Development of Specifications for Heavy-Duty Tractor Trucks in Canada and the United States

Total Page:16

File Type:pdf, Size:1020Kb

Development of Specifications for Heavy-Duty Tractor Trucks in Canada and the United States WORKING PAPER 2018-27 Development of specifications for heavy-duty tractor trucks in Canada and the United States Authors: Ben Sharpe, Dave Schaller (The North American Council for Freight Efficiency) Date: October 2018 Keywords: Tractor-trailers, vehicle specifications, trucking industry 1. Introduction to gain a deeper understanding of the The paper is organized as follows. process of how the features of Class In Section 2, we describe the two In the heavy-duty trucking industry, 7 and 81 tractor trucks are specified most common pathways for speci- fleets and owner-operators often have for purchase in Canada and the United fying tractor trucks in Canada and the ability to customize a wide vari- States. The primary objectives of this the United States, as well as charac- ety of design features in the truck, paper are to: teristics of the specification process including engine size and power rat- that the authors have gleaned from ing, transmission type, axle configura- • Gain a better understanding of interactions with thousands of fleets, tion, gear ratios, tire sizing and type, the overall process for specifying manufacturers, and suppliers in their aerodynamic features, and countless and purchasing new Class 7 and 8 combined 30-plus years of experi- other parameters. Different combina- tractor trucks; ence in the field. Section 3 outlines tions of design choices can result in the methodology of the fleet survey thousands of unique specifications for • Interview a diverse cross section that was carried out for this proj- the same truck model. With Canada of trucking fleets, including car- ect and discusses the findings from and the United States both having riers of various sizes, geographic the interviews by four major topic finalized regulations that will affect locations, and operating profiles; areas: 1) trusted sources of informa- truck designs and the options avail- • Glean insights into how fuel-sav- tion during the specification process, able, it is important that policymakers ing technologies are marketed 2) specifying fuel-saving technolo- are familiar with the process by which in North America and how fleets gies and packages, 3) differences in fleets make these choices as well as make decisions about adopting the specification process in Canada the information available from dealer- these technologies; and ships and manufacturers to support and the United States, and 4) macro specification decisions. • Synthesize the findings from the forces in the trucking industry, includ- interviews into information that is ing driver shortages and turnover as The motivation for this collabora- relevant for policymakers. well as emerging trends toward elec- tive study between the International trification and automation. In Sec- Council on Clean Transportation 1 Class 7 trucks have a gross vehicle weight tion 4, we outline several key insights rating (GVWR) of between 26,000 and (ICCT) and the North American Coun- 33,000 pounds; Class 8 trucks have a GVWR from the study and highlight areas cil for Freight Efficiency (NACFE) is heavier than 33,000 pounds. for future work. Acknowledgments: This work is supported by Environment and Climate Change Canada. Rachel Muncrief, Oscar Delgado, and Felipe Rodriguez of the International Council on Clean Transportation, and Mike Roeth of the North American Council for Freight Efficiency provided critical reviews on an earlier version of the report. © INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION, 2018 WWW.THEICCT.ORG DEVELOPMENT OF SPECIFICATIONS FOR HEAVY-DUTY TRACTOR TRUCKS IN CANADA AND THE UNITED STATES 2. Overview of truck Truck dealership Manufacturer account manager specification process Large fleets: This section provides an overview Medium and small fleets, owner-operators orders more than ~100 trucks/year (20 – 25% of sales in U.S. & Canada) of the truck specification process in (75 – 80% of sales in U.S. & Canada) Canada and the United States. In the following three subsections, we dis- Trucks in stock that cuss three factors that have a signifi- Fleet’s procurement team and OEM meet customer needs? cant impact on the process in which account manager develop specifications • Ongoing interaction between OEM trucks are specified, as well as the and fleet technologies and features that end up Yes No • Very large fleets will have dedicated on those trucks. These factors are the team at OEM for procurement • Specifications review: examine existing size of the trucking fleet, the type of Customer and dealer rep truck spec line-by-line prior to making fleet—whether for-hire or private, and develop truck specifications new order. OEM rep details what has secondary markets. • Process takes between 2 changed from the previous model year. and 8 hours • Thousands of options à 2.1. FLEET SIZE Degree of customization Pilot review (optional) depends on the level of the Build one truck a few weeks ahead Typically, the process for purchasing sophistication of the fleet of the remaining order to give the and specifying a new truck depends customer the opportunity to see it on the size of the fleet. Small and being built and/or review the vehicle when it comes o the assembly line. medium-sized fleets tend to acquire Trucks manufactured trucks via a dealership, whereas large fleets buying 100 or more trucks a Trucks manufactured Trucks delivered year have assigned account managers from truck original equipment manu- Trucks delivered facturers (OEMs) to facilitate pur- chases. Figure 1 illustrates the key fea- Figure 1. Two primary pathways for purchasing and specifying a tractor truck tures and decision points of the truck operations, challenges, and desires. businesses require different applica- specification process for smaller and This typically involves just one or two tions. For example, the need for dif- medium fleets compared with larger dealership employees and one or two ferent base specs can reflect varia- ones. Each pathway is discussed in representatives from the fleet or the tions in: more detail in Sections 2.1.1 and 2.1.2. owner-operator directly. The specifi- cation sheet is typically created at the • Type of operation: such as dry van versus refrigerated freight 2.1.1. Owner-operators and customer’s facility, and the process versus flatbed transport. small to medium-sized fleets: can take anywhere from a few hours truck dealerships to a full work day. An example speci- • Differences in gross combined fication sheet from an actual truck weight allowed in various prov- Truck dealerships tend to know their order is provided in Appendix B. inces or states. local customers well, as they closely track the operating profiles of exist- • Length of haul: for example, day 2.1.2. Medium and large fleets: ing and potential customers. The cab versus single driver sleeper national account managers buyer may start the discussions on versus teams with double bunk new truck purchases based on exist- Large fleets may have one or more sleeper cabs. ing specifications or ask another fleet direct points of support from the OEM • Merged fleets: It is often the case to use its specifications as a starting such as sales, parts, warranty, and that large fleets are involved in point. The dealer’s sales person will training, depending on the situation. an acquisition or merger with most likely visit the fleet location and Virtually all have a national accounts another fleet, which frequently develop one or more proposals to manager to oversee the relation- brings different types of tractor meet the fleet’s needs based on what ship. They may also have more than and trailer equipment together the sales person has learned about one base set of specifications if their into one operation. 2 INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION WORKING PAPER 2018-27 DEVELOPMENT OF SPECIFICATIONS FOR HEAVY-DUTY TRACTOR TRUCKS IN CANADA AND THE UNITED STATES Setting the specifications for the next UPS Inc. order may involve multiple people Ryder Supply Chain Solutions within the fleet to represent areas FedEx Corp. TFI International such as maintenance, driver recruit- Landstar System For-hire ment/training, warranty, and finance. Swift Transportation With medium and large fleets, there XPO Logistics is a good chance that there will be J.B. Hunt Transport Services Inc. several OEM representatives involved YRC Worldwide from different departments, such as Schneider PepsiCo Inc. engineering, used trucks, and reliabil- Sysco Corp. ity. The most common OEM point of Wal-Mart Stores contact for the fleet is the sales/appli- Coca-Cola Co. cations engineer, as he or she works U.S. Foods Private as a technical liaison between sales Reyes Holdings Halliburton Co. and engineering/manufacturing. The Agrium Inc. sales/applications engineer is typically McLane Co. responsible for an application or model C & J Energy Services family, or multiple applications or fami- 0 20,00040,00060,00080,000 100,000 120,000 lies. This puts them in position to have Tractor trucks owned / operated considerable knowledge of standard . Ten largest for-hire and private trucking fleets in North America in 2017 features, published options, unpub- Figure 2 lished options, and unusual customer occur at various places over several Through conversations with several requirements that may even need to days or weeks. fleets of various types and sizes across be completed after the production North America, as well as experts line. Their position helps them know from manufacturing, the authors 2.2. FOR-HIRE VERSUS what is changing in model options as have learned the principal differences PRIVATE FLEETS well as how the industry is adapting to between for-hire and private fleets. new or updated technologies. Another important criterion is Table 1 summarizes the typical charac- whether the fleet is a for-hire or a teristics that differentiate for-hire and Meetings with medium and large private fleet. For-hire fleets contract private fleets and how these dispari- fleets may occur at the customer’s out trucking services as their pri- ties translate to different preferences facility to allow the OEM to see the mary business and generally domi- for vehicle features and technologies.
Recommended publications
  • Fordson Model F Dearborn, MI 1917
    Fordson Model F Dearborn, MI 1917 The story of Fordson tractors begins The Fordson name was selected for Ford stopped tractor production in with Henry Ford. Born in 1863 in two reasons. First, there was already a the U.S. in 1928, choosing instead to Dearborn, Michigan, Henry Ford’s company in Minneapolis using the name focus on the new Model A automobile parents had moved to the U.S. from “Ford Tractor Company,” trying to that would be replacing the Model T. near Cork in Ireland and now ran a large capitalize on the name of very successful However, Fordson production continued farm of several hundred acres. Young Ford Model T by tricking customers into in Cork, Ireland, and later in Dagenham, Henry soon found farm work hard and believing the tractor was made by Henry England. After Fordson production was preferred tinkering with machines to Ford. Second, the shareholders of the transferred to Cork, exports to the U.S. laboring on the farm. Fortunately, his Ford Motor Company did not approve of were limited to 1,500 a month, which father approved of Henry’s inclination to tractor production and wanted nothing restricted sales at Ford dealerships. take machines apart and put them back to do with it. So in 1920, Henry Ford and together. In 1903, Ford formed the Ford his son, Edsel, established an entirely The original Fordson Model F tractor Motor Company using his knowledge new firm, “Ford and Son, Inc.,” which was was eventually outsold by International of machinery to turn his hobby into a later shortened to just “Fordson”.
    [Show full text]
  • A Comparative Evaluation of Electric- and Gasoline- Powered Garden Tractors Mohamed Abdelgadir Elamin Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 A comparative evaluation of electric- and gasoline- powered garden tractors Mohamed Abdelgadir Elamin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Elamin, Mohamed Abdelgadir, "A comparative evaluation of electric- and gasoline-powered garden tractors" (1981). Retrospective Theses and Dissertations. 14462. https://lib.dr.iastate.edu/rtd/14462 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A comparative evaluation of electric- and gasoline-powered garden tractors by Mohamed Abdelgadir Elamin A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major: Agricultural Engineering Signatures have been redacted for privacy Iowa State University Ames> Iowa 1981 11 TABLE OF CONTENTS Page INTRODUCTION 1 OBJECTIVES 4 LITERATURE REVIEW 5 DESCRIPTION OF THE TRACTORS 14 The EPT 14 The PPT 19 PROCEDURE 25 Drawbar Performance 25 Field Experiments (Plowing, Disking, and Mowing)
    [Show full text]
  • The Farm Tractor in the Forest" Is a Manual for Woodlot Owners and Small Scale Woods Contractors
    The Form Troctor in the Forest "The Farm Tractor in the Forest" is a manual for woodlot owners and small scale woods contractors. It outlines the type of modifica• tions and auxiliary equipment that may be needed if a farm tractor is to be useful in a forestry operation. Guidelines for planning of forestry operations and safe work techniques are also provided. The last sections of the book cover the economic aspects of farm- tractor-logging and provide examples of how to calculate costs to compare different logging systems. The original version of this book was printed in Sweden. Illustra• tions and most references reflect current Swedish conditions. However, in some places minor changes have been made in the English version to reflect conditions in North America. ® The National Board of Forestry, Sweden Written by: Milton Nilsson illustrations: Nils Forshed Cover photo: Milton Nilsson Reference group: Thorsten Andersson Karl-Gunnar Lindqvist Bertil Svensson Project leader: Karl-Goran Enander Bengt Pettersson Editor: Bengt Pettersson English translation: Forest Extension Service N.B. Department of Natural Resources R.R.#5 Fredericton, New Brunswick Canada E3B 4X6 LF ALLF 146 82 027 Printed by: AB Faiths Tryckeri, Varnamo, Sweden 1982 ISBN 91-85748-25-0 The National Board of Forestry, Sweden published The Farm Tractor in the Forest by Milton Nilsson in 1982. In August 2017 the Swedish Forest Agency, successor organization to the National Board of Forestry, granted Vincent Seiwert of Bombadil Tree Farm, Ashland, Maine, U.S.A. permission to reproduce and disseminate The Farm Tractor in the Forest for noncommercial purposes as he deems appropriate.
    [Show full text]
  • Modeling of Tractor Fuel Consumption
    energies Article Modeling of Tractor Fuel Consumption Bronisław Andrzej Kolator Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 Street, 10-719 Olsztyn, Poland; [email protected] Abstract: In this paper, the energy diagnostic of tractor performance consists in evaluating the energy (fuel consumption per hectare—dm3 ha−1) for a given agricultural operation and in combining it with working capacity, also called productivity (area productivity—ha h−1). One of the methods of solving this problem is the identification of the functioning process of the machine unit. A model of the process of the machine unit performance was developed, considering the operation of the rear linkage system of the implement with the force control adjustment system. In order to analyze the system, a mathematical model of the system function was built: tractor-implement-soil, defining the physical connections and interdependencies between the individual subsystems of the system. Based on this model, a simulation model was developed and implemented in the Matlab/Simulink environment. The Simulink package was used to test the performance of the machine set. The efficiency indicators according to the adopted criteria were calculated in the evaluation block. To evaluate the process, the technical and operational parameters of the tractor, the type and parameters of the tool, and soil properties were taken into account. The results of simulation studies obtained on a validated model are consistent with experimental data from appropriate soil conditions. Keywords: tractor; fuel efficiency; total efficiency; simulation model; three-point hitch; draft control Citation: Kolator, B.A. Modeling of Tractor Fuel Consumption.
    [Show full text]
  • Agricultural Tractor Selection: a Hybrid and Multi-Attribute Approach
    sustainability Article Agricultural Tractor Selection: A Hybrid and Multi-Attribute Approach Jorge L. García-Alcaraz 1,*, Aidé A. Maldonado-Macías 1, Juan L. Hernández-Arellano 1, Julio Blanco-Fernández 2, Emilio Jiménez-Macías 2 and Juan C. Sáenz-Díez Muro 2 1 Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juarez, Del Charro Ave. 450 N., Ciudad Juárez, Chihuahua 32310, Mexico; [email protected] (A.A.M.-M.); [email protected] (J.L.H.-A.) 2 Department of Mechanical and Electrical Engineering, University of La Rioja, San José de Calasanz 31, Logroño, La Rioja 26004, Spain; [email protected] (J.B.-F.); [email protected] (E.J.-M.); [email protected] (J.C.S.-D.M.) * Correspondence: [email protected]; Tel.: +52-656-688-4843 (ext. 5433) Academic Editor: Filippo Sgroi Received: 9 January 2016; Accepted: 3 February 2016; Published: 6 February 2016 Abstract: Usually, agricultural tractor investments are assessed using traditional economic techniques that only involve financial attributes, resulting in reductionist evaluations. However, tractors have qualitative and quantitative attributes that must be simultaneously integrated into the evaluation process. This article reports a hybrid and multi-attribute approach to assessing a set of agricultural tractors based on AHP-TOPSIS. To identify the attributes in the model, a survey including eighteen attributes was given to agricultural machinery salesmen and farmers for determining their importance. The list of attributes was presented to a decision group for a case of study, and their importance was estimated using AHP and integrated into the TOPSIS technique.
    [Show full text]
  • Fordson Tractor
    Fordson Tractor For Thirty-Five Years Henry Ford, running in oil. Constant mesh selective type a farmer’s boy, has been working on the problem of a transmission, three speeds forward and one reverse. Ball successful tractor for the farm, and, for the past fourteen bearings. Three point suspension. Splash system of years, has devoted much time, and a vast amount of lubrication. Thermo-siphon cooling system. Gravity fuel money, to the development of the present Fordson system. Worm and worm-wheel drive. All gearing tractor. In the usual Ford way it grew into shape through entirely enclosed and running in oil. constant experimentation, not atone in the workshop but on the farm, and that he might get the experiences from What it Does as a Power Unit various soils and conditions which face the fanner, he As a stationary power plant, for either permanent or gradually acquired a farm numbering several thousand emergency work, the Fordson Power and Transport Unit acres, and here the Fordson tractor, under the guidance of will deliver 18 H. P. to any machine driven through his genius, was developed. From the records it has made shaft, belt, gears or chain. It will do this at an engine in all parts of the civilized world, it comes the nearest to speed of 1,000 revolutions per minute. A governor can being the all-around satisfactory tractor for the farm.. be attached where power requirements are either This fact is strengthened in the knowledge that while intermittent or disposed to fluctuate. 350,000 tractors were on farms in the United States (Oct.
    [Show full text]
  • Transmission (Mechanics) - Wikipedia 8/28/20, 119 PM
    Transmission (mechanics) - Wikipedia 8/28/20, 119 PM Transmission (mechanics) A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term 5 speed transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.[1][2] In British English, the term transmission refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive), differential, and final drive shafts. In American English, however, the term refers more specifically to the gearbox alone, and detailed Single stage gear reducer usage differs.[note 1] The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted. Often, a transmission has multiple gear ratios (or simply "gears") with the ability to switch between them as speed varies. This switching may be done manually (by the operator) or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also exist, which simply change the speed and torque (and sometimes direction) of motor output. In motor vehicles, the transmission generally is connected to the engine crankshaft via a flywheel or clutch or fluid coupling, partly because internal combustion engines cannot run below a particular speed.
    [Show full text]
  • DETC2007-49420.Ford Model T.Final
    Proceedings of IDETC/CIE 2008 ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 3-6, 2008, New York City, NY, USA DETC2008/DFMLC-49420 HENRY FORD AND THE MODEL T: LESSONS FOR PRODUCT PLATFORMING AND MASS CUSTOMIZATION Fabrice Alizon * Steven B. Shooter Timothy W. Simpson Keyplatform Company Mechanical Engineering Industrial & Manufacturing Engineering 91 rue du Faubourg St Honoré Bucknell University The Pennsylvania State University 75008 Paris FRANCE Lewisburg, PA 17837 USA University Park, PA 16802 USA ABSTRACT * platform-based products ever produced in quantity and one of Everyone knows Henry Ford’s famous maxim: “You can the most efficiently designed. Despite Henry Ford’s famous have any color car you want so long as it’s black.” While he is maxim: “You can have any color car so long as it’s black”, recognized as the father of mass production, his contributions Ford’s contributions extend far beyond being the pioneer of extend well beyond that, offering valuable lessons for product mass production processes. Ford adapted techniques from the platforming and mass customization. While Ford’s pioneering U.S. weapon and meat packing industries to the automotive production systems are widely known and studied, few realize industry and improved it to its limits by rigorous principles [4]. that Ford’s Model T could be viewed as one of the greatest Each Model T model was built on the same platform, with a platforms ever created, enabling his workers to customize this deep level of customization: the body was specific to each model for a variety of different markets.
    [Show full text]
  • Tractor Hazards
    TRACTOR HAZARDS HOSTA Task Sheet 4.2 Core NATIONAL SAFE TRACTOR AND MACHINERY OPERATION PROGRAM backward. There are dozens of Introduction examples of tractor turnover Tractors are a primary source of situations. Most are preventable if work-related injury on farms, operators follow good safe tractor however, not all of the injuries operation practices. Some happen while the tractor is being common examples of tractor used for work. overturns include: Nationally, nearly one-third of all • Turning or driving too close to the edge of a bank farm work fatalities are tractor- Figure 4.2.a. Tractor overturns can occur with high or ditch speed sharp turns. Avoid sudden sharp movements in related. Injuries occur for a variety all tractor work. Safety Management for Landscapers, Grounds-Care Businesses, and Golf Courses, John Deere of reasons and in a number of • Driving too fast on rough Publishing, 2001. Illustrations reproduced by permission. All different ways. This task sheet will roads and lanes and running rights reserved. describe types of tractor hazards or bouncing off the road or and the nature and severity of lane Top-heavy, injuries associated with using farm powerful tractors. • Hitching somewhere other than the drawbar when tractors can pulling or towing objects Hazard Groups upset if used There are several hazards • Driving a tractor straight up improperly. associated with tractor operation. a slope that is too steep Tractor hazards are grouped into • Turning a tractor sharply the following four categories: with a front-end loader 1. Overturns raised high Learning Goals 2. Runovers A rollover protective structure (ROPS), a structural steel cage • To recognize and avoid those 3.
    [Show full text]
  • Conceptual Design of Transmission for Small Tractor
    بسم هللا الرحمن الرحيم Khartoum University Faculty of Engineering Department of Agricultural and Biological engineering Conceptual Design of Transmission for Small Tractor This is submitted to Khartoum University in partial fulfillment of the requirement for the degree of B.SC in Agricultural and Biological Engineering Presented by Ishag Ahmed Shareef Omer Mohammed Zain Ahmed Omer Mustafa Altahir Fadol Murkaz Nadreen Hassan Ahmed Mohammed Under supervision: Dr. Omer Adam Rahama September 2014 1 Acknowledgment First of all there is nothing we could’ve done with out the help of Allah. We want to thank all the people who supported us and helped us with the very best they can do starting from our parents whom support was very precious and helpful. And our supervisor who believed in us and helped us to go through the tough times. And more importantly thanks to our friends from US for their quick response and their helpful information. 2 Contents 1 Abstract ................................................................................................................................................. 5 2 CHAPTER ONE ....................................................................................................................................... 6 2.1 Introduction: .................................................................................................................................. 6 3 CHAPTER TWO .....................................................................................................................................
    [Show full text]
  • Connecting Implements to the Tractor
    CONNECTING IMPLEMENTS TO THE TRACTOR HOSTA Task Sheet 5.1 Core NATIONAL SAFE TRACTOR AND MACHINERY OPERATION PROGRAM Introduction “The owner says that I should be able to connect (hitch) the rake to the tractor and be in the nearby field within 5 minutes. It has been 10 minutes, and I still can’t seem Center of Gravity to get the drawbar of the tractor Angle of Pull lined up with the hitch on the rake.” Figure 5.1.a. An example of safe hitching. The drawbar will lower if the front end lifts Can you steer in reverse? Can you off the ground. This reduces the “angle of pull” and the risk of a rear overturn. Figure 5.1.c. The tractor drawbar is the only safe use the clutch and brakes place to connect a load. Do not hitch higher than the drawbar so all pulling forces stay below the smoothly? If not, review the tractor’s center of gravity. For most operations, lessons on steering in reverse and Pulling a load with the downward the drawbar should be placed midpoint between the rear tires to maximize pulling power. Hillside moving and steering the tractor. and rearward force above the operations may require a drawbar adjustment to tractor’s center of gravity will one side to balance the pulling forces. Do you understand where to hitch result in a rear overturn. You must to the load to insure tractor hitch only to the drawbar to stability? If not, review the lessons prevent the tractor from rearing up Hitch to the drawbar on tractor stability.
    [Show full text]
  • Allis Chalmers G Tractor Operators Manual
    AAlllliiss CChhaallmmeerrss Operator’s Manual G Operator’s Manual THIS IS A MANUAL PRODUCED BY JENSALES INC. WITHOUT THE AUTHORIZATION OF ALLIS CHALMERS OR IT’S SUCCESSORS. ALLIS CHALMERS AND IT’S SUCCESSORS ARE NOT RESPONSIBLE FOR THE QUALITY OR ACCURACY OF THIS MANUAL. TRADE MARKS AND TRADE NAMES CONTAINED AND USED HEREIN ARE THOSE OF OTHERS, AND ARE USED HERE IN A DESCRIPTIVE SENSE TO REFER TO THE PRODUCTS OF OTHERS. AC-O-G Years Made: 1948‐ Make: Allis Chalmers Model: G TOP OF TRANS, REAR OF SHIFT LEVER 1955 HP‐PTO: HP‐Engine: HP‐Drawbar: 10 Year Beginning Serial Number Engine‐Make: HP‐Range: 10 Engine‐Fuel: GAS 1948 6 CONTINENTAL Transmission‐ Engine‐Cyl(s)‐CID: /62 Optional: 1949 10961 STD: Fwd/Rev Fwd/Rev Standard: 3 Mfwd‐Std/Opt: 1950 23180 Optional: Tires‐Std Front: Tires‐Std Rear: Wheelbase‐Inch: 1951 24006 Pto Type: Pto Speed: CAT I‐3pt Hitch: False 1952 25269 CAT III‐3pt CAT II‐3pt Hitch: False Hitch Lift: 1953 26497 Hitch: False Hydraulics‐Type: Hyd‐Cap: Hyd‐Flow: 1954 28036 Cooling Hyd Std Outlets: Fuel Tank Capacity: 1955 29036 Capacity: Cab‐Stdm A/C; Rops: Weight: 1550 New Price: 970 Paint Codes Location MFG Color Name ENTIRE TRACTOR LESS RIMS ACPERSIANORANGE1 FRONT AND REAR RIMS ACALUMINUM OPERATING INSTRUCTIONS MAINTENANCE AND REPAIR PARTS ILLUSTRATIONS MODEL ~'G" TRACTOR ALLIS-CHALMERS MFG. CO. TRACTOR DIVISION MILWAUKEE, WISCONSIN, U. S. A. LITHO. IN U. S. A. FORM TM-4B INDEX ADJ USTMENTS: LUBRICATION GUIDE 5 CLUTCH .......••.••..... 19 MAINTENANCE: FAN BELT ..•...•...•..... 11 AMMETER .. 18 FRONT WHEEL BEARING • .
    [Show full text]