Unimog Implement Carrier Bluetec 6 Technical Manual

Total Page:16

File Type:pdf, Size:1020Kb

Unimog Implement Carrier Bluetec 6 Technical Manual Unimog Implement Carrier BlueTec 6 Technical Manual February 2014 issue Technical Manual Technical Manual for Unimog Implement Carrier BlueTec 6 This Technical Manual serves as an advisory reference document for Part A Unimog Sales. Besides the basic vehicle version, special equipment Concept and sales reasoning is also listed. Regarding the availability of standard and special equipment, please refer to the applicable price lists. Subject to technical modifications without notice. All rights reserved. Reprinting or reproduction in electronic form, including excerpts, is prohibited and requires the approval of Mercedes-Benz Special Trucks. Part B Technical data The latest changes and additions are available through our updates on the Extranet at: www.specialtrucks-extranet.com By the copy deadline only a few application pictures of the Unimog Implement Carrier BlueTec 6 were available. Therefore pictures of the BlueTec 5 generation were used. Pictures depicting the BlueTec 5 generation are designated '(BlueTec 5)' in the caption. All other pictures show the new Unimog Implement Carrier BlueTec 6. Daimler AG Mercedes-Benz Special Trucks Sales & Marketing February 2014 issue Mercedes-Benz Special Trucks 1 Contents Technical Manual Contents: Part A (Concept and sales reasoning) Overview of models and components ................................ 4 Axles ..................................................................................... 34 Portal axles ....................................................................... 34 Product concept .................................................................... 5 Suspension ........................................................................ 35 Unimog model series in comparison ................................... 5 Track width ........................................................................ 35 Compact design .................................................................. 6 Drive system...................................................................... 36 Off-road capability ............................................................... 7 Single tyres ....................................................................... 37 Optional equipment - axles ................................................ 38 Frame ...................................................................................... 8 Frame concept .................................................................... 8 Brakes ................................................................................... 42 Optional equipment - trailer coupling / end cross-member . 9 Dual-circuit braking system ............................................... 42 4-channel ABS ................................................................... 43 Engine ....................................................................................11 Optional equipment - brakes ............................................. 44 Engine concept ...................................................................11 Drive clutch ....................................................................... 13 Steering ................................................................................ 45 High-performance engine brake ........................................ 14 Power steering .................................................................. 45 Engine control ................................................................... 14 Optional equipment - steering ........................................... 46 Exhaust gas aftertreatment – BlueTec 6 ............................ 15 Exhaust emissions ............................................................. 17 Cab exterior ......................................................................... 48 Regeneration ..................................................................... 18 Cab concept ...................................................................... 48 Radiator system................................................................. 19 Material ............................................................................. 49 Optional equipment - engine ............................................. 20 Visibility ............................................................................. 50 Roof wiper system ............................................................. 51 Transmission ........................................................................ 22 Safety ................................................................................ 52 Main transmission ............................................................. 22 Optional equipment - cab exterior ..................................... 53 Overview ........................................................................... 23 Engine management .......................................................... 24 Cab interior .......................................................................... 56 Electronic Quick Reverse (EQR) ......................................... 25 Interior .............................................................................. 56 Optional equipment - transmission .................................... 26 Air conditioning ................................................................. 57 Standard controls .............................................................. 58 2 Mercedes-Benz Special Trucks Technical Manual Contents Contents: Part B (Technical data) Optional equipment - cab interior ...................................... 59 Engine ................................................................................... 98 PTOs ...................................................................................... 64 Transmission ...................................................................... 103 Location ............................................................................ 64 Optional extra PTOs ........................................................... 65 Axles ................................................................................... 107 Hydraulics ............................................................................ 70 Brakes .................................................................................. 111 Hydraulics for tilt mechanism ............................................ 70 Work hydraulics ................................................................. 70 Cab exterior ........................................................................112 Power hydraulics ............................................................... 70 Cab interior .........................................................................113 Overview ........................................................................... 71 Snow plough relief ............................................................. 72 PTOs .....................................................................................114 Joystick .............................................................................. 73 Plug connections ............................................................... 74 Hydraulics ...........................................................................117 Optional equipment - hydraulics ........................................ 75 Electrical system ................................................................119 Electrics................................................................................ 82 Electronic networking ........................................................ 82 Weights .............................................................................. 120 Lights ................................................................................ 83 Optional equipment - electrical system ............................. 84 Trailer operation .................................................................121 Attachment and mounting areas ....................................... 87 Wheels/tyres ..................................................................... 128 4+3 mounting areas .......................................................... 88 Dimensions .........................................................................141 Mounting points .................................................................. 89 Optional equipment - mounting points .............................. 90 General information .......................................................... 148 Platforms .............................................................................. 92 Optional equipment - platforms ......................................... 93 Mercedes-Benz Special Trucks 3 Overview of models and components Technical Manual Overview of models and components Wheelbase Power No. of Gross vehicle weight Model name Model designation Engine (mm) (kW/hp) cylinders from to (t) U 216 OM 934 LA 115/156 4 405.090 2800 7.5 - 10.0 U 218 OM 934 LA 130/177 4 U 318 405.104 3000 OM 934 LA 130/177 4 7.5 - 11.0 U 423 405.105 3000 OM 934 LA 170/231 4 11.99 - 13.8 U 427 OM 936 LA 200/272 6 405.110 3150 11.99 - 14.0 U 430 OM 936 LA 220/299 6 U 423 OM 934 LA 170/231 4 U 427 405.125 3600 OM 936 LA 200/272 6 11.99 - 14.0 U 430 OM 936 LA 220/299 6 U 527 OM 936 LA 200/272 6 405.202 3350 11.99 - 16.5 U 530 OM 936 LA 220/299 6 U 527 OM 936 LA 200/272 6 405.222 3900 11.99 - 16.5 U 530 OM 936 LA 220/299 6 4 Mercedes-Benz Special Trucks Technical Manual Product concept Product concept Unimog model series in comparison Unimog Implement Carrier BlueTec 6 Unimog Extreme Off-Roader
Recommended publications
  • Fordson Model F Dearborn, MI 1917
    Fordson Model F Dearborn, MI 1917 The story of Fordson tractors begins The Fordson name was selected for Ford stopped tractor production in with Henry Ford. Born in 1863 in two reasons. First, there was already a the U.S. in 1928, choosing instead to Dearborn, Michigan, Henry Ford’s company in Minneapolis using the name focus on the new Model A automobile parents had moved to the U.S. from “Ford Tractor Company,” trying to that would be replacing the Model T. near Cork in Ireland and now ran a large capitalize on the name of very successful However, Fordson production continued farm of several hundred acres. Young Ford Model T by tricking customers into in Cork, Ireland, and later in Dagenham, Henry soon found farm work hard and believing the tractor was made by Henry England. After Fordson production was preferred tinkering with machines to Ford. Second, the shareholders of the transferred to Cork, exports to the U.S. laboring on the farm. Fortunately, his Ford Motor Company did not approve of were limited to 1,500 a month, which father approved of Henry’s inclination to tractor production and wanted nothing restricted sales at Ford dealerships. take machines apart and put them back to do with it. So in 1920, Henry Ford and together. In 1903, Ford formed the Ford his son, Edsel, established an entirely The original Fordson Model F tractor Motor Company using his knowledge new firm, “Ford and Son, Inc.,” which was was eventually outsold by International of machinery to turn his hobby into a later shortened to just “Fordson”.
    [Show full text]
  • A Comparative Evaluation of Electric- and Gasoline- Powered Garden Tractors Mohamed Abdelgadir Elamin Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 A comparative evaluation of electric- and gasoline- powered garden tractors Mohamed Abdelgadir Elamin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Mechanical Engineering Commons Recommended Citation Elamin, Mohamed Abdelgadir, "A comparative evaluation of electric- and gasoline-powered garden tractors" (1981). Retrospective Theses and Dissertations. 14462. https://lib.dr.iastate.edu/rtd/14462 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A comparative evaluation of electric- and gasoline-powered garden tractors by Mohamed Abdelgadir Elamin A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major: Agricultural Engineering Signatures have been redacted for privacy Iowa State University Ames> Iowa 1981 11 TABLE OF CONTENTS Page INTRODUCTION 1 OBJECTIVES 4 LITERATURE REVIEW 5 DESCRIPTION OF THE TRACTORS 14 The EPT 14 The PPT 19 PROCEDURE 25 Drawbar Performance 25 Field Experiments (Plowing, Disking, and Mowing)
    [Show full text]
  • The Farm Tractor in the Forest" Is a Manual for Woodlot Owners and Small Scale Woods Contractors
    The Form Troctor in the Forest "The Farm Tractor in the Forest" is a manual for woodlot owners and small scale woods contractors. It outlines the type of modifica• tions and auxiliary equipment that may be needed if a farm tractor is to be useful in a forestry operation. Guidelines for planning of forestry operations and safe work techniques are also provided. The last sections of the book cover the economic aspects of farm- tractor-logging and provide examples of how to calculate costs to compare different logging systems. The original version of this book was printed in Sweden. Illustra• tions and most references reflect current Swedish conditions. However, in some places minor changes have been made in the English version to reflect conditions in North America. ® The National Board of Forestry, Sweden Written by: Milton Nilsson illustrations: Nils Forshed Cover photo: Milton Nilsson Reference group: Thorsten Andersson Karl-Gunnar Lindqvist Bertil Svensson Project leader: Karl-Goran Enander Bengt Pettersson Editor: Bengt Pettersson English translation: Forest Extension Service N.B. Department of Natural Resources R.R.#5 Fredericton, New Brunswick Canada E3B 4X6 LF ALLF 146 82 027 Printed by: AB Faiths Tryckeri, Varnamo, Sweden 1982 ISBN 91-85748-25-0 The National Board of Forestry, Sweden published The Farm Tractor in the Forest by Milton Nilsson in 1982. In August 2017 the Swedish Forest Agency, successor organization to the National Board of Forestry, granted Vincent Seiwert of Bombadil Tree Farm, Ashland, Maine, U.S.A. permission to reproduce and disseminate The Farm Tractor in the Forest for noncommercial purposes as he deems appropriate.
    [Show full text]
  • Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #1 DISCLAIMER
    DOT HS 812 146 June 2015 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #1 DISCLAIMER This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The content is not intended to be used for determination of federal grant programs. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2015, June). Commercial medium- and heavy-duty truck fuel efficiency technology study - Report #1. (Report No. DOT HS 812 146). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 146 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency June 2015 Technology Study – Report #1 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 210.522.5876 12-F-00428 12.
    [Show full text]
  • For Immediate Release. Versalift & Mercedes Benz Unimog Join Forces
    26th May 2017 Ref: AB/03/17 – LAT-38-150-H Press Release: For immediate release. Versalift & Mercedes Benz Unimog Join Forces Date: 26 May 2017 Closer ties: Versalift Managing Director Cameron Burnett, right, and Director Andy Bray, centre, are pictured with Mercedes-Benz Head of Special Trucks – Unimog Bernhard Dolinek, and the versatile U218 access platform Unveiled! All-new Mercedes-Benz Unimog-based Versalift platform offers high performance at low cost. The vehicle made its world debut on the Versalift stand at last week’s (24-25 May) Vertikal Days exhibition, a major European showcase for lifting and access equipment. Truck-mounted access platform market leader Versalift and the team responsible for the legendary Mercedes-Benz Unimog in the UK have joined forces to launch an exciting new model. Based on a Unimog U218 implement carrier with nominal 7.5-tonne gross weight, it is designed to provide utilities companies with a compact, fast and reliable off-road package for work on low-voltage power lines in difficult-to-reach areas, at a highly attractive price. Following the Vertikal Days event, which took place at Silverstone, the new truck is being made available to operators for trial – although Versalift has been mounting its equipment on Unimog chassis for many years, this is the first time the two have invested together in a joint demonstration unit. The Mercedes-Benz Unimog is renowned for its unrivalled combination of on-road speed and all-terrain capability. The new vehicle is fitted with an all-steel boom and platform that offers a maximum working height of 15 metres.
    [Show full text]
  • Lotus and Eaton's Electrohydraulic Closed-Loop Fully Variable Valve Train System
    J.W.G. Turner and S.A. Kenchington Lotus Engineering, Norwich, UK D.A. Stretch Eaton Automotive, Southfield, Michigan, USA Production AVT Development: Lotus and Eaton's Electrohydraulic Closed-Loop Fully Variable Valve Train System Entwicklung eines Serien-AVT-Systems: Lotus’ und Eatons elektrohydraulischer voll variabler Ventiltrieb (AVT) 1. Introduction Lotus and Eaton are collaborating to bring a production closed loop control Fully Variable Valve Timing system, known as Active Valve Train (AVT), to market in the 2008-9 timeframe. The system uses electrohydraulic operation, movement of the engine poppet valves being initiated by oil flow into and out of a hydraulic chamber which is controlled by fast acting electrohydraulic servo valves developed by the two companies. This in turn allows infinitely variable timing, duration and lift. The system, which is currently being engineered in prototype form for an OEM, will allow ready application of many advanced engine control strategies, such as throttleless operation, Controlled Auto Ignition (or Homogeneous Charge Compression Ignition), fast start, variable firing order, differential cylinder loading and ultimately air hybridisation. However, to gain acceptance in the marketplace, the two partners understand that productionisation must not come at the expense of high Bill Of Materials cost, and in controlling that requirement, the performance of the system must not be allowed to suffer. This paper relates the present developmental status of the system from a valve control standpoint and describes some of the design features which have been adopted to fulfil the above requirements. An estimate of BOM costs for a typical light duty automotive application is also given.
    [Show full text]
  • Modeling of Tractor Fuel Consumption
    energies Article Modeling of Tractor Fuel Consumption Bronisław Andrzej Kolator Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 Street, 10-719 Olsztyn, Poland; [email protected] Abstract: In this paper, the energy diagnostic of tractor performance consists in evaluating the energy (fuel consumption per hectare—dm3 ha−1) for a given agricultural operation and in combining it with working capacity, also called productivity (area productivity—ha h−1). One of the methods of solving this problem is the identification of the functioning process of the machine unit. A model of the process of the machine unit performance was developed, considering the operation of the rear linkage system of the implement with the force control adjustment system. In order to analyze the system, a mathematical model of the system function was built: tractor-implement-soil, defining the physical connections and interdependencies between the individual subsystems of the system. Based on this model, a simulation model was developed and implemented in the Matlab/Simulink environment. The Simulink package was used to test the performance of the machine set. The efficiency indicators according to the adopted criteria were calculated in the evaluation block. To evaluate the process, the technical and operational parameters of the tractor, the type and parameters of the tool, and soil properties were taken into account. The results of simulation studies obtained on a validated model are consistent with experimental data from appropriate soil conditions. Keywords: tractor; fuel efficiency; total efficiency; simulation model; three-point hitch; draft control Citation: Kolator, B.A. Modeling of Tractor Fuel Consumption.
    [Show full text]
  • Agricultural Tractor Selection: a Hybrid and Multi-Attribute Approach
    sustainability Article Agricultural Tractor Selection: A Hybrid and Multi-Attribute Approach Jorge L. García-Alcaraz 1,*, Aidé A. Maldonado-Macías 1, Juan L. Hernández-Arellano 1, Julio Blanco-Fernández 2, Emilio Jiménez-Macías 2 and Juan C. Sáenz-Díez Muro 2 1 Department of Industrial Engineering and Manufacturing, Autonomous University of Ciudad Juarez, Del Charro Ave. 450 N., Ciudad Juárez, Chihuahua 32310, Mexico; [email protected] (A.A.M.-M.); [email protected] (J.L.H.-A.) 2 Department of Mechanical and Electrical Engineering, University of La Rioja, San José de Calasanz 31, Logroño, La Rioja 26004, Spain; [email protected] (J.B.-F.); [email protected] (E.J.-M.); [email protected] (J.C.S.-D.M.) * Correspondence: [email protected]; Tel.: +52-656-688-4843 (ext. 5433) Academic Editor: Filippo Sgroi Received: 9 January 2016; Accepted: 3 February 2016; Published: 6 February 2016 Abstract: Usually, agricultural tractor investments are assessed using traditional economic techniques that only involve financial attributes, resulting in reductionist evaluations. However, tractors have qualitative and quantitative attributes that must be simultaneously integrated into the evaluation process. This article reports a hybrid and multi-attribute approach to assessing a set of agricultural tractors based on AHP-TOPSIS. To identify the attributes in the model, a survey including eighteen attributes was given to agricultural machinery salesmen and farmers for determining their importance. The list of attributes was presented to a decision group for a case of study, and their importance was estimated using AHP and integrated into the TOPSIS technique.
    [Show full text]
  • Fordson Tractor
    Fordson Tractor For Thirty-Five Years Henry Ford, running in oil. Constant mesh selective type a farmer’s boy, has been working on the problem of a transmission, three speeds forward and one reverse. Ball successful tractor for the farm, and, for the past fourteen bearings. Three point suspension. Splash system of years, has devoted much time, and a vast amount of lubrication. Thermo-siphon cooling system. Gravity fuel money, to the development of the present Fordson system. Worm and worm-wheel drive. All gearing tractor. In the usual Ford way it grew into shape through entirely enclosed and running in oil. constant experimentation, not atone in the workshop but on the farm, and that he might get the experiences from What it Does as a Power Unit various soils and conditions which face the fanner, he As a stationary power plant, for either permanent or gradually acquired a farm numbering several thousand emergency work, the Fordson Power and Transport Unit acres, and here the Fordson tractor, under the guidance of will deliver 18 H. P. to any machine driven through his genius, was developed. From the records it has made shaft, belt, gears or chain. It will do this at an engine in all parts of the civilized world, it comes the nearest to speed of 1,000 revolutions per minute. A governor can being the all-around satisfactory tractor for the farm.. be attached where power requirements are either This fact is strengthened in the knowledge that while intermittent or disposed to fluctuate. 350,000 tractors were on farms in the United States (Oct.
    [Show full text]
  • For Immediate Release CADILLAC ATS SEDAN Vehicle Highlights
    For immediate release CADILLAC ATS SEDAN Vehicle Highlights: All-new, lightweight, rear-wheel-drive architecture with one of the lowest curb weights in the segment – less than 3,400 pounds (1,542 kg) Broad lineup of engines, including two four-cylinders and a V-6 for North America, capitalizes on lightweight structure for performance with efficiency Cadillac CUE, a comprehensive, in-vehicle experience that merges intuitive design with auto industry-first controls and commands for information and entertainment data 2013 CADILLAC ATS CHALLENGES THE WORLD’S BEST COMPACT LUXURY CARS The all-new 2013 Cadillac ATS compact luxury sports sedan is the brand’s entry into the world’s most significant luxury car segment and is designed to challenge the world’s best premium cars. Its sophisticated driving experience is enhanced with Cadillac CUE, a comprehensive, in-vehicle user experience that merges intuitive design with industry-first controls and commands for information and media data. Developed on an all-new, lightweight rear-drive architecture, the ATS reflects a new expression of Cadillac’s Art & Science execution philosophy, centered on a foundation of driving dynamics and mass efficiency. It is the most agile and lightweight Cadillac, with one of the lowest curb weights in the segment – less than 3,400 pounds (1,542 kg). All-wheel drive is available. Germany’s famed Nürburgring served as one of the key testing grounds, along with additional roads, race tracks and laboratories around the globe, where ATS engineers balanced performance with
    [Show full text]
  • Transmission (Mechanics) - Wikipedia 8/28/20, 119 PM
    Transmission (mechanics) - Wikipedia 8/28/20, 119 PM Transmission (mechanics) A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term 5 speed transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.[1][2] In British English, the term transmission refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive), differential, and final drive shafts. In American English, however, the term refers more specifically to the gearbox alone, and detailed Single stage gear reducer usage differs.[note 1] The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted. Often, a transmission has multiple gear ratios (or simply "gears") with the ability to switch between them as speed varies. This switching may be done manually (by the operator) or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also exist, which simply change the speed and torque (and sometimes direction) of motor output. In motor vehicles, the transmission generally is connected to the engine crankshaft via a flywheel or clutch or fluid coupling, partly because internal combustion engines cannot run below a particular speed.
    [Show full text]
  • DETC2007-49420.Ford Model T.Final
    Proceedings of IDETC/CIE 2008 ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference August 3-6, 2008, New York City, NY, USA DETC2008/DFMLC-49420 HENRY FORD AND THE MODEL T: LESSONS FOR PRODUCT PLATFORMING AND MASS CUSTOMIZATION Fabrice Alizon * Steven B. Shooter Timothy W. Simpson Keyplatform Company Mechanical Engineering Industrial & Manufacturing Engineering 91 rue du Faubourg St Honoré Bucknell University The Pennsylvania State University 75008 Paris FRANCE Lewisburg, PA 17837 USA University Park, PA 16802 USA ABSTRACT * platform-based products ever produced in quantity and one of Everyone knows Henry Ford’s famous maxim: “You can the most efficiently designed. Despite Henry Ford’s famous have any color car you want so long as it’s black.” While he is maxim: “You can have any color car so long as it’s black”, recognized as the father of mass production, his contributions Ford’s contributions extend far beyond being the pioneer of extend well beyond that, offering valuable lessons for product mass production processes. Ford adapted techniques from the platforming and mass customization. While Ford’s pioneering U.S. weapon and meat packing industries to the automotive production systems are widely known and studied, few realize industry and improved it to its limits by rigorous principles [4]. that Ford’s Model T could be viewed as one of the greatest Each Model T model was built on the same platform, with a platforms ever created, enabling his workers to customize this deep level of customization: the body was specific to each model for a variety of different markets.
    [Show full text]