Oil & Natural Gas Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geology of the Maudina Mine Area, Northern Santa Catalina Mountains, Pinal County, Arizona
Geology of the Maudina Mine area, northern Santa Catalina Mountains, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Bromfield, Calvin Stanton, 1923- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 04:41:04 Link to Item http://hdl.handle.net/10150/553781 GEOLOGY OF THE MAUDINA MINE AREA, NORTHERN SANTA CATALINA MOUNTAINS, PINAL COUNTY, ARIZONA by Calvin S. Bromfleld M A Thesis submitted to the faculty of the Department of Geology in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Graduate College, University of Arizona 1950 Approved: Director of Thesis aniM AHIOT'Ah 2HT TC TBCJOaO A8 51. Xfl t) \ bi °itnio*!t? .2 «JLvl/,D alaoriT & edcr c j AaJiimcfu# ad Of 4^ 5" ' % Nt. A / tTR^A osejc !6* voiacA iigsw w ^ r m s ----- - £ <H1C\\ CONTENTS Page H H H m Introduction...................... Location..................... Previous Investigations...... Field Work and Acknowledgments Climate...................... Topography................... General Geology.................................. 9 General Statement........................... 9 Sedimentary RocKs......................... 12 Cambrian System...................... 12 Middle Cambrian................. 12 Troy quartzite............. 12 Santa Catalina formation.... 14 Southern Belle quartzite.... 17 Upper Cambrian.................. 18 . Abrigo formation........... 18 Peppersauce sandstone...... 20 Devonian System...................... 22 Upper Devonian................. 22 Martin limestone.......... 22 Lower Ouray formation..... 25 Misslssippian System................ 27 Lower Misslssippian............ 27 Escabrosa limestone....... 27 Cretaceous System................... 31 Cretaceous Strata............. -
Geology of the Northern Part of the Slate Mountains, Pinal County, Arizona
Geology of the northern part of the Slate mountains, Pinal county, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Hogue, William Gibson, 1914- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 20:11:37 Link to Item http://hdl.handle.net/10150/551077 GEOLOGY OF THE NORTHERN PART OF THE SLATE MOUNTAINS, PINAL COUNTY, ARIZONA by William Gibson Hogue A Thesis Vy submitted to the faculty of the Department of Geology in .partial fulfillment of =' . j j the requirements for the degree of Master of Science in the Graduate College University of Arizona 1940 Approved: /Date. <^9'79/ TABLE OF CONTENTS .gage. Acknov/ledgments .... Location Previous Work ...... Climate ...... Flora and Fauna ...... Topography and Drainage Miscellaneous ..... Sedimentary Rocks ..... Sedimentary Section ... Pinal Schist ........................... 11 Pioneer Shale ......................... .....12 Barnes Conglomerate ........................... 13 Dripping Spring Quartzite .................... -= 14 Mescal Limestone ............................. 15 Troy Quartzite ...........•.................. 16 Santa Catalina Formation ...................... 17 Southern Belle Quartzite ............. 19 Abrigo Formation ............... *............ -
The Devonian Fauna of the Ouray Limestone
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR 391 THE DEVONIAN FAUNA OF THE OURAY LIMESTONE BY E. M. KINDLE ' WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction,.............................................................. 5 Nomenclature and stratigraphic relations. ..................................... 6 Comparison of the two faunas in the Ouray limestone........................... 11 Distribution of the fauna..........................................:......... 13 Description of fauna....................................................... 15 Ccelenterata............................................................ 15 Vermes............................................................... 15 Brachipoda........................................................... 15 Pelecypoda........................................................... 30 Gastropoda............................................................ 33 Cephalopoda.......................................................... 36 Index.................................................................... 59 ILLUSTRATIONS. Page. PLATE I. Quray fauna. 40 II. Ouray fauna. 42 III. Ouray fauna. 44 IV. Ouray fauna. 46 V. Ouray fauna. 48 VI. Ouray fauna. 50 VII. Ouray fauna. 52 VIII. Ouray fauna. 54 IX. Ouray fauna. 56 X.- Ouray fauna. 58 THE DEVONIAN FAUNA OF THE OURAY LIMESTONE, By E. M. KINDLE. INTRODUCTION. The first discovery of a Devonian fauna in Colorado was made by F. M. Endlich in 1875, during his survey of the San Juan district. -
MINERAL POTENTIAL REPORT for the Lands Now Excluded from Grand Staircase-Escalante National Monument
United States Department ofthe Interior Bureau of Land Management MINERAL POTENTIAL REPORT for the Lands now Excluded from Grand Staircase-Escalante National Monument Garfield and Kane Counties, Utah Prepared by: Technical Approval: flirf/tl (Signature) Michael Vanden Berg (Print name) (Print name) Energy and Mineral Program Manager - Utah Geological Survey (Title) (Title) April 18, 2018 /f-P/2ft. 't 2o/ 8 (Date) (Date) M~zr;rL {Signature) 11 (Si~ ~.u.. "'- ~b ~ t:, "4 5~ A.J ~txM:t ;e;,E~ 't"'-. (Print name) (Print name) J.-"' ,·s h;c.-+ (V\ £uA.o...~ fk()~""....:r ~~/,~ L{ ( {Title) . Zo'{_ 2o l~0 +(~it71 ~ . I (Date) (Date) This preliminary repon makes information available to the public that may not conform to UGS technical, editorial. or policy standards; this should be considered by an individual or group planning to take action based on the contents ofthis report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding it!I suitability for a panicular use. The Utah Department ofNatural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users ofthis product. TABLE OF CONTENTS SUMMARY AND CONCLUSIONS ........................................................................................................... 4 Oil, Gas, and Coal Bed Methane ........................................................................................................... -
Synoptic Taxonomy of Major Fossil Groups
APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida -
The Coleopteran Fauna of Sultan Creek-Molas Lake Area with Special Emphasis on Carabidae and How the Geological Bedrock Influenc
THE COLEOPTERAN FAUNA OF SULTAN CREEK-MOLAS LAKE AREA WITH SPECIAL EMPHASIS ON CARABIDAE AND HOW THE GEOLOGICAL BEDROCK INFLUENCES BIODIVERSITY AND COMMUNITY STRUCTURE IN THE SAN JUAN MOUNTAINS, SAN JUAN COUNTY, COLORADO Melanie L. Bergolc A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Committee: Daniel Pavuk, Advisor Kurt Panter Graduate Faculty Representative Jeff Holland Rex Lowe Moira van Staaden © 2009 Melanie L. Bergolc All Rights Reserved iii ABSTRACT Daniel Pavuk, Advisor Few studies have been performed on coleopteran (beetle) biodiversity in mountain ecosystems and relating them to multiple environmental factors. None of the studies have examined geologic influences on beetle communities. Little coleopteran research has been performed in the Colorado Rocky Mountains. The main objectives of this study were to catalog the coleopteran fauna of a subalpine meadow in the San Juan Mountains of Colorado and investigate the role geology had in the community structure of the Carabidae (ground beetles). The study site, a 160,000 m2 plot, was located near Sultan Creek and Molas Lake in San Juan County, Colorado. Five sites were in each bedrock formation: Molas, Elbert, and Ouray-Leadville. Insects were collected via pitfall trapping in 2006 and 2007, and identified by comparison with museum specimens, museum and insect identification websites, and by taxonomic experts. Biological and physical factors were recorded for each site: detritus cover and weight, plant cover and height, plant species richness, aspect, elevation, slope, soil temperature, pH, moisture, and compressive strength, and sediment size distribution. -
RESEARCH Provenance of Pennsylvanian–Permian
RESEARCH Provenance of Pennsylvanian–Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in southwestern Laurentia: Implications for continental-scale Laurentian sediment transport systems Ryan J. Leary1, Paul Umhoefer2, M. Elliot Smith2, Tyson M. Smith3, Joel E. Saylor4, Nancy Riggs2, Greg Burr2, Emma Lodes2, Daniel Foley2, Alexis Licht5, Megan A. Mueller5, and Chris Baird5 1DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCE, NEW MEXICO INSTITUTE OF MINING AND TECHNOLOGY, SOCORRO, NEW MEXICO 87801, USA 2SCHOOL OF EARTH AND SUSTAINABILITY, NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, ARIZONA 86011, USA 3DEPARTMENT OF EARTH AND ATMOSPHERIC SCIENCES, UNIVERSITY OF HOUSTON, HOUSTON, TEXAS 77204, USA 4DEPARTMENT OF EARTH, OCEAN AND ATMOSPHERIC SCIENCES, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA V6T1Z4, CANADA 5DEPARTMENT OF EARTH AND SPACE SCIENCES, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195, USA ABSTRACT The Ancestral Rocky Mountains system consists of a series of basement-cored uplifts and associated sedimentary basins that formed in southwestern Laurentia during Early Pennsylvanian–middle Permian time. This system was originally recognized by aprons of coarse, arkosic sandstone and conglomerate within the Paradox, Eagle, and Denver Basins, which surround the Front Range and Uncompahgre basement uplifts. However, substantial portions of Ancestral Rocky Mountain–adjacent basins are filled with carbonate or fine-grained quartzose material that is distinct from proximal arkosic rocks, and detrital zircon data from basins adjacent to the Ancestral Rocky Moun- tains have been interpreted to indicate that a substantial proportion of their clastic sediment was sourced from the Appalachian and/or Arctic orogenic belts and transported over long distances across Laurentia into Ancestral Rocky Mountain basins. In this study, we pres- ent new U-Pb detrital zircon data from 72 samples from strata within the Denver Basin, Eagle Basin, Paradox Basin, northern Arizona shelf, Pedregosa Basin, and Keeler–Lone Pine Basin spanning ~50 m.y. -
Recognition and Significance of Upper Devonian Fluvial, Estuarine, and Mixed Siliciclastic-Carbonate Nearshore Marine Facies in the GEOSPHERE, V
Research Paper THEMED ISSUE: The Growth and Evolution of North America: Insights from the EarthScope Project GEOSPHERE Recognition and significance of Upper Devonian fluvial, estuarine, and mixed siliciclastic-carbonate nearshore marine facies in the GEOSPHERE, v. 15, no. 5 San Juan Mountains (southwestern Colorado, USA): Multiple incised https://doi.org/10.1130/GES02085.1 16 figures; 3 tables; 1 set of supplemental files valleys backfilled by lowstand and transgressive systems tracts James E. Evans1, Joshua T. Maurer1,2, and Christopher S. Holm-Denoma3 CORRESPONDENCE: [email protected] 1Department of Geology, Bowling Green State University, Bowling Green, Ohio 43403, USA 2Carmeuse Lime and Stone Company, 6104 Grand Avenue, Suite B, Pittsburgh, Pennsylvania 15225, USA CITATION: Evans, J.E., Maurer, J.T., and Holm- 3Geology, Geophysics, and Geochemistry Science Center, U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA Denoma, C.S., 2019, Recognition and significance of Upper Devonian fluvial, estuarine, and mixed siliciclastic- carbonate nearshore marine facies in the ■ ABSTRACT Allen and Posamentier, 1993; Catuneanu, 2006) and transgressive estuarine San Juan Mountains (southwestern Colorado, USA): Multiple incised valleys backfilled by lowstand and depositional systems (Cotter and Driese, 1998; Fischbein et al., 2009; Ainsworth transgressive systems tracts: Geosphere, v. 15, no. 5, The Upper Devonian Ignacio Formation (as stratigraphically revised) com- et al., 2011) in evaluating relative sea-level changes and the influence of allo- p. 1479–1507, https://doi.org/10.1130/GES02085.1. prises a transgressive, tide-dominated estuarine depositional system in the genic controlling variables (eustasy, tectonics, and sediment supply). In outcrop San Juan Mountains (Colorado, USA). -
SVP Comments on 21 U.S. National
Society of Vertebrate Paleontology 9650 Rockville Pike Bethesda, MD 20814- 3998 Phone: (301) 634-7814 Fax: (301) 634-7455 Email: [email protected] Web: www.vertpaleo.org FEIN: 06-0906643 July 9, 2017 Subject: Comments from the Society of Vertebrate Paleontology about the scientific importance of paleontological resources at the 21 U.S. National Monuments established since 1996 (Docket ID: DOI-2017-0002). Executive Summary In this document, the Society of Vertebrate Paleontology reviews the paleontological resources currently known from the U.S. National Monuments established since 1996 and explains why altering or revoking their boundaries would be disastrous for the science of paleontology. In these comments, we present: i. our views on the role of public lands in the science of paleontology (p. 2); ii. information on the benefit of paleontological science and education at these monuments to the general public (p. 4); iii. comments on why mining operations are incompatible with discovery and scientific study of paleontological resources (p. 4); iv. specific details about the paleontological resources at each of the continental monuments under review (p 6); v. a copy of the comments we submitted on May 25, 2017, about Bears Ears and Grand Staircase-Escalante National Monuments (tracking number 1k1-8wld-cxoj) (Appendix 1, p. 17); vi. representative scientific publications on paleontological resources at each of the moments (Appendix 2, p. 25) We find that all 21 non-marine monuments protect scientifically important vertebrate fossils or rocks with a high potential for yielding them, and are therefore are appropriately designated under the Antiquities Act of 1906 (note: ‘fossils’ must not to be confused with ‘fossil fuels’). -
Reinterpretation of the Ignacio and Elbert Formations As an Incised Valley Fill Using Facies Analysis and Sequence Stratigraphy; San Juan Basin, Southwest Colorado
REINTERPRETATION OF THE IGNACIO AND ELBERT FORMATIONS AS AN INCISED VALLEY FILL USING FACIES ANALYSIS AND SEQUENCE STRATIGRAPHY; SAN JUAN BASIN, SOUTHWEST COLORADO Joshua T. Maurer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2012 Committee: James E. Evans, Advisor Margaret Yacobucci Charles Onasch ii ABSTRACT James E. Evans, Advisor The Ignacio Formation and the Devonian Elbert Formation of southwest Colorado represent the lowest succession Paleozoic strata in the San Juan Basin of Colorado and New Mexico. This study reinterprets the Ignacio Formation-Ouray Limestone as Devonian (Famennian) in age and finds that the succession represented a laterally continuous depositional system of fluvial and estuarine environments (Ignacio Formation), prograding shoreline environments (McCracken Sandstone Member, Elbert Formation), tidal flats and shallow marine shales (Upper Member, Elbert Formation), and marine limestone and shales (Ouray Limestone). The present study is based on lithofacies analysis, 137-m of measured stratigraphic sections at 11 outcrops, provenance analysis from 24 representative thin sections, 72 paleocurrent measurements, and photomosaics. Lithofacies analysis identified 14 lithofacies that are organized into fluvial channel, tidal channel, tempestite, and tidal flat sequences. This study suggests that the Ignacio and Elbert formations may be reinterpreted an incised valley sequence. Evidence for this conclusion include variations in thickness, facies distribution, the conformable contact between the Ignacio Formation and the McCracken Sandstone Member, lithofacies associations and ichnology, which confirm the shift from fluvial to estuarine to marine environments, and the onlap of these Paleozoic sedimentary rocks onto Precambrian basement paleohighs. -
Pre-Carboniferous Paleotectonics of the San Juan Basin, New Mexico G
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/28 Pre-carboniferous paleotectonics of the San Juan Basin, New Mexico G. M. Stevenson and D. L. Baars, 1977, pp. 99-110 in: San Juan Basin III (northwestern New Mexico), Fassett, J. F.; James, H. L.; [eds.], New Mexico Geological Society 28th Annual Fall Field Conference Guidebook, 319 p. This is one of many related papers that were included in the 1977 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
1 STEPHEN T. HASIOTIS, Ph.D. Curriculum Vitae Updated 112213 EDUCATION University of Colorado, Boulder Geological Science
STEPHEN T. HASIOTIS, Ph.D. Curriculum Vitae Updated 112213 EDUCATION University of Colorado, Boulder Geological Science PhD degree granted 5/97 Thesis Advisors Erle G. Kauffman and Mary J. Kraus. Thesis Title: Redefining Continental Ichnology and the Scoyenia Ichnofacies. Defended April, 1997 University of Buffalo, NY Geology MS degree granted 2/91 Thesis Advisor Charles E. Mitchell. Thesis Title: Paleontology, Sedimentology, and Paleoecology of the Upper Triassic Chinle Formation in the Canyonlands Area, southeastern Utah. Defended December, 1990 University of Buffalo, NY Geology BS degree granted 5/85 Teacher Education Cert certifi. granted 5/85 - Earth Science - General Science - Chemistry EMPLOYMENT HISTORY 2012–present Courtesy Appointment to the Department of Geography, University of Kansas, appointed 3/12 2011–present Professor, Department of Geology, University of Kansas, appointed 7/11 2008–present Adjunct Senior Research Fellow (status level B; unpaid position), Department of Archaeology, Flinders University, Adelaide, Australia, appointed from 12/01/08– 12/01/11 2005–present Curatorial Affiliate, Peabody Museum of Natural History, Yale University, New Haven, CT. 5-year appointment with the Invertebrate Paleontology Section (renewed until 2015) 2005–2011 Associate Professor, Department of Geology, University of Kansas, appointed 8/05 2002–2007 Courtesy Appointment to the University of Kansas Natural History Museum and Center for Biodiversity Research 2001–2005 Assistant Professor, Department of Geology, University of Kansas