Wildlife Area Management Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3. -
Murderer's Creek Wildlife Area
10 Year PHILLIP W. SCHNEIDER WILDLIFE AREA MANAGEMENT PLAN July 2017 Oregon Department of Fish and Wildlife 4034 Fairview Industrial Drive SE Salem Oregon, 97302 Table of Contents Executive Summary ...................................................................................................... 1 Introduction ................................................................................................................... 1 Oregon Department of Fish and Wildlife Mission and Authority………………………...2 Purpose and Need of the Phillip W. Schneider Wildlife Area……………………………2 Phillip W. Schneider Wildlife Area Vision Statement..……………………………………2 Wildlife Area Goals and Objectives .............................................................................. 2 Wildlife Area Establishment ......................................................................................... 3 Description and Environment ...................................................................................... 4 Physical Resources ..................................................................................................... 4 Location ................................................................................................................... 4 Climate ..................................................................................................................... 4 Topography and Soils .............................................................................................. 4 Habitat Types .......................................................................................................... -
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Vegetation Treatments Record of Decision
Attachment B – Conservation Measures for Special Status Species Introduction These Conservation Measures were displayed in Appendix 5 of the Final EIS. They are the product of the PEIS Biological Assessment and adopted by U.S. Fish and Wildlife Service and National Marine Fisheries Service Consultation, and apply to listed and proposed species as described in those consultation documents. These do not apply where a No Effect determination can be made without them, or where site-specific consultation identifies alternative ways to achieve appropriate protection. PEIS Mitigation Measures adopted by this Record of Decision also require implementation of certain of these conservation measures “When necessary to protect Special Status plant/fish and other aquatic organisms/wildlife species….” (see Attachment A). Conservation Measures for Birds Conservation Measures for the California Brown Pelican Although treatment activities are unlikely to negatively affect the brown pelican or its habitat, extra steps could be taken by the BLM to ensure that herbicide treatments conducted in brown pelican wintering habitat did not result in negative effects to the species: • If feasible, conduct vegetation treatments in brown pelican wintering habitat outside the period when pelicans are likely to be present. • If herbicide treatments in brown pelican habitats must be conducted during the wintering period: ◦ Do not use 2,4-D in pelican wintering habitat. ◦ Prior to conducting herbicide treatments on pelican wintering habitat, survey the area for pelicans. Wait for pelicans to leave the area before spraying. ◦ Do not broadcast spray clopyralid, glyphosate, hexazinone, picloram, or triclopyr in pelican wintering habitats. ◦ If broadcast spraying imazapyr or metsulfuron methyl in pelican wintering habitats, use the typical rather than the maximum application rate. -
These Savvy Subitizing Cards Were Designed to Play a Card Game I Call Savvy Subitizing (Modeled After the Game Ratuki®)
********Advice for Printing******** You can print these on cardstock and then cut the cards out. However, the format was designed to fit on the Blank Playing Cards with Pattern Backs from http://plaincards.com. The pages come perforated so that once you print, all you have to do is tear them out. Plus, they are playing card size, which makes them easy to shufe and play with.! The educators at Mathematically Minded, LLC, believe that in order to build a child’s mathematical mind, connections must be built that help show children that mathematics is logical and not magical. Building a child’s number sense helps them see the logic in numbers. We encourage you to use !these cards in ways that build children’s sense of numbers in four areas (Van de Walle, 2013):! 1) Spatial relationships: recognizing how many without counting by seeing a visual pattern.! 2) One and two more, one and two less: this is not the ability to count on two or count back two, but instead knowing which numbers are one and two less or more than any given number.! 3) Benchmarks of 5 and 10: ten plays such an important role in our number system (and two fives make a 10), students must know how numbers relate to 5 and 10.! 4) Part-Part-Whole: seeing a number as being made up of two or more parts.! These Savvy Subitizing cards were designed to play a card game I call Savvy Subitizing (modeled after the game Ratuki®). Printing this whole document actually gives you two decks of cards. -
This Is Not a Dissertation: (Neo)Neo-Bohemian Connections Walter Gainor Moore Purdue University
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 1-1-2015 This Is Not A Dissertation: (Neo)Neo-Bohemian Connections Walter Gainor Moore Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Moore, Walter Gainor, "This Is Not A Dissertation: (Neo)Neo-Bohemian Connections" (2015). Open Access Dissertations. 1421. https://docs.lib.purdue.edu/open_access_dissertations/1421 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Walter Gainor Moore Entitled THIS IS NOT A DISSERTATION. (NEO)NEO-BOHEMIAN CONNECTIONS For the degree of Doctor of Philosophy Is approved by the final examining committee: Lance A. Duerfahrd Chair Daniel Morris P. Ryan Schneider Rachel L. Einwohner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Lance A. Duerfahrd Approved by: Aryvon Fouche 9/19/2015 Head of the Departmental Graduate Program Date THIS IS NOT A DISSERTATION. (NEO)NEO-BOHEMIAN CONNECTIONS A Dissertation Submitted to the Faculty of Purdue University by Walter Moore In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2015 Purdue University West Lafayette, Indiana ii ACKNOWLEDGEMENTS I would like to thank Lance, my advisor for this dissertation, for challenging me to do better; to work better—to be a stronger student. -
Bidding in Spades Arxiv:1912.11323V2 [Cs.AI] 10 Feb 2020
Bidding in Spades Gal Cohensius1 and Reshef Meir2 and Nadav Oved3 and Roni Stern4 Abstract. We present a Spades bidding algorithm that is \friend" with a common signal convention or an unknown superior to recreational human players and to publicly avail- AI/human where no convention can be assumed; (2) Partly able bots. Like in Bridge, the game of Spades is composed observable state: agents observe their hand but do not know of two independent phases, bidding and playing. This paper how the remaining cards are distributed between the other focuses on the bidding algorithm, since this phase holds a pre- players. Each partly observable state at the start of a round 39! ∼ 16 cise challenge: based on the input, choose the bid that maxi- can be completed to a full state in 13!3 = 8:45 · 10 ways; mizes the agent's winning probability. Our Bidding-in-Spades and (3) Goal choosing, as different bids mean that the agent (BIS) algorithm heuristically determines the bidding strat- should pursue different goals during the round. egy by comparing the expected utility of each possible bid. A major challenge is how to estimate these expected utilities. Related work. We first mention two general game-playing To this end, we propose a set of domain-specific heuristics, algorithms: Monte-Carlo Tree Search (MCTS) evaluates and then correct them via machine learning using data from moves by simulating many random games and taking the aver- real-world players. The BIS algorithm we present can be at- age score [6]. Upper Confidence bounds applied to Trees (UCT) tached to any playing algorithm. -
The Penguin Book of Card Games
PENGUIN BOOKS The Penguin Book of Card Games A former language-teacher and technical journalist, David Parlett began freelancing in 1975 as a games inventor and author of books on games, a field in which he has built up an impressive international reputation. He is an accredited consultant on gaming terminology to the Oxford English Dictionary and regularly advises on the staging of card games in films and television productions. His many books include The Oxford History of Board Games, The Oxford History of Card Games, The Penguin Book of Word Games, The Penguin Book of Card Games and the The Penguin Book of Patience. His board game Hare and Tortoise has been in print since 1974, was the first ever winner of the prestigious German Game of the Year Award in 1979, and has recently appeared in a new edition. His website at http://www.davpar.com is a rich source of information about games and other interests. David Parlett is a native of south London, where he still resides with his wife Barbara. The Penguin Book of Card Games David Parlett PENGUIN BOOKS PENGUIN BOOKS Published by the Penguin Group Penguin Books Ltd, 80 Strand, London WC2R 0RL, England Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, USA Penguin Group (Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada M4P 2Y3 (a division of Pearson Penguin Canada Inc.) Penguin Ireland, 25 St Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Group (Australia) Ltd, 250 Camberwell Road, Camberwell, Victoria 3124, Australia -
Osmotically Driven Flows in Microchannels Separated by A
PAPER www.rsc.org/loc | Lab on a Chip Osmotically driven flows in microchannels separated by a semipermeable membrane Kare Hartvig Jensen,a Jinkee Lee,b Tomas Bohrc and Henrik Bruus†*a Received 24th October 2008, Accepted 25th March 2009 First published as an Advance Article on the web 20th April 2009 DOI: 10.1039/b818937d We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mm wide and 50–200 mm deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental results and the predictions of the model. Our motivation for studying osmotically driven microflows is that they are believed to be responsible for the translocation of sugar in plants through the phloem sieve element cells. Also, we suggest that osmotic elements can act as on-chip integrated pumps with no movable parts in lab-on-a-chip systems. I. Introduction a systematic survey of osmotically driven flows at the micrometre scale. -
This File Was Created by Scanning the Printed Publication
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions. -
Final Environmental Impact Statement Ochoco Summit Trail System Project Chapter 3 – Environmental Consequences – Wildlife
Final Environmental Impact Statement Ochoco Summit Trail System Project Chapter 3 – Environmental Consequences – Wildlife Wildlife _________________________________________ This section includes a summary of the Wildlife specialist’s report and Biological Evaluation; the entire report is in the Ochoco Summit Trail System project record, located at the Ochoco National Forest, Prineville, Oregon. General Effects to Wildlife With all management activities, there are negative effects to some species and benefits to others that must be considered and balanced along with the need for those human activities. Negative effects of recreational OHV use on wildlife may include wildlife mortality, direct and indirect loss of habitat, displacement, and reduced connectivity. Factors that influence the vulnerability of different wildlife species include behavior and ecology. For example, animals that tend to stay closer to shelter, such as gray squirrel and woodchuck, can tolerate closer encounters with humans because they can quickly escape (Frid and Dill 2002; Gill et al. 1996). Other species tend to forage less and spend less time in quality habitat near human activity (Gill et al. 1996). Still other species may respond positively to human development and use of OHV trails and roads; potential benefits are related to habitat, mobility, and food resources. Openings, shrubs and grasses may develop alongside roads, providing additional foraging habitats. Cleared roads and trails are utilized as travel corridors for some species. No road construction is proposed for the Ochoco Summit project; however, there are ongoing effects of existing roads, and the effects of existing roads and proposed OHV trails are similar. Road widths vary from 14 to 35 feet depending on single or double lane and maintenance of right of way. -
Intelligent System for Playing Tarok
Journal of Computing and Information Technology - CIT 11, 2003, 3, 209-215 209 Intelligent System for Playing Tarok Mitja Lustrekˇ and Matjazˇ Gams “Jozefˇ Stefan” Institute, Ljubljana, Slovenia We present an advanced intelligent system for playing Tarok 7 is a very popular card game in several three-player tarok card game. The system is based countries of central Europe. There are some on alpha-beta search with several enhancements such as fuzzy transposition table, which clusters strategically tarok-playing programs 2, 9 , but they do not similar positions into generalised game states. Unknown seem to be particularly good and little is known distribution of other players’ cards is addressed by Monte of how they work. This is why we have cho- Carlo sampling. Experimental results show an additional sen tarok for the subject of our research. The reduction in size of expanded 9-ply game-tree by a factor of 184. Human players judge the resulting program to resulting program, Silicon Tarokist, is available play tarok reasonably well. online at httptarokbocosoftcom. Keywords: game playing, imperfect information, tarok, The paper is organised as follows. In section 2 alpha-beta search, transposition table, Monte Carlo rules of tarok and basic approaches to a tarok- sampling. playing program are presented. Section 3 gives the overview of Silicon Tarokist. Section 4 describes its game-tree search algorithm, i.e. an advanced version of alpha-beta search. In 1. Introduction section 5 Monte Carlo sampling is described, which is used to deal with imperfect informa- tion. Section 6 discusses the performance of Computer game playing is a well-developed the search algorithm and presents the results of area of artificial intelligence.