Roughrider Project Community Visits November 2013 Brochet, MB: Barren Lands First Nations & Brochet Community Public Meeting Thursday Nov 7, 2013

Total Page:16

File Type:pdf, Size:1020Kb

Roughrider Project Community Visits November 2013 Brochet, MB: Barren Lands First Nations & Brochet Community Public Meeting Thursday Nov 7, 2013 Roughrider Project Community Visits November 2013 Brochet, MB: Barren Lands First Nations & Brochet Community Public Meeting Thursday Nov 7, 2013 In Attendance: Rio Tinto: Jay Fredericks, External Relations; Sharon Singh, Community Relations; Richard Snider, Environment. Recorder: Gill Gracie, Aurora Communications Ltd. Community: Approximately 25 people. Translation available, equipment not used. Chief Michael Sewap started the meeting at 2:52 pm. Opening Prayer Jay Fredericks thanked the audience for coming out, saying it’s a pleasure to be here on the traditional lands of the Barren Lands First Nation, and to have a chance to talk to you about the Roughrider Project and what we’re hoping to do there. He went through the presentation outline and asked people to save their opinions and suggestions and questions for the end please. Safety Share: Safety while working on ice. Presentation: Jay Fredericks, Richard Snider, Sharon Singh (PowerPoint Presentation) Jay Fredericks About Rio Tinto Rio Tinto has been mining for more than 100 years. We’re a fairly old mining company with a lot of experience in different parts of the world (map). We produce a variety of metals - aluminum, copper, iron ore, borax, diamonds, uranium and coal. We operate two uranium mines, in Namibia and the Ranger mine in northern Australia. We own the Diavik diamond mine in the NWT, which is a good example of the relationships Rio Tinto has developed with local communities. We have a number of agreements in place with the local communities in the vicinity of that mine. In Australia we are the largest employer of aboriginal people. Working with local communities is taken very seriously at every mine where we develop mineral resources. It’s very important to the company and our future. The Exploration Process To give you a sense of just how few properties make it from exploration to mining, if we start with all the properties we’re working at around the world and go through the different stages of exploration, somewhere around 0.03% of the projects we start with will ever develop into a mine. 1 If we start off with 10,000 projects where we’re looking for minerals, only three will ever develop into a mine. There are a lot of hurdles we have to get over before we decide if it’s worthwhile to develop. Roughrider is in the exploration process, and we have a long way to go. Exploration does not guarantee mining. Location The location is by Points North (located on a map relative to other projects) about 70 km in a straight line from Hatchet Lake. The Project There are three ore zones – the West Zone is 220m down, the East Zone 280m, and the Far East Zone 350m. At that depth, it’s hard to hit specific deep targets, so we’re proposing to go underground and get closer to the ore to get more detailed knowledge of the ore and some other characteristics. Richard Snider Advanced Exploration We came to the community in August and talked about Rio Tinto. We said we may do an advanced exploration project, and now we’re getting into more detail. This meeting is to give you information about what we are proposing to do, what the impacts will be, how we’re going to reduce those impacts, and get your comments and concerns on that project. We are looking at excavating a shaft straight down, then two horizontal drifts; then we drill into the ore zones. It’s easier to hit a target from closer. We’re not mining; this is exploration; it will help us determine if we should mine in the future. Right now we’re going through the environmental assessment process; we have to get approval from the province of Saskatchewan before we go forward. We also have to get our own internal Rio Tinto approvals. What will we get from this program? We would like to get more information on groundwater, and how much groundwater might go into the mine. That’s very important; some uranium mines in Saskatchewan have had issues with water inflows, and managing that water. Cigar Lake was delayed for years because of a water inflow that flooded the mine. Everybody was safe, the environment protected, but it delayed the project. We want to avoid that if we do decide to mine. We know we have three orebodies; we want to find out if there are any more, and make sure we have a good understanding of those orebodies if we decide to mine. We will also look at things like what is the ground like, what kind of ground support will you need, what is the groundwater quality. We’ve done a lot of studies on groundwater, but it’s always better if you can develop the drifts and see what actually flows into the mine. Community Engagement Brochet was included in the key communities. We identified early in the project who we should talk to about the Roughrider Project as a whole, who we should talk to as part of the exploration program. We identified a few communities, including Brochet, Lac Brochet, Kinoosao, Southend, Hatchet Lake, Wollaston Lake, Black Lake, Stony Rapids and Fond du Lac. We were looking at who’s in the area, whose traditional lands we are on, how could we impact the communities through environmental factors like water flow, air direction. Health, Safety, Environment and Community Policies We have a health and safety and environment and community policy statement that we use to determine what we should be doing to protect our people, to engage with the communities and make sure we understand and address the concerns, and what we should to for and how should be protect the environment. Environmental Baseline Studies One of the first things you do when planning a project is look at what’s there – what animals live there, what plants are there, what disturbance might we cause, and will that be acceptable or not. We had an Aboriginal-owned consulting form, CanNorth, do an environment baseline (showed maps of study area). They looked at the land and the water. 2 We had two options for where to discharge our treated effluent (water that has had contaminants removed). Two main options: o going north into the Smith Creek system, which goes to Hatchet Lake and then through the Fond du Lac system into Lake Athabasca and ultimately into the Arctic Ocean, or o discharge into Collins Creek which goes by the McClean Lake mine and into Wollaston Lake. Wollaston Lake flows into the Cochrane River by Lac Brochet and Brochet, and into Reindeer Lake and the Churchill River. We studied both options in terms of what impacts it would cause in these systems. We looked at water, what lives in the water (plants, bugs, fish sediment) to understand what the impact of the project might be. (showed maps) We look at the flow of the water, how much is moving; we look at lake levels and depths to understand what the volume is like; we look at water quality through sampling in all the lakes and streams, plankton, sediment – basically what lives in the water, the sediment and what’s in the sediment, and fish because they are the ultimate receptors of contaminants so we want to make sure we’re protecting the fish. Generally in water there’s low levels of metals; some metals were naturally elevated, as is often the case. We found 10 large-bodies fish species, and six small-bodies fish species. The most common large- bodied fish were pike, white sucker and lake whitefish. Smith Bay of Hatchet Lake had the most fish species, North McMahon Lake (the lake that we are bordering) had the highest number of fish captured. On the land we looked for rare or endangered plants; what type of trees or brush, what grows on the land and what type of habitat might that provide. Is it good moose or caribou habitat – you call that ecosite classification, saying what’s there - swamps, wetlands etc. We did amphibian surveys – looking for frogs; aerial and ground bird surveys; large mammal surveys (predators like wolf, coyote), moose and caribou; small mammals; and soils and vegetation. We found five rare plant species, all of which we think we can avoid; five bird species that have setback distances so we have to stay away from the nests. We found two bird species at risk – the flycatcher and the nighthawk. When we develop the project we have to keep an eye out for these species and make sure we’re not impacting their nests. We found 14 moose, 9 caribou tracks (no caribou), and lots of furbearers – beaver, muskrat, fisher, marten, lynx, red fox and weasel. We looked for heritage or archaeological sites, and found none. Project Timelines Timelines are dependent on getting the necessary approvals from the province and internal approvals from Rio Tinto. We’re in the environmental assessment process now, so we have to go to the communities, explain the project and get feedback. We have to prepare an environmental impact statement (EIS) that outlines the environmental baseline, what we will do as a project, what impacts we may have and how we’re going to reduce those impacts. Then the province will decide if that is acceptable. If that is completed in early 2014, we will apply for regulatory approval for site preparation work. We would build a camp first, and upgrade the access trail to a road. We would also do site clearing activities like clearing of trees and soils, and construction of some concrete foundations and some of the buildings.
Recommended publications
  • Wollaston Road
    WOLLASTON LAKE ROAD ENVIRONMENTAL IMPACT STATEMENT Biophysical Environment 4.0 Biophysical Environment 4.1 INTRODUCTION This section provides a description of the biophysical characteristics of the study region. Topics include climate, geology, terrestrial ecology, groundwater, surface water and aquatic ecology. These topics are discussed at a regional scale, with some topics being more focused on the road corridor area (i.e., the two route options). Information included in this section was obtained in full or part from direct field observations as well as from reports, files, publications, and/or personal communications from the following sources: Saskatchewan Research Council Canadian Wildlife Service Beverly and Qamanirjuaq Caribou Management Board Reports Saskatchewan Museum of Natural History W.P. Fraser Herbarium Saskatchewan Environment Saskatchewan Conservation Data Centre Environment Canada Private Sector (Consultants) Miscellaneous publications 4.2 PHYSIOGRAPHY Both proposed routes straddle two different ecozones. The southern portion is located in the Wollaston Lake Plain landscape area within the Churchill River Upland ecoregion of the Boreal Shield ecozone. The northern portion is located in the Nueltin Lake Plain landscape area within the Selwyn Lake Upland ecoregion of the Taiga Shield ecozone (Figure 4.1). (SKCDC, 2002a; Acton et al., 1998; Canadian Biodiversity, 2004; MDH, 2004). Wollaston Lake lies on the Precambrian Shield in northern Saskatchewan and drains through two outlets. The primary Wollaston Lake discharge is within the Hudson Bay Drainage Basin, which drains through the Cochrane River, Reindeer Lake and into the Churchill River system which ultimately drains into Hudson Bay. The other drainage discharge is via the Fond du Lac River to Lake Athabasca, and thence to the Arctic Ocean.
    [Show full text]
  • Northeast Wollaston Lake Project: Quaternary Investigations of The
    Northeast Wollaston Lake Project: Quaternary Investigations of the Cochrane River (NTS map sheets 64L-10, -11, -14, and -15) and Charcoal Lake (NTS map sheets 64L-9 and -16) Areas J.S. Smith Smith, J.S. (2006): Northeast Wollaston Lake Project: Quaternary investigations of the Cochrane River (NTS map sheets 64L- 10, -11, -14, and -15) and Charcoal Lake (NTS map sheets 64L-9 and -16) areas; in Summary of Investigations 2006, Volume 2, Saskatchewan Geological Survey, Sask. Industry Resources, Misc. Rep. 2006-4.2, CD-ROM, Paper A-6, 15p. Abstract Quaternary geological investigations were initiated in the Cochrane River–Charcoal Lake area (NTS map sheets 64L-9 -10, -11, -14, -15, and -16) as part of the multidisciplinary, multi-year Wollaston Lake Project. The Quaternary component involves 1:50 000-scale surficial geological mapping, collection of ice-flow indicators, and a regional till sampling program. Drift cover is extensive and includes till, organics, and glaciofluvial terrains as the main surficial units. Glacial landforms include hummocky stagnant ice-contact drift, thick blankets and plains, streamlined forms, and boulder fields. Large esker systems extend over the entire map area. These features are attributed to a slowly retreating ice margin, at which there was an abundance of meltwater that flowed both in channels and occasionally as turbulent sheet flows. Multiple ice-flow directions were documented; however, the ice-flow history remains preliminary as age relationships were only identified at five sites. The main regional ice flow was towards the south-southwest (207º). Initial flow ranged between the west-southwest to southwest (258º to 235º), and was followed by a southward (190º) flow before the main flow was established.
    [Show full text]
  • The Archaeology of Brabant Lake
    THE ARCHAEOLOGY OF BRABANT LAKE A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of Master of Arts in the Department of Anthropology and Archaeology University of Saskatchewan Saskatoon By Sandra Pearl Pentney Fall 2002 © Copyright Sandra Pearl Pentney All rights reserved. PERMISSION TO USE PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, In their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Anthropology and Archaeology University of Saskatchewan Saskatoon, Saskatchewan (S7N 5B 1) ABSTRACT Boreal forest archaeology is costly and difficult because of rugged terrain, the remote nature of much of the boreal areas, and the large expanses of muskeg.
    [Show full text]
  • The Cultural Ecology of the Chipewyan / by Donald Stewart Mackay.
    ThE CULTURAL ECOLOGY OF TkE CBIPE%YAN UONALD STEhAkT MACKAY b.A., University of british Columbia, 1965 A ThESIS SUBMITTED IN PAhTIAL FULFILLMENT OF THE HEObIRCMENTS FOR THE DEGREE OF MASTER OF ARTS in the department of Sociology and Anthropology @ EONALD STECART MACKAY, 1978 SIMON F hAShR UNlVERSITY January 1978 All rights reserved. This thesis may not be reproduced in whole or in, part, by photocopy or other means, without permission of the author. APPROVAL Name : Donald Stewart Mackay Degree: Master of Arts Title of Thesis: The Cultural Ecology of the Chipewyan Examining Cormnit tee : Chairman : H. Sharp Senior Supervisor- - N. Dyck C.B. Crampton . Fisher Departme'nt of Biological Sciences / ,y/y 1 :, Date Approved: //!,, 1 U The of -- Cultural Ecology .- --------the Chipewyan ----- .- ---A <*PI-: (sign-ir ~re) - Donald Stewart Mackay --- (na~t) March 14, 1978. (date ) AESTRACT This study is concerned with the persistence of human life on the edge of the Canadian Barren Grounds. The Chipewyan make up the largest distinct linguistic and cultural group and are the most easterly among the Northern Athapaskan Indians, or Dene. Over many centuries, the Chipewyan have maintained a form of social life as an edge-of-the-forest people and people of the Barren Grounds to the west of Hudson Bay. The particular aim of this thesis is to attempt, through a survey of the ecological and historical 1iterature , to elucidate something of the traditional adaptive pattern of the Chipewyan in their explcitation of the subarc tic envirorient . Given the fragmentary nature of much of the historical evidence, our limited understanding of the subarctic environment, and the fact that the Chipewyan oecumene (way of looking at life) is largely denied to the modern observer, we acknowledge that this exercise in ecological and historical reconstruction is governed by serious hazards and limitations.
    [Show full text]
  • Requirements Department of Geography
    A GEOGRAPHICAL STUDY OF· THE COMMERCIAL FISHING INDUSTRY IN NORTHERN SASKATCHEWAN: AN EXAMPLE OF RESOURCE DEVELOPMENT A Thesis Submitted to the Faculty of Graduate Studies in Partial FUlfilment of the Requirements for the Degree of Master of Arts in the Department of Geography by Gary Ronald Seymour Saskatoon, Saskatchewan . 1971. G.R. Seymour Acknowledgements The author is grateful to the many people in the Geography Department, University of Saskatchewan, in government and in the fishing industry who provided valuable information and advice in the preparation of this thesis. The author is particularly indebted to: Dr. J.H. I Richards and E.N. Shannon, Department of Geography, Univer�ity of Saskatchewan; G. Couldwell and P. Naftel, Fisheries Branch, Department of Natural Resources, Saskatchewan and F.M. Atton, Chief Biologist, Fisheries Branch, Department of Natural Resources, Saskatoon. Gratitude is also expressed to the Institute of Northern Studies, University of Saskatchewan whose financial assistance made collection of field data for this thesis possible. A special debt of gratitude is extended to my advisor, Dr. R.M. Bone of the Geography Department, University of Saskatchewan, whose willing direction and advice provided valuable assistance in the organization and writing of the thesis. i Table of Contents Page I. INTRODUCTION • • • • • • • • • • • • • • • • • • • • • 1 II. THE RESOURCE BASE • • • • • • • • • • • • • • • • • • 3 Factors Affecting Total Productivity •••••• 3 Methods of Commercial Fishing •••• • • • • • • 7 1) Summer
    [Show full text]
  • Recording the Reindeer Lake
    CONTEXTUALIZING THE REINDEER LAKE ROCK ART A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Master of Arts in the Department of Archaeology and Anthropology University of Saskatchewan Saskatoon By Perry Blomquist © Copyright Perry Blomquist, April 2011. All rights reserved. PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Archaeology and Anthropology University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B1 Canada OR Dean College of Graduate Studies and Research University of Saskatchewan 107 Administration Place Saskatoon, Saskatchewan S7N 5A2 Canada i ABSTRACT The rock art that is found in the region of Reindeer Lake, Saskatchewan is part of a larger category of rock art known as the Shield Rock Art Tradition.
    [Show full text]
  • Reindeer Lake) Area, Northeastern La Ronge Domain
    Geology of the Birch Point (Reindeer Lake) Area, Northeastern La Ronge Domain Ralf 0. Maxeiner Maxeiner, R.O. ( 1998): Geology of the Birch Point (Reindeer Lake) area. northeastern La Ronge Domain; in Summary of Investigations 1998. Saskatchewan Geological Survey. Sask. Energy Mines, Misc. Rep. 98-4. In 1996, the Saskatchewan Geological Survey initiated Mineral Resources {Innes et al., 1964). Fox and a mapping project in the southern Reindeer Lake area, Johnston ( 1980) discussed the characteristics of a belt aimed at providing I :20 000 scale coverage of the "La of ultramafic rocks that cross the map sheet. An Ronge-Lynn Lake Bridge" (Maxeiner, 1996, 1997; aeromagnetic map of the Southend area at I :63,360 Harper, 1996, 1997; Corrigan et al., 1997). During the scale was issued in 1965. past summer, mapping between the 1996 and 1997 map sheets covered an approximately 340 km 2 area centered on Birch Point, Reindeer Lake, about 30 km northeast of Southend and 210 km northeast of the 2. General Geology town of La Ronge (Figure I). This year's map area offers a unique cross-section through the northwestern part of the Reindeer Zone, Mapping by the Geological Survey of Canada (GSC) at from the Central Metavolcanic Belt of the La Ronge I :50 000 was carried out in adjoining areas to the east Domain into the Burntwood Group of the Kisseynew and south (Corrigan et al., this volume), and also Domain (Figure I). From northwest to southeast the extended farther north as part of a regional study study area is underlain by the following supracrustal designed to enhance understanding of the lithotectonic assemblages (Figure 2): evolution of the northwestern Reindeer Zone within the Trans-Hudson Orogen.
    [Show full text]
  • History of Mining in Saskatchewan
    History of Mining In Saskatchewan Early Mining in Saskatchewan The earliest mining occurred when earth’s inhabitants started using various stones for tools or certain clays for cooking vessels. The earliest recorded occupation in Saskatchewan was around 9000 B.C. at the Niska site in the southern part of the province. Ample evidence of the use of stone tools, arrow heads, and spear heads, etc. has been found in the area. Much of the material used by these early inhabitants was imported or traded from other regions of North America. The study of the stone tools provides us with information about the people’s work, their history, their religion, their travels and their relationships with other groups or nations. Stone is readily available throughout most of Saskatchewan. This was especially important for Saskatchewan’s First Nations people who moved their camps frequently in search for food. The stones available were not all suitable for tools and they needed a constant supply of stone material that broke cleanly or was hard enough for pounding. Consequently, they made regular trips to the source areas or traded with people who lived near the sources. For these early residents of our province, the exchange of goods was more than just a means of acquiring things. Bartering and gift exchange was a means of creating and reinforcing relationships between individuals, families and nations. For thousands of years, goods have been exchanged through networks that extended across North America. Although perishable goods were also traded, our records are in the form of shell or stone artefacts.
    [Show full text]
  • Aqhaliat-2018-EN-Full-Report.Pdf
    POLAR KNOWLEDGE Aqhaliat Table of Contents ECOSYSTEM SCIENCE .....................................................................................................1 Lichens in High Arctic ecosystems: Recommended research directions for assessing diversity and function near the Canadian High Arctic Research Station, Cambridge Bay, Nunavut ........................................................................................................................................ 1 Vascular synphenology of plant communities around Cambridge Bay, Victoria Island, Nunavut, during the growing season of 2015 .............................................................................. 9 The distribution and abundance of parasites in harvested wildlife from the Canadian North: A review .......................................................................................................................... 20 Fire in the Arctic: The effect of wildfire across diverse aquatic ecosystems of the Northwest Territories ................................................................................................................. 31 Arctic marine ecology benchmarking program: Monitoring biodiversity using scuba ............... 39 For more information about Polar Knowledge Canada, or for additional copies of this report, contact: Stratification in the Canadian Arctic Archipelago’s Kitikmeot Sea: Biological and geochemical consequences ........................................................................................................ 46 Polar Knowledge
    [Show full text]
  • Phase 1 Geoscientific Desktop Preliminary Assessment, Terrain and Remote Sensing Study
    Phase 1 Geoscientific Desktop Preliminary Assessment, Terrain and Remote Sensing Study NORTHERN VILLAGE OF PINEHOUSE, SASKATCHEWAN APM-REP-06144-0060 NOVEMBER 2013 This report has been prepared under contract to the NWMO. The report has been reviewed by the NWMO, but the views and conclusions are those of the authors and do not necessarily represent those of the NWMO. All copyright and intellectual property rights belong to the NWMO. For more information, please contact: Nuclear Waste Management Organization 22 St. Clair Avenue East, Sixth Floor Toronto, Ontario M4T 2S3 Canada Tel 416.934.9814 Toll Free 1.866.249.6966 Email [email protected] www.nwmo.ca PHASE 1 DESKTOP GEOSCIENTIFIC PRELIMINARY ASSESSMENT TERRAIN AND REMOTE SENSING STUDY NORTHERN VILLAGE OF PINEHOUSE, SASKATCHEWAN November 2013 Prepared for: G.W. Schneider, M.Sc., P.Geo. Golder Associates Ltd. 6925 Century Ave, Suite 100 Mississauga, Ontario Canada L5N 7K2 Nuclear Waste Management Organization 22 St. Clair Avenue East 6th Floor Toronto, Ontario Canada M4T 2S3 NWMO Report Number: APM-REP-06144-0060 Prepared by: D.P. van Zeyl, M.Sc. L.A. Penner, M.Sc., P.Eng., P.Geo. J.D. Mollard and Associates (2010) Limited 810 Avord Tower, 2002 Victoria Avenue Regina, Saskatchewan Canada S4P 0R7 Terrain Report, Pinehouse, Saskatchewan November 2013 EXECUTIVE SUMMARY In March 2012, the Northern Village of Pinehouse, Saskatchewan, expressed interest in continuing to learn more about the Nuclear Waste Management Organization (NWMO) nine-step site selection process, and requested that a preliminary assessment be conducted to assess the potential suitability of the Pinehouse area for safely hosting a deep geological repository (Step 3).
    [Show full text]
  • Far North Geomapping Initiative: Bedrock Geology of the Snyder Lake Area, Northwestern Manitoba (Part of NTS 64N5) by P.D
    GS-1 Far North Geomapping Initiative: bedrock geology of the Snyder Lake area, northwestern Manitoba (part of NTS 64N5) by P.D. Kremer, C.O. Böhm and N. Rayner1 Kremer, P.D., Böhm, C.O. and Rayner, N. 2011: Far North Geomapping Initiative: bedrock geology of the Snyder Lake area, northwestern Manitoba (part of NTS 64N5); in Report of Activities 2011, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 6–17. Summary The Wollaston Domain, The Manitoba Geological Survey’s Far North Geo- which forms part of the base- mapping Initiative continued in the summer of 2011 with ment sequence to the Proterozoic bedrock and surfi cial geological mapping in the Snyder Athabasca Basin in northeastern Lake area, in the northwestern corner of the province. Saskatchewan, locally contains basement-hosted uncon- The Snyder Lake area is largely underlain by medium- formity-related world-class uranium deposits (e.g., Mil- to upper-amphibolite–grade metasedimentary rocks of lennium deposit). A number of uranium occurrences in the Wollaston Supergroup, including psammitic, semi- Saskatchewan are associated with particular strata of the pelitic, pelitic, and lesser amounts of calcsilicate gneiss Wollaston Supergroup (e.g., graphitic pelite of the Daly and marble. Southeast and northwest of Snyder Lake, the Lake Group, calcsilicate and calcareous arkose of the sedimentary succession is fl anked by intrusive rocks of Geikie River Group, Yeo and Delaney, 2007). As a result, potential Archean age that were metamorphosed at upper the Wollaston Domain in northwestern Manitoba has seen a recent increase in exploration activity. Regional map- amphibolite- to granulite-facies conditions.
    [Show full text]
  • Winter Roads in Manitoba
    CGU HS Committee on River Ice Processes and the Environment 12th Workshop on the Hydraulics of Ice Covered Rivers Edmonton, AB, June 19-20, 2003 Winter Roads in Manitoba Don Kuryk Department of Transportation & Government Services 16th Floor – 215 Garry Street Winnipeg, Manitoba, R3C 3Z1 [email protected] Winter roads have connected isolated northern communities for over 50 years. Originally, winter roads were constructed by private contractors. Since 1979, the Department of Transportation has been overseeing the construction and maintenance of winter roads through contracts with Indian Bands and other local groups. The winter road network in Manitoba spans a length of 2178 km and services 30 communities (approximately 29000 people). It is extremely important for the shipment of goods, employment of locals and travel between communities. With the certainty of climate change and expected temperature increases of 4-6°C by the end of this century, there is a real threat to the seasonal operation of winter roads. The inevitable climate change from greenhouse gas emissions will result in later freeze-ups, earlier spring melts and more frost-free days. The implications of this climate change would be detrimental to the winter road network. An example of these implications was the airlifts required in 1998 to transport essential supplies to several communities as a result of drastic changes in the climate predominately due to El Nino. This shortened the winter road season and didn’t allow some of the routes to be constructed at all. 1. Introduction Winter roads originated over 50 years ago as a private operation until the government took over the network in 1971.
    [Show full text]