The Century's Progress in Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

The Century's Progress in Chemistry THE CENTURY’S PROGRESS IN CHEMISTRY. 749 THE CENTURY’S PROGRESS IN CHEMISTRY. HENRY SMITH WILLIAMS, M.D. tlie casual observer, it might .seem to beginnings have great end- have no alliance whatever. The won- SMALLings—sometimes. As a case in point, derful theory of atoms, on which the note what came of the small original ef- whole gigantic structure of modern chem- fort of a self-trained back-country Quak- istry is founded, was the logical out- er youth named John Dalton, who along growth, in the mind of John Dalton, of toward the close of the last century be- those early studies in meteorology. came interested in the weather, and was The way it happened was this; From led to construct and use a crude rain- studying the rainfall, Dalton turned nat- gauge to test the amount of the wa- urally to the complementary process of terfall. The simple experiments thus evaporation. He was soon led to believe inaugurated led to no fewer than two that vapor exists in the atmosphere as an hundred thousand recorded observations independent gas. But since two bodies regarding the weather, which formed the cannot occupy the same space at the same basis for some of the most epochal dis- time, this implies that the various atmos- coveries in meteorology, as we have seen. pheric gases are really composed of discrete But this w Tas only a beginning. The particles. These ultimate particles are so simple rain-gauge pointed the way to the small that we cannot see them—cannot, most important generalization of our cen- indeed, more than vaguely imagine them tury in a field of science with which, to —yet each particle of vapor, for example, 750 HARPER’S NEW MONTHLY MAGAZINE. is just as mucli a portion of water as if 1803. I wonder if Dalton himself, great it were a drop out of the ocean, or, for and acute intellect though he had, sus- that matter, the ocean itself. But again, pected, when he read that paper, that he water is a compound substance, for it was inaugurating one of the most fertile may be separated, as Cavendish had movements ever entered on in the whole shown, into the two elementary sub- history of science? stances hydrogen and oxygen. Hence the atom of water must be composed of two lesser atoms joined together. Im- Be that as it may, it is certain enough agine an atom of hydrogen and one of that Dalton’s contemporaries were at first oxygen. Unite them, and we have an little impressed witli the novel atomic atom of water; sever them, and the wa- theory. Just at this time, as it chanced, ter no longer exists; but whether united a dispute was waging in the field of chem- or separate the atoms of hydrogen and istry regarding a matter of empirical fact of oxygen remain hydrogen and oxygen which must necessarily be settled before and nothing else. Differently mixed to- such a theory as that of Dalton could gether or united, atoms produce different even hope for a hearing. This vras the gross substances; but the elementary question whether or not chemical ele- atoms never change their chemical nature ments unite with one another always in —their distinct personality. definite proportions. Berthollet, the great It was about the year 1803 that Dalton co-worker with Lavoisier, and now the first gained a full grasp of the conception most authoritative of living chemists, of the chemical atom. At once he saw contended that substances combine in that the hypothesis, if true, furnished a almost indefinitely graded proportions be- marvellous key to secrets of matter hith- tween fixed extremes. He held that solu- erto insoluble—questions relating to the tion is really a form of chemical combi- relative proportions of the atoms them- nation—a position which, if accepted, left selves. It is known, for example, that a no room for argument. certain bulk of hydrogen gas unites with But this contention of the master -was a certain bulk of oxygen gas to form most actively disputed, in particular by water. If it be true that this combi- Louis Joseph Proust, and all chemists of nation consists essentially of the union repute were obliged to take sides with one of atoms one with another (each single or the other. For a time the authority of atom of hydrogen united to a single atom Berthollet held out against the facts,but at' of oxygen), then the relative weights of last accumulated evidence told for Proust the original masses of hydrogen and of and his followers, and toward the close of oxygen must be also the relative weights the first decade of our century it came to of each of their respective atoms. If one be generally conceded that chemical ele- pound of hydrogen unites with five and ments combine with one another in fixed one-half pounds of oxygen (as, according and definite proportions. to Dalton’s experiments, it did), then the More than that. As the analysts were weight of the oxygen atom must be five led to weigh carefully the quantities of and one-half times that of the hydrogen combining elements, it was observed that atom. Other compounds may plainly be the proportions are not only definite, but tested in the same way. Dalton made that they bear a very curious relation to numerous tests before he published his one another. If element A combines theory. He found that hydrogen enters with two different proportions of element into compounds in smaller proportions B toform two compounds, it appeared that than any other element known to him, the weight of the larger quantity of B is and so, for convenience, determined to an exact multiple of that of the smaller take the weight of the hydrogen atom as quantity. This curious relation w7 as no- unity. The atomic weight of oxygen then ticed by Dr. Wollaston, one of the most becomes (as given in Dalton’s first table accurate of observers, and a little later it of 1803) 5.5; that of water (hydrogen plus was confirmed by Johan Jakob Berzelius, oxygen) being of course 6.5. The atomic the great Swedish chemist, who was to be weights of about a score of substances are a dominating influence in the chemical given in Dalton’s first paper, which was world for a generation to come. But this read befoi’e the Literary and Philosoph- combination of elements in numerical ical Society of Manchester, October 21, proportions was exactly what Dalton had THE CENTURY’S PROGRESS IN CHEMISTRY. 751 noticed as early as 1803, and what had as regards the amount of space that sep- led him directly to the atomic weights. arates it from its fellows under given con- So the confirmation of this essential point ditions of pressure and temperature. The by chemists of such authority gave the compound atom,composed of two or more strongest confirmation to the atomic elementary atoms, Avogadro proposed to theory. distinguish, for purposes of convenience, During these same years the rising au- by the name molecule. It is to the mole- thority of the French chemical world, cule, considered as the unit of physical Joseph Louis Gay-Lussac, was conduct- structure, that Avogadro’s law applies. ing experiments with gases, which he had This vastly important distinction be- undertaken at first in conjunction with tween atoms and molecules, implied in Humboldt, but which later on were con- the law just expressed, was published in ducted independently. In 1809, the next 1811. Four years later, the famous year after the publication of the first vol- French physicist Ampere outlined a sim- ume of Dalton's New System of Chemical ilar theory, and utilized the law in his Philosophy, Gay-Lussac published the re- mathematical calculations. And with sults of his observations, and among other that the law of Avogadro dropped out of things brought out the remarkable fact sight for a full generation. Little sus- that gases, under the same conditions as pecting that it was the very hey to the to temperature and pressure, combine al- inner mysteries of the atoms for which ways in definite numerical proportions they were seeking, the chemists of the as to volume. Exactly two volumes of time cast it aside, and let it fade from the hydrogen, for example, combine with one memory of their science. volume of oxygen to form water. More- This, however, was not strange, for of over, the resulting compound gas always course the law of Avogadro is based on bears a simple relation to the combining the atomic theory, and in 1811 the atom- volumes. In the case just cited the un- ic theory was itself still being weighed ion of two volumes of hydrogen and one in the balance. The law of multiple pro- of oxygen results in precisely two vol- portions found general acceptance as an umes of water vapor. empirical fact; but many of the leading Naturally enough the champions of lights of chemistry still looked askance at the atomic theory seized upon these ob- Dalton’s explanation of this law. Thus servations of Gay-Lussac as lending strong Wollaston, though from the first he in- support to their hypothesis—all of them, clined to acceptance of the Daltonian view, that is, but the curiously self-reliant and cautiously suggested that it wr ould be well self-sufficient author of the atomic theory to use the non-committal word “equiva- ” himself,who declined to accept the obser- lent instead of ‘ ‘ atom ”; and Davy, for a vations of the French chemist as valid.
Recommended publications
  • William Prout
    Educación Química (2015) 26(2), 162-173 educación Química www.educacionquimica.info PARA QUITARLE EL POLVO William Prout Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel Received 19 July 2014; accepted 25 September 2014 KEYWORDS Abstract William Prout (1785-1850) a multifaceted English physician, conducted important Digestion; research in the areas of physiology, meteorology, and chemistry; he studied the processes of Respiration; digestion, respiration, and blood formation, the urinary system, urine and urinary calculi, iden- Blood formation; WLÀHGWKHSUHVHQFHRI+&OLQWKHJDVWULFÁXLGDQGSURSRVHGWKHWKHRU\WKDWWKHDWRPLFZHLJKW Urinary system; of an element is an integer multiple of the atomic weight of hydrogen (Prout’s hypothesis). Urine; All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Facultad de Química. This is Urinary calculi; an open access item distributed under the Creative Commons CC License BY-NC-ND 4.0. *DVWULFÁXLG Prout’s hypothesis William Prout PALABRAS CLAVE Digestión; Resumen William Prout (1785-1850), un médico inglés multifacético, realizó importantes in- Respiración; YHVWLJDFLRQHVHQODViUHDVGHPHGLFLQDÀVLRORJtDPHWHRURORJtD\TXtPLFDHVWXGLyORVSURFHVRV Formación de la de digestión, respiración y formación de la sangre, el sistema urinario, la orina y los cálculos sangre; XULQDULRVLGHQWLÀFyODSUHVHQFLDGH+&OHQHOMXJRJiVWULFR\SURSXVRODWHRUtDTXHORVSHVRV Sistema urinario; atómicos de los elementos eran un múltiplo entero del peso del hidrógeno (hipótesis de Prout). Orina; Derechos Reservados © 2015 Universidad Nacional Autónoma de México, Facultad de Química. Este es Cálculos; XQDUWtFXORGHDFFHVRDELHUWRGLVWULEXLGREDMRORVWpUPLQRVGHOD/LFHQFLD&UHDWLYH&RPPRQV&&%< Fluido gástrico; NC-ND 4.0. Hipótesis de Prout Life and career school at Wickwar, a neighboring market town, writing and arithmetic at a charity school in Badminton, and also helped William Prout was born on 15 January 1785 at Horton, his parents in farming.
    [Show full text]
  • William Prout
    Educación Química (2015) 26(2), 162-172 educación Química www.educacionquimica.info PARA QUITARLE EL POLVO William Prout Jaime Wisniak Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel Received 19 July 2014; accepted 25 September 2014 KEYWORDS Abstract William Prout (1785-1850) a multifaceted English physician, conducted important Digestion; research in the areas of physiology, meteorology, and chemistry; he studied the processes of Respiration; digestion, respiration, and blood formation, the urinary system, urine and urinary calculi, iden- Blood formation; tified the presence of HCl in the gastric fluid, and proposed the theory that the atomic weight Urinary system; of an element is an integer multiple of the atomic weight of hydrogen (Prout’s hypothesis). Urine; All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Facultad de Química. This is Urinary calculi; an open access item distributed under the Creative Commons CC License BY-NC-ND 4.0. Gastric fluid; Prout’s hypothesis William Prout PALABRAS CLAVE Digestión; Resumen William Prout (1785-1850), un médico inglés multifacético, realizó importantes in- Respiración; vestigaciones en las áreas de medicina, fisiología, meteorología y química; estudió los procesos Formación de la de digestión, respiración y formación de la sangre, el sistema urinario, la orina y los cálculos sangre; urinarios, identificó la presencia de HCl en el jugo gástrico y propuso la teoría que los pesos Sistema urinario; atómicos de los elementos eran un múltiplo entero del peso del hidrógeno (hipótesis de Prout). Orina; Derechos Reservados © 2015 Universidad Nacional Autónoma de México, Facultad de Química. Este es Cálculos; un artículo de acceso abierto distribuido bajo los términos de la Licencia Creative Commons CC BY- Fluido gástrico; NC-ND 4.0.
    [Show full text]
  • HISTORY Nuclear Medicine Begins with a Boa Constrictor
    HISTORY Nuclear Medicine Begins with a Boa Constrictor Marshal! Brucer J Nucl Med 19: 581-598, 1978 In the beginning, a boa constrictor defecated in and then analyzed the insoluble precipitate. Just as London and the subsequent development of nuclear he suspected, it was almost pure (90.16%) uric medicine was inevitable. It took a little time, but the acid. As a thorough scientist he also determined the 139-yr chain of cause and effect that followed was "proportional number" of 37.5 for urea. ("Propor­ inexorable (7). tional" or "equivalent" weight was the current termi­ One June week in 1815 an exotic animal exhibi­ nology for what we now call "atomic weight.") This tion was held on the Strand in London. A young 37.5 would be used by Friedrich Woehler in his "animal chemist" named William Prout (we would famous 1828 paper on the synthesis of urea. Thus now call him a clinical pathologist) attended this Prout, already the father of clinical pathology, be­ scientific event of the year. While he was viewing a came the grandfather of organic chemistry. boa constrictor recently captured in South America, [Prout was also the first man to use iodine (2 yr the animal defecated and Prout was amazed by what after its discovery in 1814) in the treatment of thy­ he saw. The physiological incident was common­ roid goiter. He considered his greatest success the place, but he was the only person alive who could discovery of muriatic acid, inorganic HC1, in human recognize the material. Just a year earlier he had gastric juice.
    [Show full text]
  • Alexander Marcet (1770-1822), Physician and Animal Chemist
    ALEXANDER MARCET (1770-1822), PHYSICIAN AND ANIMAL CHEMIST by N. G. COLEY ALEXANDER John Gaspard Marcet1 was born in Geneva in the year 1770. His father, who was a merchant of Huguenot descent,2 wished him to follow the family business, but the young Alexander had no liking for commerce. Instead he decided to train for a career in the law, but before he could complete his studies he became involved in the disturbed political situation which arose in Geneva after the French Revolution.3 This resulted in his imprisonment, along with his boyhood friend Charles Gaspard de la Rive.4After the death of Robespierre in 1794 the two friends were at length successful in obtaining a special dispensation by which they were released from prison but were banished from Switzerland for five years. They then came to Edinburgh, where they took up the study of medicine, both gaining the M.D. on the same day in 1797. There was a strong chemical tradition in the University of Edinburgh at this time, deriving from the earlier influence of men like William Cullen. Joseph Black was in the chair of medicine and chemistry and the university was also served by Daniel Rutherford, from whom Marcet received instruction. The interest which Marcet was later to show in chemistry became apparent in that he chose to write his doctoral thesis on diabetes,5 about which several plausible chemical theories were currently under discussion in the university. Immediately after qualifying in 1797, Marcet moved to London where he was first of all assistant physician to the Public Dispensary in Cary Street.
    [Show full text]
  • Project Note Weston Solutions, Inc
    PROJECT NOTE WESTON SOLUTIONS, INC. To: Canadian Radium & Uranium Corp. Site File Date: June 5, 2014 W.O. No.: 20405.012.013.2222.00 From: Denise Breen, Weston Solutions, Inc. Subject: Determination of Significant Lead Concentrations in Sediment Samples References 1. New York State Department of Environmental Conservation. Technical Guidance for Screening Contaminated Sediments. March 1998. [45 pages] 2. U.S. Environmental Protection Agency (EPA) Office of Emergency Response. Establishing an Observed Release – Quick Reference Fact Sheet. Federal Register, Volume 55, No. 241. September 1995. [7 pages] 3. International Union of Pure and Applied Chemistry, Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of Elements: Review 2000. 2003. [120 pages] WESTON personnel collected six sediment samples (including one environmental duplicate sample) from five locations along the surface water pathway of the Canadian Radium & Uranium Corp. (CRU) site in May 2014. The sediment samples were analyzed for Target Analyte List (TAL) Metals and Stable Lead Isotopes. 1. TAL Lead Interpretation: In order to quantify the significance for Lead, Thallium and Mercury the following was performed: 1. WESTON personnel tabulated all available TAL Metal data from the May 2014 Sediment Sampling event. 2. For each analyte of concern (Lead, Thallium, and Mercury), the highest background concentration was selected and then multiplied by three. This is the criteria to find the significance of site attributable release as per Hazard Ranking System guidelines. 3. One analytical lead result (2222-SD04) of 520 mg/kg (J) was qualified with an unknown bias. In accordance with US EPA document “Using Data to Document an Observed Release and Observed Contamination”, 2222-SD03 lead concentration was adjusted by dividing by the factor value for lead of 1.44 to equal 361 mg/kg.
    [Show full text]
  • The Value of Vague Ideas in the Development of the Periodic System of Chemical Elements
    The Value of Vague Ideas in the Development of the Periodic System of Chemical Elements. Thomas Vogt Departments of Chemistry & Biochemistry and Philosophy University of South Carolina Abstract The exploration of chemical periodicity over the past 250 years led to the development of the Periodic System of Elements and demonstrates the value of vague ideas that ignored early scientific anomalies and instead allowed for extended periods of normal science where new methodologies and concepts are developed. The basic chemical element provides this exploration with direction and explanation and has shown to be a central and historically adaptable concept for a theory of matter far from the reductionist frontier. This is explored in the histories of Prout’s hypothesis, Döbereiner Triads, element inversions necessary when ordering chemical elements by atomic weights, and van den Broeck’s ad-hoc proposal to switch to nuclear charges instead. The development of more accurate methods to determine atomic weights, Rayleigh and Ramsey’s gas separation and analytical techniques, Moseley’s x-ray spectroscopy to identify chemical elements, and more recent accelerator-based cold fusion methods to create new elements at the end of the Periodic Table point to the importance of methodological development complementing conceptual advances. I propose to frame the crossover from physics to chemistry not as a loss of accuracy and precision but as an increased application of vague concepts such as similarity which permit classification. This approach provides epistemic flexibility to adapt to scientific anomalies and the continued growth of chemical compound space and rejects the Procrustean philosophy of reductionist physics. Furthermore, it establishes chemistry with its explanatory and operational autonomy epitomized by the periodic system of elements as a gateway to other experimental sciences.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]
  • The Evolution of Formulas and Structure in Organic Chemistry During the 19Th Century Dalton (1803)
    The Evolution of Formulas and Structure in Organic Chemistry During the 19th Century Dalton (1803) Dalton’s Symbols (1803) Hydrogen Carbon Oxygen Nitrogen • circles for atoms of elements • occasional use of letters - gold G John Dalton (1766-1844) • must learn the symbol for each element Binary atoms Binary “atoms” water ammonia carbon monoxide OH NH CO Dalton (1803) Ternary atoms Ternary “atoms” carbon dioxide acetic acid olefiant gas OCO H HCH CO Dalton (1803) Berzelius • use first letter of Latin name of element SHCON hydrogencarbonoxygennitrogensulfur • use first two letters when first letter is taken J. J. Berzelius (1779-1848) SeSi siliconselenium Latin roots Latin roots English Latin Symbol antimony stibnum Sb tin stannum Sn sodium natrium Na potassium kalium K Why Latin? Why Latin? “Science, like that nature to which it belongs, is neither limited by time nor space, it belongs to the world, and is of no country and of no age” Sir Humphry Davy Affinity Affinity of the elements Oxygen (most electronegative) … … … … … … … … … (most electropositive) Potassium Dualism Dualism … the electrochemical theory By arranging the atoms in the order of their electrical affinities, one forms an electrochemical system, which is more suitable than any other arrangement to give an idea of chemistry. Berzelius Dualism exemplified Dualism exemplified + - + - K O S 3 O + - KO SO3 KO,SO3 Berzelius sulfate of potash The formula Sulfate of potash KO,SO3 • composed of a base KO and an acid SO3 • formula reflects number and kind of each atom • each atom has a defined mass (weight) Berzelius Dilemma The dilemma in the early 19th century • equivalent weights vs.
    [Show full text]
  • On Kekulé's Insight
    On Kekulé’s insight Giuseppe Iurato E-mail: [email protected] Abstract. In this paper, we would like to retake a historical controversy on the alleged discovery of Kekulé’s Benzene structure formula from other possible epistemological viewpoints which might perhaps put into a more right historical perspective this apparent and unmotivated riddle, also with the aid of some elementary psychoanalytic considerations. Moreover, one of the purposes of this paper is also that of understanding some possible, general aspects underlying a creative process. 1. Introduction This paper is centered on the vexata quæstio concerning the so-called Kekulé’s insight, namely, the alleged question inherent the discovery of the Benzene structure1. The Benzene, as chemical substance, was isolated by Michael Faraday in 1825 and the qualitative chemical analysis detected only carbon and hydrogen in it, so that its empirical formula is CH. Subsequent repeated analyses and molecular weight determinations2 (mainly made by Eilhard Mitscherlich in 1834) have determined to be C6H6 its molecular formula. The chemical properties of this substance show a high unsaturation degree (due to its low hydrogen-carbon ratio equal to 1:1) but it is no subject to those typical chemical reactions which characterize the other already known organic compounds, whence it follows that such a substance did should fall into another, new class of organic compounds: indeed, it will be the simplest chemical substance of the so-called aromatic compounds class. Thereafter, one of the main theoretical task was to determine, according to the new Dalton’s atomic theory, the possible geometrical configurations related to the disposition of the carbon and hydrogen atoms.
    [Show full text]
  • History of Arsenic Ethers: Who Was Felix D'arcet?
    ORIGINAL ARTICLES Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, USA History of arsenic ethers: who was Felix D’Arcet? G. A. Petroianu Received February 28, 2012, accepted March 12, 2012 Prof. Dr. med. Georg A. Petroianu, Florida International University Herbert Wertheim College of Medicine, Depart- ment of Cellular Biology & Pharmacology, University Park, 11200 SW 8th Street, Miami–33199 FL, USA georg.petroianu@fiu.edu Pharmazie 67: 951–953 (2012) doi: 10.1691/ph.2012.2052 Williamson serendipitously discovered (1851) a new and efficient way to produce esters using ethyl iodide and potassium salts and in doing so elucidated the molecular mechanism behind ether formation. Lassaigne (1820) made the analogy between sulphovinic and phosphovinic acids and demonstrated the existence of phosphovinic acid, while Pelouze (1833) synthesised monoethyl phosphovinic acid. Finally 1848 Voegeli produced diethyl phosphovinic acid and the first neutral ester of phosphoric acid, the triethyl phosphate (TEP). The successes of Lassaigne and Pelouze in producing phosphovinic acids and Mitscherlich’s theory of isomorphism fuelled the search for the vinic acids of arsenic, phosphorus neighbor in the periodic system. This short report attempts to identify the (less known) pharmacists and chemists involved in the quest for both arsenovinic acids and the neutral esters of arsenic and pyroarsenic acids. 1. Introduction In 1801 Jean-Pierre Boudet (1778–1849) generated traces of “ether” by directly reacting alcohol and phosphoric acid. Pierre Franc¸ois Guillaume Boullay (1777–1869) recognized that Boudet’s “phosphoric ether” was identical with both the “sulfu- ric ether” and the “arsenic ether” (and none of them contained phosphor, sulfur or arsenic)1 (Boullay 1815).
    [Show full text]
  • Jöns Jacob Berzelius 1 Jöns Jacob Berzelius
    Jöns Jacob Berzelius 1 Jöns Jacob Berzelius J. J. Berzelius Jöns Jacob Berzelius (1779–1848) Born 20 August 1779 Väversunda, Östergötland, Sweden Died 7 August 1848 (aged 68) Stockholm, Sweden Nationality Sweden Fields Chemistry Institutions Karolinska Institute Alma mater Uppsala University Doctoral advisor Johann Afzelius Doctoral students James Finlay Weir Johnston Heinrich Rose Known for Atomic weights Chemical notation Silicon Selenium Thorium Cerium Notable awards Copley medal Jöns Jacob Berzelius (Swedish: [jœns ˌjɑːkɔb bæɹˈseːliɵs]; 20 August 1779 – 7 August 1848) was a Swedish chemist. He worked out the modern technique of chemical formula notation, and is together with John Dalton, Antoine Lavoisier, and Robert Boyle considered a father of modern chemistry.[1] He began his career as a physician but his researches in physical chemistry were of lasting significance in the development of the subject. He achieved much in later life as secretary of the Swedish Academy. He is known in Sweden as the Father of Swedish Chemistry. Berzelius Day is celebrated on 20 August in honour of him[2]. Biography Born at Väversunda in Östergötland in Sweden, Berzelius lost both his parents at an early age. Relatives in Linköping took care of him, and there he attended the school today known as Katedralskolan. He then enrolled at Uppsala University where he learned the profession of medical doctor from 1796 to 1801; Anders Gustaf Ekeberg, the discoverer of tantalum, taught him chemistry. He worked as an apprentice in a pharmacy and with a physician in the Medevi mineral springs. During this time he conducted analysis of the spring water. For his medical studies he examined the influence of galvanic current on several diseases and graduated as M.D.
    [Show full text]
  • The Scientific Publications of Alexander Marcet
    Bull. Hist. Chem., VOLUME 43, Number 2 (2018) 61 THE SCIENTIFIC PUBLICATIONS OF ALEXANDER MARCET G. J. Leigh, University of Sussex, [email protected], and Carmen J. Giunta, Le Moyne College, [email protected] Supplemental material Abstract 1808 when he was elected to the Royal Society. French was his native language and this enabled him to maintain This paper lists all the publications which can be contacts with French and Swiss researchers, and to act as attributed to Alexander Marcet, a physician, chemist foreign secretary to, for example, the Geological Society and geologist active during the first two decades of the of London. He died in 1822. His scientific activities show nineteenth century. The contents of each publication are how, at the beginning of the nineteenth century, chem- described and assessed. Marcet was a practicing physi- istry in Britain was professionally and institutionally cian at a time and place when many chemists had medical intertwined with medicine, even while other chemists connections. His chemical work is primarily analytical were breaking free from it. and it also demonstrates how chemistry might eventu- Detailed information on Alexander and Jane Marcet ally shed light on how the human body deals with the is still easily available, and Jane’s life, in particular, has materials it has ingested. been described in considerable detail (1). However, Alex- ander’s professional career has been relatively neglected. Introduction This paper is an attempt to illustrate that he was no mere helper to his exceptional wife, but a significant figure in Alexander Marcet (1770-1822) and his wife Jane his own right.
    [Show full text]