Conceptual Design of Transmission for Small Tractor

Total Page:16

File Type:pdf, Size:1020Kb

Conceptual Design of Transmission for Small Tractor بسم هللا الرحمن الرحيم Khartoum University Faculty of Engineering Department of Agricultural and Biological engineering Conceptual Design of Transmission for Small Tractor This is submitted to Khartoum University in partial fulfillment of the requirement for the degree of B.SC in Agricultural and Biological Engineering Presented by Ishag Ahmed Shareef Omer Mohammed Zain Ahmed Omer Mustafa Altahir Fadol Murkaz Nadreen Hassan Ahmed Mohammed Under supervision: Dr. Omer Adam Rahama September 2014 1 Acknowledgment First of all there is nothing we could’ve done with out the help of Allah. We want to thank all the people who supported us and helped us with the very best they can do starting from our parents whom support was very precious and helpful. And our supervisor who believed in us and helped us to go through the tough times. And more importantly thanks to our friends from US for their quick response and their helpful information. 2 Contents 1 Abstract ................................................................................................................................................. 5 2 CHAPTER ONE ....................................................................................................................................... 6 2.1 Introduction: .................................................................................................................................. 6 3 CHAPTER TWO ...................................................................................................................................... 8 3.1 PROBLEMS ENCOUNTERED ................................................................................................... 8 4 CHAPTER THREE .................................................................................................................................... 9 4.1 Literature Review .......................................................................................................................... 9 4.2 Power transmission system and Outlets:- ................................................................................... 12 4.3 Wheels:- ...................................................................................................................................... 15 4.4 Histories:- .................................................................................................................................... 15 1858 – 1919 ......................................................................................................................................... 15 1930 - 1939 ......................................................................................................................................... 16 1940- 1949 .......................................................................................................................................... 16 1950 - 1959 ......................................................................................................................................... 16 1960 - 1969 ......................................................................................................................................... 16 1970 - 1979 ......................................................................................................................................... 16 1980 - 2000 ......................................................................................................................................... 17 4.5 Traction Analysis Equations:- ..................................................................................................... 17 4.6 Equations for Bevel gear:- .......................................................................................................... 21 4.7 Gear Ratios:- ............................................................................................................................... 22 4.8 Equations for Shaft‟s:- ................................................................................................................ 24 4.9 Equations for spring:- ................................................................................................................. 25 5 CHAPTER FOUR ................................................................................................................................... 27 5.1 ANALYSIS OF CHASSIS AND DESIGN TRANSMISSION .................................................. 27 5.2 Chassis Analysis ......................................................................................................................... 27 5.3 DESIGN OF SIMPLE TRANSMISSSION ................................................................................ 32 3 6 CHAPTER FIVE...................................................................................................................................... 42 6.1 MATERIAL MECHANICAL DESIGN ..................................................................................... 42 7 CONCULATION:- .................................................................................................................................. 46 8 Recommendations:- ............................................................................................................................ 48 9 Appendix ............................................................................................................................................. 49 10 References ...................................................................................................................................... 55 4 1 Abstract To estimate the traction efficiency and actual travel speed from ZOZ chart. To estimate the drawbar pull and power of drawbar. The conceptual design simple transmission system for small tractor (gears – shaft – key - bearing - spring). (Sketched in Solid Works). Hopefully the conceptual of design small tractor would be assisting to design it, develop it and generally makes agricultural an attractive profession. 5 2 CHAPTER ONE 2.1 Introduction: In modern agricultural machines are used to reduce the hour of labor required to produce agricultural product. Machines have been developed that enable agricultural producer to increase the number of acres that they manage or operate. Agricultural producer use tractor to operate the equipment that is used to till, plant, fertilize, and harvest crop. Modern tractor range in sizes from 10 to 15 horse power (7.5 to 11 kilowatts) to over 400 horse power (over 300 kilowatts). Grain combines with headers up30 feet (9.1 meter) in width are used to harvest grain and seeds crops. Hay other forage crops can be harvested and stored with modern equipment without any manual handling. Cotton, peanuts, fruits, vegetables, and nut crops are harvested almost entirely by specialized harvesting equipment. The development of the machines used in modern agriculture has brought new demand in farmers, ranchers, and other agricultural workers. They must be familiar energy and mechanical forces and have mechanical skills. It is important that they be able to select machines for specific jobs and know how to safely operate, maintain, and repair them. There is a great demand for persons to manufacture, sell, and service the machine used in agricultural production. This is an important part of the power and machinery industry. It includes the equipment and tractor companies, the farm equipment and supply dealers, the independent repair and maintenance shops, the research and development centers, and all other service that are necessary to support production a gricultural‟s needs for machines and equipment. Our constantly expanding population has required and will continue to demand an ever increasing agricultural production of food and fibers. Some of the increased production that has 6 been realized during the past century must be credited to advances in non-engineering phases in agricultural technology such as better crop varieties, the more effective use of fertilizers and pesticides, and improved cultural practices. A major factor, however, has been the increased utilization of nonhuman energy and of more effective machines and implement. Objectives of the foundation of this project is to design a small tractor helps small farmers owning appointed by the mechanics at work in there a small farm fit, small, and limited income. Our group that will take care of the design and development of agricultural machinery in Sudan beginning of this project, which we ask god that we have the best start for the development of agriculture in Sudan. We thank the department of agricultural engineering at the University of Khartoum on their best effort in order to promote agricultural and subdivision (agricultural revival) and especially thank Dr. Omer Adam Rahama of the division of design and supervisor of this project and wish them health and wellness. 7 3 CHAPTER TWO 3.1 PROBLEMS ENCOUNTERED 3.1.1.1 Types of problems encountered: The student approaching the subject of farm machinery engineering might well considered the types of problems most frequently encountered in this field, together with the general methods ordinarily employed in pursuing these problems. Although the variety of the problems that might be encountered is wide, most of them can be grouped into the following general classification. 1- Development of new type of machine. 2- Improvement of a machine, development of a new model similar to existing machines, or design changes to reduce the manufacturing cost of a machine. 3- Comparative
Recommended publications
  • Fordson Model F Dearborn, MI 1917
    Fordson Model F Dearborn, MI 1917 The story of Fordson tractors begins The Fordson name was selected for Ford stopped tractor production in with Henry Ford. Born in 1863 in two reasons. First, there was already a the U.S. in 1928, choosing instead to Dearborn, Michigan, Henry Ford’s company in Minneapolis using the name focus on the new Model A automobile parents had moved to the U.S. from “Ford Tractor Company,” trying to that would be replacing the Model T. near Cork in Ireland and now ran a large capitalize on the name of very successful However, Fordson production continued farm of several hundred acres. Young Ford Model T by tricking customers into in Cork, Ireland, and later in Dagenham, Henry soon found farm work hard and believing the tractor was made by Henry England. After Fordson production was preferred tinkering with machines to Ford. Second, the shareholders of the transferred to Cork, exports to the U.S. laboring on the farm. Fortunately, his Ford Motor Company did not approve of were limited to 1,500 a month, which father approved of Henry’s inclination to tractor production and wanted nothing restricted sales at Ford dealerships. take machines apart and put them back to do with it. So in 1920, Henry Ford and together. In 1903, Ford formed the Ford his son, Edsel, established an entirely The original Fordson Model F tractor Motor Company using his knowledge new firm, “Ford and Son, Inc.,” which was was eventually outsold by International of machinery to turn his hobby into a later shortened to just “Fordson”.
    [Show full text]
  • A Comparative Evaluation of Electric- and Gasoline- Powered Garden Tractors Mohamed Abdelgadir Elamin Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 A comparative evaluation of electric- and gasoline- powered garden tractors Mohamed Abdelgadir Elamin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Elamin, Mohamed Abdelgadir, "A comparative evaluation of electric- and gasoline-powered garden tractors" (1981). Retrospective Theses and Dissertations. 14462. https://lib.dr.iastate.edu/rtd/14462 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A comparative evaluation of electric- and gasoline-powered garden tractors by Mohamed Abdelgadir Elamin A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major: Agricultural Engineering Signatures have been redacted for privacy Iowa State University Ames> Iowa 1981 11 TABLE OF CONTENTS Page INTRODUCTION 1 OBJECTIVES 4 LITERATURE REVIEW 5 DESCRIPTION OF THE TRACTORS 14 The EPT 14 The PPT 19 PROCEDURE 25 Drawbar Performance 25 Field Experiments (Plowing, Disking, and Mowing)
    [Show full text]
  • The Farm Tractor in the Forest" Is a Manual for Woodlot Owners and Small Scale Woods Contractors
    The Form Troctor in the Forest "The Farm Tractor in the Forest" is a manual for woodlot owners and small scale woods contractors. It outlines the type of modifica• tions and auxiliary equipment that may be needed if a farm tractor is to be useful in a forestry operation. Guidelines for planning of forestry operations and safe work techniques are also provided. The last sections of the book cover the economic aspects of farm- tractor-logging and provide examples of how to calculate costs to compare different logging systems. The original version of this book was printed in Sweden. Illustra• tions and most references reflect current Swedish conditions. However, in some places minor changes have been made in the English version to reflect conditions in North America. ® The National Board of Forestry, Sweden Written by: Milton Nilsson illustrations: Nils Forshed Cover photo: Milton Nilsson Reference group: Thorsten Andersson Karl-Gunnar Lindqvist Bertil Svensson Project leader: Karl-Goran Enander Bengt Pettersson Editor: Bengt Pettersson English translation: Forest Extension Service N.B. Department of Natural Resources R.R.#5 Fredericton, New Brunswick Canada E3B 4X6 LF ALLF 146 82 027 Printed by: AB Faiths Tryckeri, Varnamo, Sweden 1982 ISBN 91-85748-25-0 The National Board of Forestry, Sweden published The Farm Tractor in the Forest by Milton Nilsson in 1982. In August 2017 the Swedish Forest Agency, successor organization to the National Board of Forestry, granted Vincent Seiwert of Bombadil Tree Farm, Ashland, Maine, U.S.A. permission to reproduce and disseminate The Farm Tractor in the Forest for noncommercial purposes as he deems appropriate.
    [Show full text]
  • Modeling of Tractor Fuel Consumption
    energies Article Modeling of Tractor Fuel Consumption Bronisław Andrzej Kolator Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 Street, 10-719 Olsztyn, Poland; [email protected] Abstract: In this paper, the energy diagnostic of tractor performance consists in evaluating the energy (fuel consumption per hectare—dm3 ha−1) for a given agricultural operation and in combining it with working capacity, also called productivity (area productivity—ha h−1). One of the methods of solving this problem is the identification of the functioning process of the machine unit. A model of the process of the machine unit performance was developed, considering the operation of the rear linkage system of the implement with the force control adjustment system. In order to analyze the system, a mathematical model of the system function was built: tractor-implement-soil, defining the physical connections and interdependencies between the individual subsystems of the system. Based on this model, a simulation model was developed and implemented in the Matlab/Simulink environment. The Simulink package was used to test the performance of the machine set. The efficiency indicators according to the adopted criteria were calculated in the evaluation block. To evaluate the process, the technical and operational parameters of the tractor, the type and parameters of the tool, and soil properties were taken into account. The results of simulation studies obtained on a validated model are consistent with experimental data from appropriate soil conditions. Keywords: tractor; fuel efficiency; total efficiency; simulation model; three-point hitch; draft control Citation: Kolator, B.A. Modeling of Tractor Fuel Consumption.
    [Show full text]
  • Agricultural Tractor Selection: a Hybrid and Multi-Attribute Approach
    sustainability Article Agricultural Tractor Selection: A Hybrid and Multi-Attribute Approach Jorge L. García-Alcaraz 1,*, Aidé A. Maldonado-Macías 1, Juan L. Hernández-Arellano 1, Julio Blanco-Fernández 2, Emilio Jiménez-Macías 2 and Juan C. Sáenz-Díez Muro 2 1 Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juarez, Del Charro Ave. 450 N., Ciudad Juárez, Chihuahua 32310, Mexico; [email protected] (A.A.M.-M.); [email protected] (J.L.H.-A.) 2 Department of Mechanical and Electrical Engineering, University of La Rioja, San José de Calasanz 31, Logroño, La Rioja 26004, Spain; [email protected] (J.B.-F.); [email protected] (E.J.-M.); [email protected] (J.C.S.-D.M.) * Correspondence: [email protected]; Tel.: +52-656-688-4843 (ext. 5433) Academic Editor: Filippo Sgroi Received: 9 January 2016; Accepted: 3 February 2016; Published: 6 February 2016 Abstract: Usually, agricultural tractor investments are assessed using traditional economic techniques that only involve financial attributes, resulting in reductionist evaluations. However, tractors have qualitative and quantitative attributes that must be simultaneously integrated into the evaluation process. This article reports a hybrid and multi-attribute approach to assessing a set of agricultural tractors based on AHP-TOPSIS. To identify the attributes in the model, a survey including eighteen attributes was given to agricultural machinery salesmen and farmers for determining their importance. The list of attributes was presented to a decision group for a case of study, and their importance was estimated using AHP and integrated into the TOPSIS technique.
    [Show full text]
  • Fordson Tractor
    Fordson Tractor For Thirty-Five Years Henry Ford, running in oil. Constant mesh selective type a farmer’s boy, has been working on the problem of a transmission, three speeds forward and one reverse. Ball successful tractor for the farm, and, for the past fourteen bearings. Three point suspension. Splash system of years, has devoted much time, and a vast amount of lubrication. Thermo-siphon cooling system. Gravity fuel money, to the development of the present Fordson system. Worm and worm-wheel drive. All gearing tractor. In the usual Ford way it grew into shape through entirely enclosed and running in oil. constant experimentation, not atone in the workshop but on the farm, and that he might get the experiences from What it Does as a Power Unit various soils and conditions which face the fanner, he As a stationary power plant, for either permanent or gradually acquired a farm numbering several thousand emergency work, the Fordson Power and Transport Unit acres, and here the Fordson tractor, under the guidance of will deliver 18 H. P. to any machine driven through his genius, was developed. From the records it has made shaft, belt, gears or chain. It will do this at an engine in all parts of the civilized world, it comes the nearest to speed of 1,000 revolutions per minute. A governor can being the all-around satisfactory tractor for the farm.. be attached where power requirements are either This fact is strengthened in the knowledge that while intermittent or disposed to fluctuate. 350,000 tractors were on farms in the United States (Oct.
    [Show full text]
  • Transmission (Mechanics) - Wikipedia 8/28/20, 119 PM
    Transmission (mechanics) - Wikipedia 8/28/20, 119 PM Transmission (mechanics) A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term 5 speed transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.[1][2] In British English, the term transmission refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive), differential, and final drive shafts. In American English, however, the term refers more specifically to the gearbox alone, and detailed Single stage gear reducer usage differs.[note 1] The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted. Often, a transmission has multiple gear ratios (or simply "gears") with the ability to switch between them as speed varies. This switching may be done manually (by the operator) or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also exist, which simply change the speed and torque (and sometimes direction) of motor output. In motor vehicles, the transmission generally is connected to the engine crankshaft via a flywheel or clutch or fluid coupling, partly because internal combustion engines cannot run below a particular speed.
    [Show full text]
  • DETC2007-49420.Ford Model T.Final
    Proceedings of IDETC/CIE 2008 ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 3-6, 2008, New York City, NY, USA DETC2008/DFMLC-49420 HENRY FORD AND THE MODEL T: LESSONS FOR PRODUCT PLATFORMING AND MASS CUSTOMIZATION Fabrice Alizon * Steven B. Shooter Timothy W. Simpson Keyplatform Company Mechanical Engineering Industrial & Manufacturing Engineering 91 rue du Faubourg St Honoré Bucknell University The Pennsylvania State University 75008 Paris FRANCE Lewisburg, PA 17837 USA University Park, PA 16802 USA ABSTRACT * platform-based products ever produced in quantity and one of Everyone knows Henry Ford’s famous maxim: “You can the most efficiently designed. Despite Henry Ford’s famous have any color car you want so long as it’s black.” While he is maxim: “You can have any color car so long as it’s black”, recognized as the father of mass production, his contributions Ford’s contributions extend far beyond being the pioneer of extend well beyond that, offering valuable lessons for product mass production processes. Ford adapted techniques from the platforming and mass customization. While Ford’s pioneering U.S. weapon and meat packing industries to the automotive production systems are widely known and studied, few realize industry and improved it to its limits by rigorous principles [4]. that Ford’s Model T could be viewed as one of the greatest Each Model T model was built on the same platform, with a platforms ever created, enabling his workers to customize this deep level of customization: the body was specific to each model for a variety of different markets.
    [Show full text]
  • Tractor Hazards
    TRACTOR HAZARDS HOSTA Task Sheet 4.2 Core NATIONAL SAFE TRACTOR AND MACHINERY OPERATION PROGRAM backward. There are dozens of Introduction examples of tractor turnover Tractors are a primary source of situations. Most are preventable if work-related injury on farms, operators follow good safe tractor however, not all of the injuries operation practices. Some happen while the tractor is being common examples of tractor used for work. overturns include: Nationally, nearly one-third of all • Turning or driving too close to the edge of a bank farm work fatalities are tractor- Figure 4.2.a. Tractor overturns can occur with high or ditch speed sharp turns. Avoid sudden sharp movements in related. Injuries occur for a variety all tractor work. Safety Management for Landscapers, Grounds-Care Businesses, and Golf Courses, John Deere of reasons and in a number of • Driving too fast on rough Publishing, 2001. Illustrations reproduced by permission. All different ways. This task sheet will roads and lanes and running rights reserved. describe types of tractor hazards or bouncing off the road or and the nature and severity of lane Top-heavy, injuries associated with using farm powerful tractors. • Hitching somewhere other than the drawbar when tractors can pulling or towing objects Hazard Groups upset if used There are several hazards • Driving a tractor straight up improperly. associated with tractor operation. a slope that is too steep Tractor hazards are grouped into • Turning a tractor sharply the following four categories: with a front-end loader 1. Overturns raised high Learning Goals 2. Runovers A rollover protective structure (ROPS), a structural steel cage • To recognize and avoid those 3.
    [Show full text]
  • Connecting Implements to the Tractor
    CONNECTING IMPLEMENTS TO THE TRACTOR HOSTA Task Sheet 5.1 Core NATIONAL SAFE TRACTOR AND MACHINERY OPERATION PROGRAM Introduction “The owner says that I should be able to connect (hitch) the rake to the tractor and be in the nearby field within 5 minutes. It has been 10 minutes, and I still can’t seem Center of Gravity to get the drawbar of the tractor Angle of Pull lined up with the hitch on the rake.” Figure 5.1.a. An example of safe hitching. The drawbar will lower if the front end lifts Can you steer in reverse? Can you off the ground. This reduces the “angle of pull” and the risk of a rear overturn. Figure 5.1.c. The tractor drawbar is the only safe use the clutch and brakes place to connect a load. Do not hitch higher than the drawbar so all pulling forces stay below the smoothly? If not, review the tractor’s center of gravity. For most operations, lessons on steering in reverse and Pulling a load with the downward the drawbar should be placed midpoint between the rear tires to maximize pulling power. Hillside moving and steering the tractor. and rearward force above the operations may require a drawbar adjustment to tractor’s center of gravity will one side to balance the pulling forces. Do you understand where to hitch result in a rear overturn. You must to the load to insure tractor hitch only to the drawbar to stability? If not, review the lessons prevent the tractor from rearing up Hitch to the drawbar on tractor stability.
    [Show full text]
  • Allis Chalmers G Tractor Operators Manual
    AAlllliiss CChhaallmmeerrss Operator’s Manual G Operator’s Manual THIS IS A MANUAL PRODUCED BY JENSALES INC. WITHOUT THE AUTHORIZATION OF ALLIS CHALMERS OR IT’S SUCCESSORS. ALLIS CHALMERS AND IT’S SUCCESSORS ARE NOT RESPONSIBLE FOR THE QUALITY OR ACCURACY OF THIS MANUAL. TRADE MARKS AND TRADE NAMES CONTAINED AND USED HEREIN ARE THOSE OF OTHERS, AND ARE USED HERE IN A DESCRIPTIVE SENSE TO REFER TO THE PRODUCTS OF OTHERS. AC-O-G Years Made: 1948‐ Make: Allis Chalmers Model: G TOP OF TRANS, REAR OF SHIFT LEVER 1955 HP‐PTO: HP‐Engine: HP‐Drawbar: 10 Year Beginning Serial Number Engine‐Make: HP‐Range: 10 Engine‐Fuel: GAS 1948 6 CONTINENTAL Transmission‐ Engine‐Cyl(s)‐CID: /62 Optional: 1949 10961 STD: Fwd/Rev Fwd/Rev Standard: 3 Mfwd‐Std/Opt: 1950 23180 Optional: Tires‐Std Front: Tires‐Std Rear: Wheelbase‐Inch: 1951 24006 Pto Type: Pto Speed: CAT I‐3pt Hitch: False 1952 25269 CAT III‐3pt CAT II‐3pt Hitch: False Hitch Lift: 1953 26497 Hitch: False Hydraulics‐Type: Hyd‐Cap: Hyd‐Flow: 1954 28036 Cooling Hyd Std Outlets: Fuel Tank Capacity: 1955 29036 Capacity: Cab‐Stdm A/C; Rops: Weight: 1550 New Price: 970 Paint Codes Location MFG Color Name ENTIRE TRACTOR LESS RIMS ACPERSIANORANGE1 FRONT AND REAR RIMS ACALUMINUM OPERATING INSTRUCTIONS MAINTENANCE AND REPAIR PARTS ILLUSTRATIONS MODEL ~'G" TRACTOR ALLIS-CHALMERS MFG. CO. TRACTOR DIVISION MILWAUKEE, WISCONSIN, U. S. A. LITHO. IN U. S. A. FORM TM-4B INDEX ADJ USTMENTS: LUBRICATION GUIDE 5 CLUTCH .......••.••..... 19 MAINTENANCE: FAN BELT ..•...•...•..... 11 AMMETER .. 18 FRONT WHEEL BEARING • .
    [Show full text]
  • Hydro/Hydraulic Assist Transmission Common Course Outline
    Hydro/Hydraulic Assist Transmission Common Course Outline Course Information Organization South Central College Revision History 2008-2009 Course Number AGME2832 Department Ag Service Technician Total Credits 2 Description This course covers speed change, powershift and hydrostatic transmissions. The student identifies transmission operation, traces power flow and diagnoses problems. The student performs disassembly, repairing, reassembly, testing and adjusting of various transmissions. The transmissions covered in the course include John Deere 8 & 15 speed and the John Deere 8000 series powershift transmission. International Harvester TA, International Harvester Hydrostatic and the Case-IH Magnum transmission. White 3 speed and the Case RPS-34. Sunstrand/Eaton hydrostatic. If you have a disability and need accommodations to participate in the course activities, please contact your instructor as soon as possible. Types of Instruction Instruction Type Contact Hours Credits Lab 64 2 Prerequisites AGME1821, AGME1831 Exit Learning Outcomes Core Abilities A. Critical Thinking B. Math Logic C. Professionalism Competencies 1. Review power train theory Learning Objectives a. Review power train theory b. Explain planatery systems c. Explain wet clutchs 2. Explain measuring and evaluating worn parts Learning Objectives a. Perform measuring of components b. Evaluate component specifications based on service standards c. Determine whether parts are to be replaced or reused based on evaluation 3. Describe J.D. powershift operation Learning Objectives a. Explain J.D. 8 speed powershift operation b. Disassemble J.D. 8 speed powershift transmission c. Reassemble J.D. 8 speed powershift transmission d. Pressure test/adjust J.D. 8 speed transmission e. Identify J.D. 8 speed hydraulic circuitry f. Troubleshoot (J.D.
    [Show full text]