 32611 America, ectomycorrhizal fungi, Guiana Shield, The- lephorales, tooth fungi Timothy J. Baroni Department of Biological Sciences, State University of New York—College at Cortland, New York 13045 INTRODUCTION D. Jean Lodge Sarcodon Que´l. ex P. Karst. (Bankeraceae, Thelephor- Center for Forest Mycology Research, USDA-Forest ales) is an ectomycorrhizal (ECM) basidiomycete Service, Forest Products Laboratory, PO Box 1377, genus characterized by stipitate, pileate basidiomata Luquillo, Puerto Rico 00773 with determinate development, fleshy, non-zonate context, dentate
    [Show full text]